SECOND WEEK METHYL-PREDNISOLONE PULSES IMPROVE PROGNOSIS IN PATIENTS WITH SEVERE CORONAVIRUS DISEASE 2019 PNEUMONIA: AN OBSERVATIONAL COMPARATIVE STUDY USING ROUTINE CARE DATA.

GUILLERMO RUIZ-IRASTORZA, MD, PhD (1, 6, 7)

JOSE-IGNACIO PIJOAN, MD, MSc (2, 6, 8)

ELENA BERECIARTUA, MD (3, 6, 7)

SUSANNA DUNDER, MD (4, 6)

JOKIN DOMINGUEZ, MD (4, 6)

PAULA GARCIA-ESCUDERO, MD (5, 6)

ALEJANDRO RODRIGO, MD (4, 6)

CARLOTA GOMEZ-CARBALLO, MD (4, 6)

JIMENA VARONA, MD (4, 6)

LAURA GUIO, MD, PhD (3, 6, 7)

MARTA IBARROLA, MD (3, 6)

AMAIA UGARTE, MD (1, 6)

AGUSTIN MARTINEZ-BERRIOTXOA, MD, PhD (4, 6, 7)

On behalf of the Cruces COVID Study Group
1- Autoimmune Diseases Research Unit. Service of Internal Medicine. Hospital Universitario Cruces.

2.- Clinical Epidemiology Unit. Hospital Universitario Cruces.

3.- Infectious Diseases Unit. Hospital Universitario Cruces.

4.- Service of Internal Medicine. Hospital Universitario Cruces.

5.- Service of Rheumatology. Hospital Universitario Cruces.

6.- Biocruces Bizkaia Health Research Institute.

7.- University of the Basque Country (UPV/EHU)

8.- CIBER of Epidemiology and Public Health (CIBERESP)

CORRESPONDING AUTHOR:
Guillermo Ruiz-Irastorza
Unidad de Enfermedades Autoinmunes
Hospital Universitario Cruces
48903-Bizkaia
Spain
Telephone: (34) 94 600 63 48
Fax: (34) 94 600 66 17
e-mail: r.irastorza@outlook.es

WORD COUNT: 3315
ABSTRACT

OBJECTIVE: To analyze the effects of a short course of methyl-prednisolone pulses (MP) during the second week of disease (week-2) on the clinical course of patients with severe coronavirus disease 2019 (COVID-19) pneumonia.

DESIGN: Comparative observational study using data collected from routine care.

SETTING: Hospital Universitario Cruces, a tertiary level University hospital at Barakaldo, Bizkaia, Spain.

PARTICIPANTS: All patients with COVID-19 pneumonia admitted between 1st March and 30th April 2020 to the services of Infectious Diseases and Internal Medicine.

INTERVENTIONS: Treatment with week-2-MP (125-250 mg/d for 3 consecutive days with no subsequent tapering) vs. standard of care.

MAIN OUTCOMES MEASURES: Time to death and time to death or endotracheal intubation.

RESULTS: Two hundred and forty-two patients with confirmed COVID-19 pneumonia and elevated inflammatory markers at admission were included in the study. Sixty-one patients (25%) received week-2-MP. Twenty-two patients (9%) died during the study period. Thirty-one patients (12.8%) suffered death or intubation. The adjusted HR for death was 0.35 (95%CI 0.11 to 1.06, p= 0.064) for patients in the week-2-MP group. The adjusted HR for death or intubation week-2-MP was 0.33 (95%CI 0.13 to 0.84, p=0.020) for patients in the week-2-MP group. These differences were seen in the subcohort of patients with a SaO2/FiO2 at day 7 lower than the median of the whole population: HR 0.31,
95% CI 0.08 to 1.12, p=0.073 and HR 0.34, 95% CI 0.12 to 0.94, p=0.038, respectively, but not in patients with higher SaO2/FiO2. Other predictors of the final outcomes were arterial hypertension, SaO2/FiO2, high-risk CURB65 scores and the use of non-pulse glucocorticoids. Non-pulse glucocorticoids were a predictor of infections (OR 4.72, 95% CI 1.90 to 11.80, p<0.001), while week-2-MP were not (OR 1.04, 95% CI 0.40 to 2.70, p=0.938).

CONCLUSIONS: Week-2-MP are effective in improving the prognosis of patients with COVID-19 pneumonia with features of inflammatory activity and respiratory deterioration entering the second week of disease. The recognition of this high-risk population should prompt early use of MP at this point.

