The concentration of several perfluoroalkyl acids in serum appears to be reduced by dietary fiber

Michael W. Dzierenga\textsuperscript{a*,b, Debra R. Keastb, Matthew P. Longneckera}

a Ramboll, Raleigh, NC, USA

b Food & Nutrition Database Research, Inc., Bangor, PA, USA

* Corresponding author at: 3214 Charles B. Root Wynd, Suite 130, Raleigh, NC 27612, USA. E-mail address: mdzierenga@ramboll.com (M.W. Dzierenga).
Abstract
Fiber-rich food intake has been associated with lower serum concentrations of perfluoroalkyl substances (PFAS) in some studies, but dietary fiber per se has not to our knowledge been examined. Dietary fiber can adsorb some substances and trap them in a viscous gel matrix in the gut, resulting in excretion. We hypothesized that serum PFAS concentrations would be lower among those with higher dietary fiber intake. We examined the PFAS-fiber association among 6,483 adults who participated in the National Health and Nutrition Examination Survey (NHANES), 2003-2016. Fiber intake was estimated based on two 24-hour diet recalls. We adjusted the models for determinants of PFAS and potentially confounding factors such as intake of foods reported to increase PFAS exposure. Results were expressed as the percent difference in PFAS concentration per interquartile distance (IQD) increase in fiber (and 95 percent confidence interval), and the NHANES sampling parameters were used to make the results generalizable to the U.S. The adjusted percent difference in perfluorooctanoic acid (PFOA) per IQD increase in fiber was -4.35 (-6.79, -1.85); for perfluorooctane sulfonic acid (PFOS) was -7.19 (-10.01, -4.27), and for perfluorononanoic acid (PFNA) was -8.54 (-11.50, -5.48). These results suggest that dietary fiber increases the gastrointestinal excretion of PFOA, PFOS, and PFNA. Although the size of the associations was modest, the findings may be important in the context of studies of health outcomes in relation to PFAS if those health outcomes are also related to dietary fiber intake and the outcome-PFAS association is modest.

Keywords: Perfluorinated alkyl substances, Fluorocarbons, Pharmacokinetics, Dietary Fiber, Nutrition Surveys
Introduction

Perfluorinated alkyl substances (PFAS) have been associated with a number of health outcomes in humans, even when the exposure was below that found to have an effect in animals (EPA 2016a; EPA 2016b; EFSA 2018). A prime example is increased serum cholesterol (Steenland et al., 2009). In a recent report based on the National Health and Nutrition Examination Survey (NHANES), the cholesterol-PFAS association was 1.5 mg/dl per ng/ml of perfluorooctanoic acid (PFOA) in serum (Dong et al., 2019). Confounding is a plausible explanation for an association of such modest size. Given the paucity of animal data supporting adverse effects of PFAS on cholesterol at background levels of exposure, a natural question to ask was: could there be an as-yet-unidentified confounding factor that might explain this relationship? We identified consumption of dietary fiber as a possible source of confounding, as it has a well-known inverse association with cholesterol and may decrease PFAS levels through increases in gastrointestinal excretion.

Dietary fiber decreases absorption of several constituents of food such as cholesterol, fat, and iron (Grube et al., 2013; Hallberg and Hulthén, 2000; Jesch and Carr, 2017). Fiber also decreases the absorption of bile acids which contributes to its serum-cholesterol-lowering effect (Brown et al., 1999; Ellegård and Andersson, 2007). Dietary fiber decreases absorption by adsorbing substances or trapping them in viscous gel matrix (Naumann et al., 2019). Fiber-rich food intake has been associated with lower serum PFAS concentration in some studies (Haldorsson et al., 2008; Skuladottir et al., 2015), but dietary fiber per se has not to our knowledge been examined.

