Long Term Safety and Efficacy of Sub-Lingual Ketamine Troughes / Lozenges in Chronic Non-Malignant Pain Management

Ben Maudlin, Doctor of Medicine (MD)
Resident Medical Officer
Pain Management Centre, Royal Prince Alfred Hospital,
Missenden Road, Camperdown, NSW, Australia 2050

Stephen B. Gibson, MBBS, FANZCA, FFPMANZCA
Anaesthesiologist and Pain Specialist
Pain Management Centre, Royal Prince Alfred Hospital,
Missenden Road, Camperdown, NSW, Australia 2050

Arun Aggarwal MBBS, FRACP, FAFRM (RACP), FFPM (ANCZA), PhD
Neurologist, Pain Specialist and Rehabilitation Specialist
Pain Management Centre, Royal Prince Alfred Hospital,
Missenden Road, Camperdown, NSW, Australia 2050

Corresponding Author:
Ben Maudlin
Pain Management Centre
Royal Prince Alfred Hospital, Missenden Road Camperdown, NSW, Australia 2050
Ph: +61 2 9515 8750 Fax: +61 2 9817 6633
Email: Ben.Maudlin@health.nsw.gov.au

Funding sources: None declared
Device status: None declared
Ethics: The Sydney Local Health District Human Ethics Committee approved the study. It was deemed low-negligible risk.
Declaration of interest: The authors have no other relevant affiliations or financial involvement with any organisation or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

Key Words: Ketamine, lozenges, troughes, chronic pain
INTRODUCTION

Chronic pain is a complex and challenging illness with significant impacts on both patients and their families as well as having a significant social and economic burden. It has been demonstrated that sub-lingual ketamine is efficacious for use in chronic pain, particularly for opioid-induced hyperalgesia (OIH), chronic neuropathic pain and complex regional pain syndrome (CRPS) [9; 14; 19].

Ketamine acts on both N-methyl-D-aspartate receptor (NMDA) and non-NMDA receptors. It reduces the sensitisation of the central nervous system (CNS) to painful stimuli. It has the benefits of benefits a reduction in the numerical pain rating scale (NPRS) and in select cases, an opiate sparing effect.

Reported side effects in the literature include psychedelic effects (hallucinations, memory deficits, dysphoria), nausea and vomiting, cardiovascular stimulation [17]. When abused recreationally (at significantly higher doses than used in chronic pain), there is an increased frequency of cystitis, urinary frequency, cognitive disturbances, and theoretical neurotoxicity (in experimental models only) [8; 12].

However, there currently is no published long-term data on safety, side effects or adverse drug reactions.

Pharmacology:

Ketamine is a non-competitive N-methyl-D-aspartate receptor antagonist (NMDA); it also exhibits effects on non-NMDA receptors (opioid, monoaminergic, cholinergic, nicotinic, and muscarinic receptors). It has three main effects, analgesic, dissociative/hypnotic and sympathomimetic. Its analgesic effects come primarily from the inhibition of afferent signals from painful stimuli via the spino-reticular pathway. It achieves this primarily by binding to the NDMA receptor (specifically NR2D) intraductal PCP site, decreasing the channel opening time [15; 17]. Ketamine decreases the response to a repeated stimulation or "wind up" process of sensitisation of the CNS to pain [2; 10]. These NRD2 receptors are primarily responsible for nociception and almost exclusively located in the spinal cord. This action is also why there is benefit in OIH, where glutamate fixation and activation of NDMA receptors leads to cross-talk of neural mechanisms of pain and tolerance [2; 7; 10].

High plasma concentrations are required in order to achieve dissociative (50-100ug/L) and hypnotic effects (>2000ug/L). Ketamine preferentially inhibits excitatory-to-excitatory coupling above inhibitory-to-excitatory as is the case with most anaesthetic agents that potentiate or are GABA agonists [20]. The sympathomimetic properties are mediated by enhanced central and peripheral monoaminergic transmission (dopamine and noradrenaline) [1]. Ketamine has the additional benefit of enhancing the descending inhibiting serotoninergic pathway and inhibiting serotonin uptake and thereby exerts antidepressive effects, unlike any other anaesthetic agents, this may play a vital role in the emotional response to pain perception [13; 16].