REGISTRATION: This study has been registered in the EU PAS Register with the number EUPAS36287.
Beginning in December 2019, a novel coronavirus, designated SARS-CoV-2, has caused an international outbreak of respiratory illness termed COVID-19 (1). Unfortunately, no drug has yet shown to clearly improve the prognosis of severe COVID-19 (2). Glucocorticoids were banned in the initial recommendations for treating the disease (3). However, severe lung and systemic inflammation may take place usually during the second week of disease, being the main cause of admission to intensive care units, need for mechanical respiratory support and death (4).

Admission of patients with COVID-19 started at Hospital Universitario Cruces in March 2020, reaching its peak between the 27th of March and early April. An initial period of no use of glucocorticoids (3) was followed by the administration of non-pulse glucocorticoids and later methyl-prednisolone pulses (MP) to selected patients. On April 3rd 2020, a joined protocol by the services of Infectious Diseases and Internal Medicine included MP in certain scenarios (see Methods).

The aim of this study is to analyse the effects of MP on the clinical course of patients with COVID-19 pneumonia admitted to the services of Infectious Diseases and Internal Medicine of Hospital Universitario Cruces. Our working hypothesis was that a short course of MP administered within the second week after the onset of symptoms (week-2-MP) would improve the outcome of patients with COVID-19 pneumonia with markers of inflammation and signs of progressive respiratory deterioration.

METHODS

Study design and population

We conducted an observational study using data collected from routine care to assess the efficacy of week-2-MP to treat patients with COVID-19 pneumonia. The study was approved by the Basque Country Research Ethics Committee (code EPA2020032) in accordance with the Declaration of Helsinki’s guidelines for research in humans.

All patients admitted between March 1st and April 30th to the services of Infectious Diseases and Internal Medicine, Hospital Universitario Cruces, with a diagnosis of COVID-19 pneumonia confirmed by positive reverse-transcriptase–polymerase-chain-reaction (RT-PCR) assay for SARS-CoV-2 in nasopharyngeal swabs, were initially selected for the study. Patients were excluded if they had no inflammatory markers at admission (see Study variables), died within the first week of symptoms, were admitted to hospital after the end of the second week, died of causes non-related to COVID-19 infection or were initially admitted to the Intensive Care Unit.

Therapeutic protocols

Initial management included supportive therapy with fluids and oxygenation with the goal of an O2 saturation ≥92%. The antiviral protocol was developed based on the recommendations by the Spanish Ministry of Health and the Spanish Agency for Medicines and Health Products (AEMPS) in the weeks prior to April 3, 2020 (5,6).
Hydroxychloroquine for 5 days associated with lopinavir/ritonavir for 7-10 days were recommended for all patients with pneumonia. Selected patients with severe pneumonia -CURB65 ≥2 (7) and/or SaO2 in ambient air O2 <90%- could be treated with remdesivir for 5 to 10 days, at the discretion of the clinician, after enrollment in a clinical trial (8) or as an off-label drug. Following the recommendations of the World Health Organization (WHO) (3), glucocorticoids were not used during the initial weeks of the pandemic, unless needed for comorbid conditions.

After the recognition of the inflammatory phase of COVID-19 pneumonia (4), glucocorticoids were empirically given to selected patients with severe disease and positive inflammatory markers, initially at doses around 1 mg/Kg/d during several days and later as MP, 125 to 250 mg/d for 3 consecutive days, similar to our patients with systemic autoimmune diseases (9). Our therapeutic protocol was updated on April 3rd 2020, including the recommendation of MP for patients with COVID-19 pneumonia with altered/worsening inflammatory parameters (lymphopenia, thrombocytopenia, rising ferritin, D-dimers and or C-reactive protein) and clinical deterioration, particularly those showing impending respiratory failure with decreasing SaO2/FiO2 values. MP were encouraged to be given during the second week after the onset of symptoms, always according to the attending physician best judgment. This therapeutic protocol remained unchanged until the end of the study period.

Study variables

All the clinical data were extracted from Hospital Universitario Cruces electronic medical records by the study investigators. According to our therapeutic
protocol, inflammatory state at admission was defined as the presence of any of the following: lymphocyte count <800/mm³, platelet count <150,000/mm³, ferritin >1000 mg/dl, C-reactive protein >100 mg/dl, D-dimers >1000 ng/ml.

Baseline variables included age, gender, previous diagnosis of diabetes mellitus, obesity (body mass index ≥30), arterial hypertension, chronic pulmonary disease, active neoplasia, neurodegenerative disease or systemic autoimmune disease and immunosuppressive therapy. The CURB65 scale (7) was calculated at admission and divided into three categories (low, medium and high risk). In order to assess severity within the second week of disease, the SaO2/FiO2 at that point was included in the database. Nosocomial infections, as diagnosed and treated by attending physicians, were also recorded.