PFAS were used or have ongoing use in manufacturing of a variety of products, including consumer-use products (Buck et al., 2011; Interstate Technology Regulatory Council (ITRC), 2020). Almost everyone in developed countries has detectable amounts of PFAS in their serum, due to exposure via contaminated food and other sources (Sunderland et al., 2019). The association of health
outcomes with PFAS in epidemiologic studies of populations with background-level exposure are in
some cases being used as the critical endpoint in risk assessments (EFSA CONTAM Panel, 2020, 2018).

Given the previous epidemiologic data suggesting that fiber-rich foods might decrease serum
PFAS concentrations and the possibility that a PFAS-fiber association might confound the results of
studies on health outcomes and PFAS, we tested the hypothesis that serum PFAS concentrations would
be lower among those with a higher intake of dietary fiber. The NHANES now has more than 10 years’
worth of data on serum PFAS concentrations among subjects with two 24-hour diet recalls (Centers for
Disease Control and Prevention (CDC) National Center for Health Statistics (NCHS), 2015). Thus,
NHANES provided a favorable setting for testing the hypothesis, not only because of the large sample
size, but because we could adjust for energy intake, which we suspected was an important confounding
factor.

Methods

Study population

Data on NHANES participants from the 2005-2006 through 2015-2016 waves were used. Because the
food frequency questions about fish consumption were asked only of women of
reproductive age in 2003-2004, that NHANES wave was not included. (Earlier waves had only one 24-
hour diet recall per subject.) Participants were included in the main analysis if they had complete
dietary data, measurement of PFAS levels, and data for all other covariates (see other covariates below).
Participants who reported using bile acid sequestrants were excluded as these drugs may interfere with
absorption of PFAS from the gut (Genuis et al., 2010). Participants were also excluded if they were under
20 or over 79 years old, if they were pregnant, if they were breastfeeding, or if they were undergoing
dialysis.
PFAS Levels

PFOA, perfluorosulfonic acid (PFOS), and perfluorononanoic acid (PFNA) were measured in all the waves from 2005-2006 through 2015-2016. We selected PFOS, PFOA and PFNA as the PFAS to examine based on the high proportion of participants with detectable levels of those compounds in human serum (>99%) and the tendency for the levels of those chemicals to be associated with cholesterol levels in serum (Dong et al., 2019; Geiger et al., 2014; Nelson et al., 2010; Steenland et al., 2009). PFAS were quantified in a subsample of one third of the NHANES participants. For waves from 2013-2014 and 2015-2016, in which the linear and branched isomers of PFOA and PFOS were measured separately, we used the sum of the linear and branched isomers. As mentioned previously, the three chemicals were measured at levels above the limit of detection (LOD) in most participants, with the exception of the branched isomer of PFOA, which was below the LOD in most of the participants in which the isomers of PFOA were separately measured. Measurements of levels below the LOD were imputed with LOD/sqrt(2). The sum of PFOA was mostly determined by the linear isomer, with a mean ratio of linear to branched PFOA of 25.8.

Dietary Information

The dietary survey portion of NHANES consisted of two 24-hr diet recalls, and a targeted food frequency questionnaire covering fish and seafood consumption within the last 30 days. Based on the consumed amount of individual foods reported in the 24-hr recalls, nutrient intake were derived using the NHANES wave-specific Food and Nutrient Database for Dietary Studies (Food Surveys Research Group, Agricultural Research Service, USDA, 2018). Total dietary fiber was the fiber remaining after a food’s digestion by α-amylase, protease, and amyloglucosidase (Lee et al., 1992).

Foods that have been reported to contain high levels of PFAS (Domingo et al., 2012; Ericson et al., 2008; Haug et al., 2010; Noorlander et al., 2011; Tittlemier et al., 2007; Vester gren and Cousins, 2013), or whose consumption has been associated with higher PFAS levels (Arrebola et al., 2018;
Averina et al., 2018; Brantsaeter et al., 2013; Eriksen et al., 2011; Jain, 2014; Liu et al., 2017; Park et al., 2019; Skuladottir et al., 2015; Zhou et al., 2019) were considered as potentially confounding factors: fish and seafood, meat and meat products, milk and dairy products, eggs and egg products, and popcorn. For fish and seafood, adjustment was based on the number of reported times fish and seafood were eaten in the past 30 days. For the other food categories, adjustment was based on the grams/d of each food category consumed, averaged over the two 24-hr recalls. Details about the classification of food recall data into food categories are presented in the supplemental information (Table S1). Total energy intake was also considered as a covariate.