Like almost all drugs, the bioavailability of ketamine is dependent on the route in which it is administered, with a bioavailability of between 7-9% orally (when swallowed) and 17-24% sublingually with a terminal half-life of 183 minutes this is sufficiently high and reproducible to support its use in pain management [3-5].
METHODS

This retrospective case series identified twenty-nine patients (n=29) from a metropolitan tertiary pain service who received sub-lingual ketamine troches / lozenges between the period of 2012-2019. Patients were identified from the outpatient pain clinic, who were admitted for inpatient subcutaneous ketamine infusions as part of opiate detoxification or management of central sensitisation due to a chronic neuropathic pain syndrome. An initial review was performed to check the patient started taking the ketamine troches. Each of these medical records was reviewed manually for the onset of symptoms; chronic pain diagnosis; commencement of sub-lingual ketamine; duration of therapy; cessation reason; adverse reactions or side effects; any opiate or other analgesic reduction; and numerical pain rating scale pre and post-commencement of sub-lingual ketamine.

Data Analysis:

The Sydney Local Health District Human Ethics Committee approved the study. We calculated descriptive statistics and 95% confidence intervals (95% CIs) using statistical software (The jamovi project (2020). jamovi (Version 1.2) [Computer Software]. Retrieved from https://www.jamovi.org). When numerators were zero, we calculated 95% CIs using the methodology of Hanley and Lippman-Hand. Means are reported +/- standard deviations. Pearson’s correlation coefficient (r$_{xy}$) was determined in the statistical software using a correlation matrix based on R Core Team (2018). R: A Language and environment for statistical computing, [Computer software]. Retrieved from https://cran.r-project.org/. A p value <0.05 was considered statistically significant.

Demographics:

Background data is presented descriptively with means, standard deviations and comparisons between the sexes (Table 1). Descriptive statistics (means and SDs) of the outcome variables, were computed for the sample and were grouped according to sex. Each was first reported using descriptive statistics, and then comparisons were carried out between the sexes for each instrument using Chi-Squared and t-tests (two-tailed).

RESULTS

The patients were a heterogeneous group. There were more women and men (19 vs 10) with no intersex or transgender patients. This was not statistically significant. The age group had a wide variation of 26-67 years. The diagnoses included peripheral neuropathy, complex regional pain syndrome, chronic neuropathic pain, trigeminal neuralgia, fibromyalgia, spinal syrinx, spina bifida and cauda equina (Figure 1).

The duration of pain ranged from 24-600 months, with an average of 177 months and median of 126 months. There was no association between duration of pain and reduction in NPRS. The total daily ketamine dosage also varied from 25-600mg in divided doses, with an average dose of 216mg per day and a median of 200mg per day.

The reduction in NPRS ranged from 2-10 out of 10. The average pain before commencing ketamine therapy was 8.71, and after ketamine was 2.89. (p<0.005), with an average pain reduction of 5.82. There was a positive
correlation ($r_{xy} = 0.394$) between the total daily dose and the NPRS reduction, which was statistically significant ($p=0.021$). There was no correlation between total daily dose and frequency of side effects reported ($r_{xy}=0.369$, $p=0.973$).

The duration of treatment ranged from 2-89 months, with 59% ($n=17$) of patients having ongoing use. There was no association between the duration of use and frequency of side effects indicating that remaining on sub-lingual ketamine does not result in increased side effects. Also, there was no association between the duration of use and the change in NPRS, indicating a sustained response to sub-lingual ketamine.

The predominant reason for discontinuation was the inability to obtain ongoing Department of Health authority ($n=4$) to approval sub-lingual ketamine in 2019 when the approving committee was concerned about the lack of evidence for the long-term use of ketamine. The other reasons for discontinuation were the inability to afford the therapy ($n=1$), drowsiness ($n=2$), loss of efficacy ($n=2$), wanting to conceive a child ($n=1$) and insertion of a spinal cord stimulator ($n=1$) and not specified ($n=3$).