Therapeutic variables included the following: lopinavir/ritonavir, hydroxychloroquine, non-pulse glucocorticoids (including the average daily dose and the number of days of treatment), low molecular weight heparin and MP (including the week of administration, counting after the onset of symptoms).

Outcomes

We used two primary outcomes: time to death (attributed to COVID-19) and time to death or endotracheal intubation.

Nosocomial infections were used as a secondary outcome measure to compare the safety of MP and non-pulse glucocorticoids.

Statistical analysis
Mean and standard deviation or median and interquartile range were used to describe continuous variables, according to their distributional characteristics. Counts and relative frequencies describe categorical variables. The time of onset of symptoms, as reported by the patient, was the time origin for calculation of time to events. Life tables were used to describe risk of events over the follow-up period, which ended either at the occurrence of the event of interest, at discharge or at the end of the study follow-up on 20th May 2020. Kaplan-Meier failure curves with log-rank test were calculated for each of the two primary outcomes, using the dichotomous variable week-2-MP, yes/no, for group comparisons.

Adjusted Cox proportional risk models were fitted to assess the effect of the dichotomous variable week-2-MP as the predictor of main interest. The aforementioned variables were included in the full model. Likelihood ratio tests were used in a sequential fashion in order to find a reduced adjusted model containing statistically significant covariates. Hazard ratios (HR) with 95% confidence intervals were used to estimate the magnitude of the association between risk predictors and outcomes. Proportionality of hazards was tested through the use of comparison of adjusted and predicted survival curves and Schoenfeld residuals.

All the univariate and multivariate analyses were repeated after stratification by the median SaO2/FiO2 at week 2 (equal to 353), in two groups: SaO2/FiO2 ≤353 and >353 (designated as low SaO2/FiO2 and high SaO2/FiO2), as this variable showed a significant departure from the proportionality of hazards assumption.
Finally, the Cox analysis was repeated using a three-category predictor (no-MP/week-2-MP/out-of-week-2-MP, i.e. MP at week 1 or 3) in order to better illustrate the effects of MP according to the time of administration.

Stata 16.1 for Windows was used for all the analyses (StataCorp. 2019. Stata Statistical Software: Release 16. College Station, TX: StataCorp LLC.).

Patient and public involvement

Neither patients nor the public were involved in the conception or conduct of the study.

RESULTS

Three hundred and forty-three patients with COVID-19 pneumonia were initially identified. Of these, 252 had an inflammatory state at admission; after excluding 2 patients with early death within the first week of disease course, 2 patients dying with COVID-19 but with death attributable to terminal cancer and 6 patients admitted after the end of the second week of disease, 242 patients were selected for the analysis of the primary and secondary outcomes.

Sixty-one patients (25%) received week-2-MP. In addition, 33 patients (14%) received out-of-week-2-MP (week 1 or 3). The remaining 148 patients (61%) did not receive MP.

Table 1 shows the clinical characteristics of the whole cohort and according to whether or not patients received week-2-MP.
Outcome: death

Twenty-two patients (9%) died during the study period. The proportion of deceased patients was lower in the week-2-MP group: 4/61 (6.6%) vs. 18/181 (9.9%). The Kaplan-Meier failure curves (figure 1a) showed a decreased risk of death of patients in the week-2-MP group with a trend for significance (log-rank test, p=0.102).

The final Cox model showed an adjusted HR for death of 0.35 (95%CI 0.11 to 1.06, p= 0.064) for patients in the week-2-MP group. Other independent predictors of death included a previous diagnosis of arterial hypertension, the use of non-pulse glucocorticoids, a high-risk CURB65 category and SaO2/FiO2 at week 2 (table 2).

In the subgroup with low SaO2/FiO2, 3/42 (7.1%) week-2-MP patients died vs. 14/80 (17.5%) non week-2-MP patients. The Kaplan-Meier failure curves depicted on figure 1b showed a lower mortality among week-2-MP patients (long-rank test, p=0.041).

The final Cox model in this subcohort showed a protective effect of week-2-MP (HR 0.31, 95% CI 0.08 to 1.12, p=0.073), with the rest of independent predictors being unchanged from the whole cohort model.

No differences were seen in the univariate analysis between patients with or without week-2-MP in the subpopulation with high SaO2/FiO2. Only 5/120 (4%) patients died in this subgroup. The multivariate Cox model could not identify any significant predictor of the outcome.

Outcome: death or intubation
Thirty-one patients (12.8%) suffered death or intubation. Week-2-MP patients had a lower incidence of the combined outcome: 6/61 (9.8%) vs. 25/181 (13.8%). The Kaplan-Meier failure curves (figure 2a) showed a largest time free of events in patients receiving week 2 MP, with a trend for significance (log-rank test p=0.125).