Other Covariates

For the adjusted analyses, we adjusted a priori for sex, age, race and ethnicity (5 categories), NHANES wave, poverty-to-income ratio (POVIR), and BMI (kg/m²). For women, we also considered adjustment for parity. We also considered adjustment for cigarette smoking (never [<100 cigarettes lifetime], former [does not currently smoke cigarettes], smoker [<1 pack per day average last 30 days], heavy smoker [≥1 pack per day average last 30 days]), and alcohol intake (never [<12 drinks lifetime], former [0 drinks last 12 mo.], light drinker [<1 drink per week last 12 mo.], drinker [<7 drinks per week last 12 mo.], heavy drinker [≥7 drinks per week last year].

Statistical Methods

Univariate distributions were analyzed using median and quartiles for continuous variables and by percentage for categorical variables. In a preliminary step, energy-intake-adjusted fiber intake was calculated as the residual of the regression of dietary fiber on total caloric intake. Fiber and caloric intake were log-transformed to normalize the distributions for the regression. As the residuals of the regression were centered at zero, the mean crude fiber intake was added back to the residuals to produce an easier to interpret metric. Energy-intake-adjustment produces a variable which represents dietary intake from a relative and not absolute perspective (Willett et al., 1997). The energy-intake
adjustment was done before averaging the two 24-hr dietary recalls. We fit a regression model of log$_e$ transformed PFAS with energy-intake-adjusted dietary fiber intake as the key independent variable (continuous, original scale), with adjustment for the a priori and other factors considered. Dietary and lifestyle variables were removed based on the maximization of model performance, based on Akaike’s information criterion (AIC), with the restriction that the coefficient for fiber differ by less than 5% compared to the model with all covariates (Akaike, 1974). Linear and second order models for fiber were also tested, with the quadratic model selected if the AIC was improved (decreased) by 4 or greater. We also performed regressions with quartile of energy-intake-adjusted total dietary fiber intake as the independent variable.

We also examined effect modification by comparing models with and without interaction terms for dietary fiber consumption and each confounding variable in the final model. The comparison was performed using a decrement in AIC ≥4 indicating a better-fitting model. To see if the PFAS-fiber association varied by source of fiber we fit models with total fiber replaced by a group of variables representing fiber intake from specific types of food. Details about the food categories used for this analysis are in the supplemental information (Table S2).

In sensitivity analyses, we investigated the possibility of bias due to missing data using multiple imputation with chained equations (Buuren and Groothuis-Oudshoorn, 2011). We performed the analysis using fully conditional specification to impute the missing data for the adjustment factors. Five chains were used for imputation with 25 iterations performed for each chain. Convergence was evaluated by examining plots of variable mean and standard deviation across chains and iterations.

We also estimated the PFAS-fiber associations that would have been observed in the absence of measurement error in fiber intake, given certain assumptions. This is described in the supplemental information (Section 1).
All statistical analyses were carried out in R (R Core Team, 2018). In the initial diet calculations, the 2-day dietary sample weight was used for the 24-hr dietary recall data to account for day-of-the-week variation and other factors. In the regression models the sampling parameters and survey weights for the PFAS measurements were used. The R package “survey” was used to perform the regression (Lumley, 2019a, 2004). The R packages “mice” and “mitools” were used to perform and analyze the multiple imputation (Buuren and Groothuis-Oudshoorn, 2011; Lumley, 2019b).

Results

After excluding subjects with incomplete information (Figure S1), data for 6,483 people were included in the analysis. Most exclusions (more than 1% of the total initial population) were due to age, lack of outcome measurement, or lack of one or both 24-hr diet recalls. The characteristics of the 6,483 reflected that of the U.S. adult population (Table 1). The median fiber intake was consistent with the reported U.S. mean of 16 g/d (Hoy and Goldman, 2014), recognizing the slight skewness of the distribution; the distribution of energy-adjusted fiber was slightly narrower than for the crude distribution, as expected. Popcorn consumption had 0 g/day for the 75th quartile. Further analysis showed that 619 individuals (9.5%) had popcorn intake greater than 0 g/day.
Table 1. Population characteristics. Number (and percentage) are shown for categorical variables. Median (and quartiles) are shown for continuous variables.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Number or Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size</td>
<td>6483</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>3261 (50.3%)</td>
</tr>
<tr>
<td>Male</td>
<td>3222 (49.7%)</td>
</tr>
<tr>
<td>Age</td>
<td>47 [34, 58]</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Mexican American</td>
<td>495 (7.6%)</td>
</tr>
<tr>
<td>Other Hispanic</td>
<td>326 (5.0%)</td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>4603 (71.0%)</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>661 (10.2%)</td>
</tr>
<tr>
<td>Other Race</td>
<td>398 (6.1%)</td>
</tr>
<tr>
<td>Poverty-Income Ratio</td>
<td>3.2 [1.6, 5]</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.9 [24.3, 32.7]</td>
</tr>
<tr>
<td>Parity (among women)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1587 (24.5%)</td>
</tr>
<tr>
<td>1</td>
<td>1007 (15.5%)</td>
</tr>
<tr>
<td>2 or more</td>
<td>3889 (60.0%)</td>
</tr>
<tr>
<td>PFOA (ng/ml)</td>
<td>2.8 [1.8, 4.5]</td>
</tr>
<tr>
<td>PFOS (ng/ml)</td>
<td>9.1 [5.0, 15.9]</td>
</tr>
<tr>
<td>PFNA (ng/ml)</td>
<td>0.9 [0.6, 1.4]</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
</tr>
<tr>
<td>Never [<100 lifetime cigarettes]</td>
<td>3550 (54.8%)</td>
</tr>
<tr>
<td>Former [not current smoker]</td>
<td>1591 (24.5%)</td>
</tr>
<tr>
<td>Smoker [≤1 pack per day]</td>
<td>860 (13.3%)</td>
</tr>
<tr>
<td>Heavy Smoker [≥1 pack per day]</td>
<td>481 (7.4%)</td>
</tr>
<tr>
<td>Alcohol Use</td>
<td></td>
</tr>
<tr>
<td>Never [<12 lifetime drinks]</td>
<td>647 (10.0%)</td>
</tr>
<tr>
<td>Former [0 drinks last 12 months]</td>
<td>977 (15.1%)</td>
</tr>
<tr>
<td>Light Drinker [<1 drink per week]</td>
<td>2045 (31.5%)</td>
</tr>
<tr>
<td>Drinker [<7 drinks per week]</td>
<td>1751 (27.0%)</td>
</tr>
<tr>
<td>Heavy Drinker [≥7 drinks per week]</td>
<td>1063 (16.4%)</td>
</tr>
<tr>
<td>Dietary Intake</td>
<td></td>
</tr>
<tr>
<td>Crude Dietary Fiber (g/day)†</td>
<td>15.4 [10.9, 21.8]</td>
</tr>
<tr>
<td>Energy Adjusted Fiber (g/day)†</td>
<td>14.4 [10.8, 19.1]</td>
</tr>
<tr>
<td>Total Energy Intake (kcal/day)</td>
<td>2000 [1563, 2588]</td>
</tr>
<tr>
<td>Fish & Shellfish (freq. last 30 days)</td>
<td>4 [1, 8]</td>
</tr>
<tr>
<td>Meat & Meat Products (g/day)</td>
<td>155 [79, 260]</td>
</tr>
<tr>
<td>Milk & Dairy Products (g/day)</td>
<td>133 [31, 286]</td>
</tr>
<tr>
<td>Egg & Egg Products (g/day)</td>
<td>0 [0, 43]</td>
</tr>
<tr>
<td>Popcorn (g/day)</td>
<td>0 [0, 0]</td>
</tr>
<tr>
<td>Popcorn >0 g/day</td>
<td>619 (9.5%)</td>
</tr>
</tbody>
</table>