In the final Cox model, the adjusted HR for week-2-MP was 0.33 (95%CI 0.13 to 0.84, p=0.020). The same independent predictors than in the model with death as the outcome variable, with the exception of arterial hypertension, were retained (table 3).

In the subcohort with low SaO2/FiO2, the combined outcome was met by 5/42 (12%) vs. 20/80 (25%) patients receiving and not receiving, respectively, week-2-MP. The failure curves on figure 2b showed a better outcome in the former group (log-rank test, p=0.032).

In the final Cox model, week-2-MP were beneficial (HR 0.34, 95%CI 0.12 to 0.94, p=0.038). The model retained the same final variables than the whole cohort analysis.

Six patients suffered the combined outcome in the subcohort of patients with high SaO2/FiO2. Again, no differences were seen between patients with or without week-2-MP in the univariate or multivariate analysis. However, the use of non-pulse glucocorticoids was associated with an increased risk for the combined outcome (HR 10.5, 95%CI 0.94 to 116.84, p=0.056).

Analysis of the three-level MP variable
In order to better define the specific role of the time of MP administration, we compared the use of 2-week-MP and out-of-week-2-MP with no use of MP, by substituting this variable for the two-level 2-week-MP in the Cox models. Supplemental table 1 depicts the characteristics of the three subgroups.

In the model with mortality as outcome, week-2-MP patients showed a trend for lower mortality (HR 0.48, 95%CI 0.14 to 1.57, p=0.225), whilst out-of-week-2-MP patients had an increased risk of death (HR 2.49, 95%CI 0.87 to 7.11, p=0.088), both compared with no MP patients. The rest of the model included the same variables than the previous analysis (supplemental table 2). In the subcohort with low SaO2/FiO2, the trends were similar: week-2-MP vs. no MP, HR 0.42, 95%CI 0.11 to 1.66, p=0.216; out-of-week-2-MP vs. no MP, HR 2.37, 95%CI 0.73 to 7.77, p=0.153.

In the model with the combined death or intubation outcome, 2-week-MP were protective (HR 0.41, 95%CI 0.15 to 1.10, p=0.077) whilst non-week-2-MP had a trend for a higher risk (HR 2.00, 95%CI 0.87 to 4.60, p=0.102). The results were similar with somewhat lower significance in the subcohort with a low SaO2/FiO2: week-2-MP vs. no MP, HR 0.39, 95%CI 0.13 to 1.17, p=0.093; out-of-week-2-MP vs. no MP, HR 1.84, 95%CI 0.72 to 4.66, p=0.200 (supplemental table 3).

None of the analysis in the subcohort with high SaO2/FiO2 at week 2 showed differences between the three therapeutic groups.

Glucocorticoids and infections
Non-pulse glucocorticoids were used in 35 patients (14.5%). Fourteen patients (6%) received this therapy during the second week of disease. Patients treated with non-pulse glucocorticoids received a mean (SD) dose of 50 (32) mg/d during a mean of 6.5 (4) days.

Twenty-three patients (9.5%) had nosocomial infections. The use of non-pulse glucocorticoids was a strong predictor of infections, either given within the whole admission (OR 4.72, 95%CI 1.90 to 11.80, p<0.001) or during week 2 of symptoms (OR 6.42, 95%CI 2.04 to 20.43, p<0.001). On the other hand, week-2-MP did not predict infections (OR 1.04, 95%CI 0.40 to 2.70, p=0.938).

DISCUSSION

This study supports the utility of glucocorticoids to improve the outcome of patients with COVID-19 pneumonia. Moreover, we found that glucocorticoid use should not be indiscriminate but rather restricted to patients with laboratory evidence of inflammation and progressing respiratory compromise. In addition, our results confirm the hypothesis that glucocorticoids should be best used as short-course pulse therapy (125-250 mg/d of methyl-prednisolone during 3 days) and during the second week after the onset of symptoms.

By the time the outbreak reached our region in late February 2020, the use of glucocorticoids was discouraged by the WHO (3). This recommendation was based on a review of the clinical evidence of steroid therapy in other similar viral diseases, such as SARS-Cov-1, Middle East respiratory syndrome (MERES), influenza and respiratory syncytial virus, and on the idea that glucocorticoids could actually delay viral clearance (10). However, an observational study of
201 patients with COVID-19 pneumonia admitted to Wuhan Jinyintan Hospital published in early March showed a reduced mortality among patients receiving methyl-prednisolone, although the dose, the duration and the time of administration were not specified (11).

Indeed, new insights into the pathogenesis of the disease seem to support immunoregulation of some kind in patients affected by SARS-Cov-2, with the recognition of an inflammatory phase of the disease that can lead to extensive lung and multisystemic injury (4). This second phase usually takes place during the second week after the onset of symptoms.