†Dietary fiber was log-transformed for energy adjustment. The geometric mean crude dietary fiber was 14.5 g/day and for energy-adjusted fiber was 14.2 g/day.
Energy-adjusted dietary fiber was correlated with all the other dietary intake variables, based on statistical significance (Table 2). In terms of the magnitude of the correlation, Fish & Shellfish had the largest correlation (positive), followed by Meat & Meat products (negative) and Popcorn (positive). Popcorn is a source of dietary fiber, so a positive correlation was expected. Seafood and meat do not contain fiber, so the correlations fiber must be due to differences in the overall diet of frequent seafood and meat consumers.

Table 2. Partial correlation coefficients between dietary fiber and food intake variables.†

<table>
<thead>
<tr>
<th>Food</th>
<th>Dietary Fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish & Shellfish (freq. last 30 days)</td>
<td>0.13</td>
</tr>
<tr>
<td>Meat & Meat Products (g/day)</td>
<td>-0.10</td>
</tr>
<tr>
<td>Milk & Dairy Products (g/day)</td>
<td>0.06</td>
</tr>
<tr>
<td>Egg & Egg Products (g/day)</td>
<td>-0.04</td>
</tr>
<tr>
<td>Popcorn (g/day)</td>
<td>0.07</td>
</tr>
</tbody>
</table>

† Each partial correlation coefficient was adjusted for energy intake as well as the other food intake variables in this table. All partial correlation coefficients had p-value < 0.001.

In both the unadjusted and adjusted models of lnPFAS, the percent difference per interquartile distance increment in energy-adjusted dietary fiber was inverse for all three compounds (Table 3). Comparing the unadjusted and adjusted results, addition of potentially confounding variables decreased the magnitude of association in PFOA, left PFOS essentially unchanged, and increased the magnitude of the association for PFNA. In the adjusted analyses, PFNA had the strongest association, followed by PFOS and PFOA. Only the model of PFNA was improved by the addition of a quadratic term for energy-adjusted fiber. Eliminating covariates to maximize model performance based on the β for dietary fiber and AIC resulted in energy intake, egg consumption and alcohol consumption being removed from the PFOA model, egg consumption and alcohol consumption being removed from the PFOS model, and parity being removed from the PFNA model. The coefficients for all terms included in the final models are shown in Tables S3-S5.
Table 3. Percent change in PFAS level per inter-quartile range (IQR) increase in energy-adjusted fiber intake using three different models.†

<table>
<thead>
<tr>
<th>PFAS (ng/mL)</th>
<th>Crude Model</th>
<th>Full Model</th>
<th>Final model</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFOA</td>
<td>-5.44 (-8.20, -2.60)</td>
<td>-4.23 (-6.73, -1.66)</td>
<td>-4.35 (-6.79, -1.85)</td>
</tr>
<tr>
<td>PFOS</td>
<td>-7.28 (-10.76, -3.67)</td>
<td>-7.28 (-10.11, -4.35)</td>
<td>-7.19 (-10.01, -4.27)</td>
</tr>
<tr>
<td>PFNA</td>
<td>-6.45 (-9.48, -3.32)</td>
<td>-8.52 (-11.13, -5.83)</td>
<td>-8.54 (-11.50, -5.48)</td>
</tr>
</tbody>
</table>

†The full model was adjusted for energy intake, consumption of meat and meat products, milk and dairy products, eggs, popcorn, fish and shellfish, age, BMI, poverty to income ratio, parity (in women), sex, NHANES wave, smoking, alcohol, and race/ethnicity. The final model was based on the set of adjustment variables which minimized AIC and gave a % change in PFAS that was < 5% different from that in the full model. For PFOA, energy intake, eggs, and alcohol were removed. For PFOS, eggs and alcohol were removed compared to the full model. For PFNA, only parity was removed compared to the full model.

Examination of the percent difference in PFAS by quartile of fiber showed a roughly linear relationship for PFOS and PFNA (Figure 1). For PFOA, the highest quartile had a smaller percent difference than would be consistent with a linear relationship. This may represent some type of saturation of binding at higher fiber levels, though the quadratic model did not provide a substantially better fit to the data.
Figure 1. Percent change in PFAS by quartile of energy-adjusted dietary fiber.

<table>
<thead>
<tr>
<th>Quartile</th>
<th>Mean Fiber (g/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>8.27</td>
</tr>
<tr>
<td>2nd</td>
<td>12.6</td>
</tr>
<tr>
<td>3rd</td>
<td>16.5</td>
</tr>
<tr>
<td>4th</td>
<td>25.1</td>
</tr>
</tbody>
</table>

† Energy adjusted mean fiber values by quartile were 8.27, 12.6, 16.5, and 25.1 g/day.

The effect modification analysis showed interaction for age (PFOA and PFNA), BMI (all three PFAS), energy intake (PFOS), smoking category (PFOS and PFNA), alcohol category (PFOS), and NHANES wave (PFOA) (Tables S6 and S7a-c). Fiber associations decreased with age (PFOA and PFNA). Fiber associations decreased with BMI for PFOA and PFOS; for PFNA the trend was in the opposite direction and of smaller magnitude. The association with fiber increased with energy intake (PFOS). Heavy smokers [≥1 pack per day average] showed no decrease in PFOS or PFNA with higher fiber intake. The fiber associations in later waves were less inverse (PFOA). The inverse association with fiber was largest for never, light and moderate drinkers (PFOS).
For PFOA and PFNA the analysis of type of food contributing fiber did not support important differences in association, based on the AIC’s of the models (Table S8-S9). The PFOS-fiber association was most inverse for fiber from the food group “grain-based snacks and sweets”. Further subcategorization of foods within this group did not improve the model fit, though the “Pretzels/Snack Mix” category had an especially strong inverse relation (Table S10).

Multiple imputation showed little difference from the complete case analysis (Table S11).

The measurement error-adjusted estimates for total fiber, as expected, were more inverse than those shown in Table 3 (supplemental information, section 1). For PFOA and PFOS, the adjusted estimates were 76% more inverse; for PNFA it was 40% more inverse.

Discussion

For all three PFAS examined, higher intake of dietary fiber was associated with lower PFAS concentrations in serum. Although the associations were of modest size (less than 10% decrease in PFAS with interquartile increase in dietary fiber), they may be important in the context of outcome-PFAS associations that themselves are of modest size, for which unmeasured confounding may have an important influence on the results.

In 13 previous reports with information about serum PFAS concentrations in relation to dietary factors, the focus was primarily on foods that might increase blood levels (Arrebola et al., 2018; Averina et al., 2018; Brantsaeter et al., 2013; Christensen et al., 2017; Eriksen et al., 2011; Halldorsson et al., 2008; Jain, 2014; Liu et al., 2017; Park et al., 2019; Skuladottir et al., 2015; Sun et al., 2018; Wu et al., 2015; Zhou et al., 2019). Dietary fiber was not examined in these studies, although associations of PFAS with intake of fiber-rich foods such as fruits, vegetables, beans, and cereal were considered by many. Relevant to the interpretation of the data on foods is that energy intake is an expected confounder of the PFAS-fiber relationship and without adjustment an inverse association would be harder to detect.
Adjustment for energy intake was done in two the of previous studies (Brantsaeter et al., 2013; Skuladottir et al., 2015). Despite the lack of energy intake adjustment in most of the previous studies that examined associations of PFAS with fiber-rich foods, the results were generally consistent with an inverse relation. In a study based on the Danish National Birth Cohort (Halldorsson et al., 2008), PFOA and PFOS were inversely related to intake of vegetables, and PFOS was inversely related to intake of fruits. In a study of 2003-2008 NHANES subjects (Jain, 2014), PFOA was inversely related to intake of beans, despite using only one diet record per subject, which would decrease the ability to detect a relation. In a study done in Singapore (Liu et al., 2017), PFOA and PFOS were inversely related to grains, and PFOS was inversely related to soy products. In another study done in Denmark (Skuladottir et al., 2015), PFOA and PFOS were inversely related to vegetable intake. In the Nurses’ Health Study (Sun et al., 2018), an index of healthy eating, which was likely correlated with fiber intake, was related to lower PFOS. In a study done in California (Wu et al., 2015), PFOS concentration was inversely related to intake of crackers (excluding graham crackers). Popcorn was the only high-fiber food with a positive relation (Park et al., 2019; Sun et al., 2018), probably because the packaging for some popcorn products was a source of exposure (Sinclair et al., 2007).