Four recent studies also support the utility of glucocorticoids in COVID-19 disease (12-15). In an observational study of 213 patients from Detroit (12), compared patients of two groups, the standard of care (SOC) and early corticosteroid protocol groups (CP). Patients were given a similar median of 40 mg/d of methyl-prednisolone for 3 days, however, the proportion of treated patients (SOC 56.5% vs. CP 68.2%) and the time from symptoms to methyl-prednisolone administration (SOC 10 days vs. CP 8 days) were different. The combined composite end point (admission to intensive care unit/mechanical ventilation/death) occurred in 54.3% vs. 34.9% (OR 0.45, 95%CI 0.26-0.79) of patients in the SOC and CP, respectively.

A second observational study from Madrid compared 396 patients admitted for COVID-19 treated with glucocorticoids with 67 not treated (13). In the glucocorticoid-treated group, methyl-prednisolone was given either at 1 mg/kg/d (78.3%) or as 2 to 4-day pulses, up to 500 mg/d (21.7%) with subsequent tapering in 25% patients. The duration of therapy with 1 mg/kg/d was not specified. The median time from disease onset to initiation of glucocorticoid was
10 days. This study showed a significant reduction in mortality among glucocorticoid users (13.9% vs. 23.9%, HR 0.51, 95%CI0.27-0.96), with differences being significant only in the subgroup classified as moderate-severe disease. There was no difference in mortality between patients receiving 1 mg/Kg/d or pulses, however, 70 patients received pulses a mean of 5 days after the failure of the 1 mg/kg/d scheme.

In a small multicentre Spanish study, 85 patients with COVID-19 pneumonia mode. 85 patients with COVID-19 pneumonia were assigned to one of three groups: 34 patients were randomized to methyl-prednisolone (40 mg/12h for 3 days, then 20 mg/12h for 3 days); 22 patients were assigned to the same schedule of methyl-prednisolone by clinician’s preference; and 29 comprised the SOC control group (14). Among the 78 patients who effectively received the assigned therapy with methyl-prednisolone (40 mg/12h for 3 days, then 20 mg/12h for 3 days), the composite outcome (all-cause mortality, intensive care unit admission or progression of respiratory insufficiency) was met by 24% and 48% patients, respectively (RR 0.50, 95%CI 0.27 to 0.94).

Finally, the preliminary results from the RECOVERY trial have just been released (15). Patients with suspected or confirmed COVID-19 infection were randomised to receive dexamethasone (n=2104) or standard of care (n=4321). The dexamethasone protocol consisted of 6 mg/d for up to 10 days, although the actual median number of days was 6, and 7% of the usual care groups also received dexamethasone. The primary outcome, all-cause mortality within 28 days of randomization, was met by 21.6% patients allocated to dexamethasone vs. 24.6% allocated to usual care (RR 0.83; 95% CI 0.74 to 0.92). The reduction of mortality was only significant in patients receiving respiratory support.
Following the press release of these results, the WHO has already demanded an increase in dexamethasone production (16).

All these studies thus found a beneficial role of glucocorticoids in patients with severe COVID-19 disease. However, although most patients received glucocorticoid therapy within the second week and for less than 7 days, it is difficult to draw from these results specific recommendations about what dose, for how long and when to administer this treatment (12-15).

We confirmed that patients with COVID-19 disease and respiratory compromise are most likely to benefit from glucocorticoid therapy. In addition, our study found that only in patients treated in the second week after the onset of symptoms were MP effective. We also observed a clear difference between the use of a short course of MP and more prolonged reduced doses of glucocorticoids, the former preventing and the second strongly associated to an increased risk of both unfavourable outcomes in all models.

These findings are in agreement with our observations in patients with systemic lupus erythematosus and other autoimmune diseases. The activation of the non-genomic way by MP, given during a short period of time, maximises the anti-inflammatory activity of glucocorticoids without relevant side effects (17-19). On the other hand, doses in the range of 40-90 mg/d during a period of one week or more, besides being less effective, increase the risk of infections, which was the case in our patients. The reason for this is the full activation of the genomic way, which is responsible for most of the serious secondary effects of glucocorticoids (17-19).
Limitations

The most important limitation of this study is the observational design with a high variability in the therapeutic schemes, a consequence of the rapidly changing situation during this highly stressing pandemic. Indeed, the actual number of patients treated with MP was lower than expected after the approval of the revised protocol. Patients receiving MP also had a more severe disease. Thus, although the analysis included a high number of potentially predictive variables in the initial multivariate Cox models, it is possible that some unidentified bias may have influenced our results. We also had a low number of patients meeting the final endpoints compared with other studies (12,14,15). A possible explanation for this is that, despite the high pressure attained, our hospital did not collapse as many others in Spain. Despite the resulting loss in statistical potency, the risk reduction among patients receiving week-2-MP was consistently between 60-70% for both endpoints in all the models, which supports a clinically relevant effect.

CONCLUSION

This study confirms that MP, 125-250 mg/d for 3 consecutive days given during the second week of disease without subsequent tapering, improve the prognosis of patients with COVID-19 pneumonia, features of inflammatory activity and respiratory deterioration. Our results open the door to a more rational and planned management of patients with COVID-19. Those with negative inflammatory markers and normal SaO2 seem to have a good prognosis, thus clinical observation (even at home), could be appropriate. On the other hand, those approaching the second week of disease with worsening
inflammatory markers and respiratory failure would greatly benefit from a short course of MP, which could not only be life-saving, but also help avoid the overload of critical care units.
Acknowledgements
We thank all the health professionals from Hospital Universitario Cruces involved in the care of patients with COVID-19.

Financial support and sponsorship
None

Conflicts of interest
All authors have completed the Unified Competing Interest form and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years, no other relationships or activities that could appear to have influenced the submitted work.

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd to permit this article (if accepted) to be published in BMJ editions and any other BMJPGL products and sublicences such use and exploit all subsidiary rights, as set out in our licence.

Transparency declaration
The lead author affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.
KEY MESSAGE BOX

WHAT IS ALREADY KNOWN OF THIS TOPIC:

COVID-19 pneumonia harbours the potential for respiratory and multiorgan failure, in close relation with a hyperinflammatory state usually taking place during the second week of disease.

No effective antiviral therapy modifying the prognosis of the disease is yet available.

Glucocorticoid therapy may be of use in the setting of severe disease, but what drug, how much, for how long and when to administer it is not well established.

WHAT THIS STUDY ADDS:

Methyl-prednisolone pulses, 125-250 mg/d given during the second week of disease, reduced mortality and/or need for intubation by 60-70% in patients with COVID-19 pneumonia.

This effect was restricted to those with inflammatory markers and respiratory deterioration, with reduced SaO2/FiO2.
REFERENCES

8.- Study to evaluate the safety and antiviral activity of remdesivir (gs-5734™) in participants with severe coronavirus disease (COVID-19).
https://clinicaltrials.gov/ct2/show/NCT04292899