The analysis of the PFAS-fiber association according to fiber source indicated that fiber’s inverse association with PFOS varied across food groups. However, the analysis did not suggest that a specific source of fiber accounted for the relationship between PFOS and the total diet. A variety of fiber sources may be important, including fiber from refined grains. Attributing the association to a specific type of fiber is a challenge, because nutrient databases for types of fiber in foods are incomplete. The broad soluble/insoluble dichotomy once used has been declared obsolete by the National Academy of Sciences, and for that reason even this breakdown has not been implemented in the USDA database on which NHANES nutrient information is based (Slavin, 2003).
The effect modification analysis identified no factor that similarly altered the PFAS-fiber association across all three PFAS. Age, BMI, and smoking, however, did similarly alter the association for at least two PFAS. The obese tend to underreport energy intake and distort reporting of dietary composition (Heitmann et al., 1995; Lissner et al., 2007). The net effect could be over-reporting of fiber intake among the obese. In other words, the true fiber intake among the obese could be less than reported, giving the appearance of a diminished fiber effect. Age-related differences in the accuracy of reported diet could similarly distort our results (Krok-Schoen et al., 2019). Given the limited evidence pointing to specific food sources of fiber as being important, co-variation in fiber type consumed with heavy smoking, age or BMI appears to be less well supported as an explanation for the effect modification but is still possible. As noted earlier, dietary fiber decreases absorption of several constituents of food such as cholesterol, fat, and iron (Grube et al., 2013; Hallberg and Hulthén, 2000; Jesch and Carr, 2017). Dietary fiber decreases absorption by adsorbing substances and trapping them in a viscous gel matrix (Naumann et al., 2019). The association between dietary fiber and PFAS may be due to a similar underlying mechanism.

Although PFAS enters the gut by consuming food and drinking water that contain it, PFAS also enters the gut in bile that is excreted as part of enterohepatic circulation. This has been shown through measurement of PFOA and PFOS in bile at concentrations similar to those found in serum (Harada et al., 2007), and identification of many of the transporters that facilitate their enterohepatic circulation (Zhao et al., 2017, 2015). PFAS entering the gut through bile would be subject to the same effects of dietary fiber, i.e. decreased reabsorption, as PFAS from food. An analogous effect occurs with ingestion of cholestyramine, a bile acid sequestrant that also binds to selected drugs and nutrients (Davies, 1998; Pieroni and Fisher, 1981; West and Lloyd, 1975), which has been shown to increase excretion of all three PFAS in human feces (Genuis et al., 2010). In that case study, excretion of PFOS and PFNA were
increased to a greater degree than for PFOA (Genuis et al., 2010). Enterohepatic circulation and fecal excretion may be more important for these two compounds than for PFOA.