Table 1: Clinical characteristics of the cohort according to treatment with MP.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>Overall (n=242)</th>
<th>Week-2-MP (n=61)</th>
<th>No week-2-MP (n=181)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (sd)</td>
<td>64.4 (14.3)</td>
<td>65.0 (12.1)</td>
<td>64.2 (15.0)</td>
<td>0.702</td>
</tr>
<tr>
<td>Male n (%)</td>
<td>150 (62.0)</td>
<td>40 (65.6)</td>
<td>110 (60.8)</td>
<td>0.504</td>
</tr>
<tr>
<td>Follow-up* (days), mean (sd)</td>
<td>17.9 (7.3)</td>
<td>20.7 (6.0)</td>
<td>17.0 (7.5)</td>
<td>0.0007</td>
</tr>
<tr>
<td>Diabetes mellitus n (%)</td>
<td>51 (21.1)</td>
<td>9 (14.8)</td>
<td>42 (23.2)</td>
<td>0.162</td>
</tr>
<tr>
<td>Overweight n (%)</td>
<td>49 (20.3)</td>
<td>10 (16.4)</td>
<td>39 (21.6)</td>
<td>0.386</td>
</tr>
<tr>
<td>Hypertension n (%)</td>
<td>117 (48.4)</td>
<td>33 (54.1)</td>
<td>84 (46.4)</td>
<td>0.299</td>
</tr>
<tr>
<td>Chronic bronchopathty n (%)</td>
<td>62 (25.6)</td>
<td>14 (23.0)</td>
<td>48 (26.5)</td>
<td>0.581</td>
</tr>
<tr>
<td>Active cancer n (%)</td>
<td>26 (10.7)</td>
<td>7 (11.5)</td>
<td>19 (10.5)</td>
<td>0.831</td>
</tr>
<tr>
<td>Neurodegenerative disease n (%)</td>
<td>9 (3.7)</td>
<td>3 (4.9)</td>
<td>6 (3.3)</td>
<td>0.567</td>
</tr>
<tr>
<td>Autoimmune disease n (%)</td>
<td>9 (3.7)</td>
<td>3 (4.9)</td>
<td>6 (3.3)</td>
<td>0.567</td>
</tr>
<tr>
<td>Immunosuppressive n (%)</td>
<td>21 (8.7)</td>
<td>5 (8.2)</td>
<td>16 (8.8)</td>
<td>0.877</td>
</tr>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td>p-value</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>CURB65, high risk n. (%)</td>
<td>19 (7.9)</td>
<td>5 (8.2)</td>
<td>14 (7.7)</td>
<td>0.461</td>
</tr>
<tr>
<td>Time of symptoms to admission (days) mean (sd)</td>
<td>6.6 (3.2)</td>
<td>7.4 (2.8)</td>
<td>6.3 (3.2)</td>
<td>0.021</td>
</tr>
<tr>
<td>Lymphocytes (count/mm³) median (iqr)</td>
<td>800 (580)</td>
<td>680 (480)</td>
<td>815 (575)</td>
<td>0.118</td>
</tr>
<tr>
<td>Platelets (count/mm³) median (iqr)</td>
<td>212,000 (144,000)</td>
<td>208,000 (156,000)</td>
<td>213,000 (135,500)</td>
<td>0.703</td>
</tr>
<tr>
<td>Ferritin (mg/dl) median (iqr)</td>
<td>543 (807)</td>
<td>824 (919)</td>
<td>481 (723)</td>
<td><0.001</td>
</tr>
<tr>
<td>D-dimers (ng/ml), Median (iqr)</td>
<td>500 (1,171)</td>
<td>540 (870)</td>
<td>470 (1,171)</td>
<td>0.224</td>
</tr>
<tr>
<td>C-reactive protein (mg/dl) median (iqr)</td>
<td>79.5 (112.8)</td>
<td>112.3 (89.8)</td>
<td>73.4 (99.9)</td>
<td>0.024</td>
</tr>
<tr>
<td>SaO2/FiO2, Median (iqr)</td>
<td>380 (160.0)</td>
<td>332 (201.0)</td>
<td>438 (125.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>SaO2/FiO2 < 353 n (%)</td>
<td>117 (48.3)</td>
<td>41 (67.2)</td>
<td>76 (42.0)</td>
<td>0.001</td>
</tr>
<tr>
<td>Hydroxychloroquine n (%)</td>
<td>224 (92.9)</td>
<td>61 (100)</td>
<td>163 (90.5)</td>
<td>0.013</td>
</tr>
<tr>
<td>Days on</td>
<td>6.25 (2.6)</td>
<td>6.8 (2.6)</td>
<td>6.1 (2.6)</td>
<td>0.24</td>
</tr>
<tr>
<td>Drug</td>
<td>n (%)</td>
<td>218 (90)</td>
<td>58 (95)</td>
<td>160 (88)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Betaferon</td>
<td>13 (5.3)</td>
<td>1 (1.6)</td>
<td>2 (6.6)</td>
<td>0.13</td>
</tr>
<tr>
<td>LMWH</td>
<td>225 (92.9)</td>
<td>60 (98.3)</td>
<td>165 (91.26)</td>
<td>0.057</td>
</tr>
</tbody>
</table>

Week-2-MP: methyl-prednisolone pulses in week 2; LMWH: low molecular weight heparin; sd: standard deviation; iqr: interquartile range.

* From disease onset to death, discharge or end of the study period.
Table 2: Predictors of death: final models

<table>
<thead>
<tr>
<th>Variable</th>
<th>WHOLE COHORT (n=242)</th>
<th>PATIENTS WITH SaO2/FiO2 ≤353 (n=122)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95%CI)</td>
<td>p</td>
</tr>
<tr>
<td>WHOLE COHORT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week-2-MP</td>
<td>0.35 (0.11-1.06)</td>
<td>0.064</td>
</tr>
<tr>
<td>Non-pulse glucocorticoids</td>
<td>3.01 (1.28-7.14)</td>
<td>0.012</td>
</tr>
<tr>
<td>Hypertension</td>
<td>2.89 (0.91-9.17)</td>
<td>0.072</td>
</tr>
<tr>
<td>SaO2/FiO2</td>
<td>0.94 (0.91-0.98)</td>
<td>0.001</td>
</tr>
<tr>
<td>CURB65-low risk</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>CURB65-intermediate risk</td>
<td>1.64 (0.55-4.88)</td>
<td>0.371</td>
</tr>
<tr>
<td>CURB65-high risk</td>
<td>7.72 (2.56-23.26)</td>
<td><0.001</td>
</tr>
<tr>
<td>PATIENTS WITH SaO2/FiO2 ≤353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week-2-MP</td>
<td>0.31 (0.08-1.12)</td>
<td>0.073</td>
</tr>
<tr>
<td>Non-pulse glucocorticoids</td>
<td>2.98 (1.09-8.17)</td>
<td>0.034</td>
</tr>
<tr>
<td>Hypertension</td>
<td>3.14 (0.84-11.75)</td>
<td>0.089</td>
</tr>
<tr>
<td>SaO2/FiO2</td>
<td>0.92 (0.87-0.97)</td>
<td>0.002</td>
</tr>
<tr>
<td>CURB65-low risk</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>CURB65-intermediate risk</td>
<td>1.48 (0.41-5.34)</td>
<td>0.546</td>
</tr>
<tr>
<td>CURB65-high risk</td>
<td>10.29 (2.72-38.94)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Week-2-MP: methyl-prednisolone pulses in week 2. HR: hazard ratio; CI: confidence interval.

*HR for SaO2/FiO2 is change in hazard for each increase of 10 units in its value.
Table 3: Predictors of death or intubation: final models

<table>
<thead>
<tr>
<th>Variable</th>
<th>HR (95%CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHOLE COHORT (n=242)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week-2-MP</td>
<td>0.33 (0.13-0.84)</td>
<td>0.020</td>
</tr>
<tr>
<td>Non-pulse glucocorticoids</td>
<td>3.87 (1.87-8.02)</td>
<td><0.001</td>
</tr>
<tr>
<td>SaO2/FiO2</td>
<td>0.92 (0.89-0.94)</td>
<td><0.001</td>
</tr>
<tr>
<td>CURB65-low risk</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>CURB65-intermediate risk</td>
<td>1.93 (0.83-4.45)</td>
<td>0.125</td>
</tr>
<tr>
<td>CURB65-high risk</td>
<td>3.65 (1.48-9.02)</td>
<td>0.005</td>
</tr>
<tr>
<td>PATIENTS WITH SatO2/FiO2 ≤353 (n=122)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week-2-MP</td>
<td>0.34 (0.12-0.94)</td>
<td>0.038</td>
</tr>
<tr>
<td>Non-pulse glucocorticoids</td>
<td>3.16 (1.36-7.37)</td>
<td>0.008</td>
</tr>
<tr>
<td>SaO2/FiO2*</td>
<td>0.88 (0.83-0.93)</td>
<td><0.001</td>
</tr>
<tr>
<td>CURB65-low risk</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>CURB65-intermediate risk</td>
<td>1.78 (0.69-4.57)</td>
<td>0.234</td>
</tr>
<tr>
<td>CURB65-high risk</td>
<td>3.94 (1.44-10.78)</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Week-2-MP: methyl-prednisolone pulses in week 2. HR: hazard ratio; CI: confidence interval.

*HR for SaO2/FiO2 is change in hazard for each increase of 10 units in its value.
Figure 1. Kaplan-Meier failure curves. Outcome: death
1a: Whole cohort (n= 242). Log-rank test, p=0.102.
1b: Patients with low SaO2/FiO2 (n= 122). Log-rank test, p=0.041.

2-MP: second week methyl-prednisolone pulses

Figure 2. Kaplan-Meier failure curves. Outcome: death or intubation
2a: Whole cohort (n= 242). Log-rank test, p=0.125.
2b: Patients with low SaO2/FiO2 (n= 122). Log-rank test, p=0.032.

2-MP: second week methyl-prednisolone pulses
APPENDIX: Cruces COVID Study Group:

Service of Internal Medicine:
- Luis Dueña
- Gorka de Frutos
- Ignacio Fernandez-Huerta
- Jose-Gabriel Erdozain
- Mikel Escalante
- Juan-Manuel Goiri
- Nuria López-Osle
- Juan Monte
- Jose Rodriguez-Chinesta
- Angel Sebastian
- Adriana Soto
- Laura Velasco
- Irama Villar

Infectious Diseases Unit
- Maria-Jose Blanco
- Mikel del Alamo
- Gorane Euba
- Josune Goikoetxea
- Javier Nieto
- Regino Rodriguez-Alvarez
Figure 2a

Kaplan-Meier failure rates

Risk of death or OIT

Time since onset of symptoms (days)

Number at risk

<table>
<thead>
<tr>
<th></th>
<th>No-2-MP</th>
<th>2-MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>118</td>
<td>58</td>
</tr>
<tr>
<td>61</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

No 2-MP 2-MP

outcome: death or oro-tracheal intubation (OIT)

Figure 2b

Kaplan-Meier failure rates

Risk of death or OIT

Time since onset of symptoms (days)

Number at risk

<table>
<thead>
<tr>
<th></th>
<th>No-2-MP</th>
<th>2-MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>55</td>
<td>39</td>
</tr>
<tr>
<td>42</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

SaO2/FiO2 <353

No 2-MP 2-MP

outcome: death or oro-tracheal intubation (IOT)