Fiber intake may be an important unmeasured confounder affecting epidemiologic associations between serum cholesterol and serum PFAS, as mentioned previously. Fiber decreases serum cholesterol (Brown et al., 1999), and if it also decreases serum PFAS, that could account for some or all of the positive association of cholesterol and PFAS. Fiber could also be a confounder in epidemiologic associations between immunogenicity and PFAS. Fiber intake in the form of prebiotic supplements has been shown in randomized clinical trials to increase antibody titers following influenza vaccination (Yeh et al., 2018). If fiber increases antibody response to vaccines, and also decreases PFAS, this could account for some or all of the inverse association of antibody response with PFAS. The method of quantifying dietary fiber used for the USDA database underlying NHANES 2005-2016 did not include prebiotic dietary fiber as a separate category from total dietary fiber (Phillips et al., 2019). Total dietary fiber, however, did capture dietary constituents that — like prebiotics — increase the production of short chain fatty acids, which have favorable effects on systemic antibody response (Carlson et al., 2018; Kim et al., 2016). Assessing the degree to which these associations are confounded by fiber will not be easy given the difficulty of measuring diet well.

Because our assessment of diet was based on two 24-hour diet recalls and because of the day-to-day variation in diet, we had an imprecise measure of usual intake for each subject. Imprecision in the fiber measure means that the associations with PFAS we observed were attenuated. We estimated the effect of imprecision on the associations by taking the correlation between the two energy-adjusted fiber intakes for each subject into account; this suggested that the estimates for the fiber “effect” would have been more than 70% larger for PFOA and PFOS in the absence of imprecision (supplemental information, section 1). The imprecision also applied to the dietary confounders, meaning that the fiber estimate might have been influenced by residual confounding. For example, meat was directly
associated with PFOA (Table S1) and was inversely associated with fiber (Table 2). Failure to measure meat intake precisely means that the PFAS-fiber association would appear to be more inverse than in fact (Mehio-Sibai et al., 2005). Although meat was not a statistically significant determinant of serum PFOA, the possibility exists that the estimates in Table 3 were larger on an absolute scale than in fact. For the other dietary confounders, based on the sign of their relation with fiber and with PFOA, the residual confounding would have caused an estimate for fiber that was biased towards the null. What the overall effect of the residual confounding was remains uncertain. Another level of uncertainty arose from the inaccuracy in 24-hour diet recalls (Karvetti and Knuts, 1985), which would have added to the imprecision and could have biased the results. Despite the difficulty incurred by use of a dietary measure, we were able to detect the modest associations, possibly because of the large sample size, and the precision of the PFAS assays. Nonetheless, confirmation of the PFAS-fiber association in large studies with a comprehensive diet assessment and data analysis would increase confidence.

Conclusion

These results suggest that dietary fiber increases the gastrointestinal excretion of PFOA, PFOS, and PFNA in humans. Although the size of the associations was modest (less than 10% difference in PFAS with interquartile difference in dietary fiber), the findings may be important in the context of studies of health outcomes in relation to PFAS if those health outcomes are also related to dietary fiber intake and the outcome-PFAS association is also modest.
6. Declaration of competing interest

3M, the company that funded this research, previously used PFOA and precursors to PFOS in manufacturing. 3M was not involved in the preparation of the manuscript. The authors retained sole control of the manuscript content and the findings, and statements in this paper are those of the authors and not those of the author’s employer or the sponsors. No authors were directly compensated by 3M. This project was funded through a contract between 3M and Ramboll, an international science and engineering company that provided salary compensation to the authors. None of the authors are currently engaged to testify as experts on behalf of the sponsors in litigation related to the compound discussed in this manuscript.

CRediT authorship contribution statement

Michael W. Dzierlenga: Methodology, Software, Investigation, Writing – original draft & editing.
Debra R. Keast: Methodology, Writing – review and editing.
Matthew P. Longnecker: Conceptualization, Funding acquisition, Methodology, Writing - review & editing.
References

EFSA CONTAM Panel, 2020. Risk to human health related to the presence of perfluoroctane sulfonic acid and perfluorooctanoic acid in food. EFSA journal.

EFSA CONTAM Panel, 2018. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA journal 16, e05194.

Interstate Technology Regulatory Council (ITRC), 2020. History and Use of Per- and Polyfluoroalkyl Substances (PFAS). ITRC, Washington, DC.