There was a reduction in the use of opioids, gabapentinoids or benzodiazepines in 59% ($n=17$) of patients with 39% ($n=9$) having a complete cessation of an analgesic agent (Figure 2).
Side Effects / Adverse Drug Reactions:

Of the patient group, 24% (n=7) reported any side effects, the majority (n=5) reported excessive daytime drowsiness at doses sufficient to gain an analgesic effect. One reported nightmares and one reported dysphoria which resolved with a dose reduction. Of these seven patients with side effects, only two discontinued the treatment due to the side effect (drowsiness). There were no reports of renal impairment, cystitis or hepatotoxicity.

There was one patient who attempted suicide and used their troches as an analgesic agent to assist their physical suicide attempt; the therapy was subsequently discontinued. (Figure 3). There was no statistically significant increase in the frequency of side effects in relation to the total daily dosage (r=0.369, p=0.973) or duration of therapy (r=0.051, p=0.603).

DISCUSSION

Ketamine has been shown to reduce excessively painful responses by antagonising NMDA receptors, which improves opioid receptor sensitivity, reduces opioid tolerance and suppresses opioid-induced hyperalgesia, resulting in a reduced central sensitisation component of pain [11]. Several studies that reported successful short-term treatment of chronic non-malignant pain with a ketamine infusion [18] Long-term efficacy of sub-anaesthetic, sub-cutaneous ketamine in the setting of chronic non-malignant pain has also been demonstrated [21]. This retrospective study analysed whether subsequent treatment with sub-lingual ketamine troches / lozenges resulted in longer-term efficacy of the beneficial effects of the initial ketamine infusion and also assessed the long-term safety of this treatment.

Oral or sub-lingual ketamine formulations are not currently commercially available but can be formulated by compounding pharmacists. Studies have shown that the bioavailability of the sublingual formulation is superior to an oral formulation, 25% compared to 10%. There is substantial metabolism to nor-ketamine, which possesses analgesic activity, from both routes. The mean nor-ketamine / ketamine area under the plasma concentration-time curve from baseline to 8 hours ratios were 5 and 2.1 after sublingual and oral administration, respectively [17].

The patients from our practice typically offered an inpatient sub-anaesthetic, sub-cutaneous ketamine infusion are those who have failed a wide range of pharmacological and cognitive behavioural therapy options, noting that all are co-managed within our service by both a pain physician and a mental health practitioner, either a psychiatrist or clinical psychologist.

Therefore, the overall reduction in the use of opioids, gabapentinoids or benzodiazepines in 59% of patients with 39% having a complete cessation of an analgesic agent is relatively impressive given the difficulties faced in treating this subset of patients.

Of the patient group, 24% reported any side effects, but only 7% discontinued the treatment due to the side effect (drowsiness). There were no reports of renal impairment, cystitis or hepatotoxicity.
The total daily dosage also varied from 25-600mg in divided doses, with an average dose of 216mg per day and a median of 200mg per day. This dose is higher than the previously considered “safe” daily dose of 150mg per day [6].

The duration of treatment ranged from 2-89 months, with 59% (n=17) of patients having ongoing use. The average duration of treatment was 31.3 months. There was no association between the duration of use and frequency of side effects indicating that remaining on sub-lingual ketamine long-term does not result in increased side effects.

We except that our study has some limitations, as it is a retrospective, non-randomised, non-blinded study. As such, there was no comparison or control group. The subjects were not randomised regarding their ongoing management with ketamine troughes/lozenges. The NPRS is subjective, being influenced by many factors that cannot be measured precisely, like mood, cultural factors and education. The recording of other measures, such as quality of life scores and depression scores would have been helpful to interpret changes in NPRS scores in individuals further, but this was beyond the scope of this observational study. We acknowledge that this is a relatively small study, but given that there is a paucity of information regarding the long-term effectiveness of sub-lingual ketamine currently in the literature, even this small study provides valuable information regarding this under-utilised treatment for the treatment of chronic non-malignant pain. Given the positive results of this study, we are currently undertaking a larger study to provide additional information on the safety of sub-lingual ketamine for the treatment of chronic non-malignant pain.

CONCLUSION

This retrospective case-series has demonstrated that sub-lingual ketamine is a safe and effective analgesic agent to use in chronic non-malignant pain management. It is indicated in a variety of chronic pain conditions and has an excellent safety profile, with no association between the frequency in side effects and duration of therapy or total daily dosages. The study has also shown that the “safe” dose may be higher than the previous consensus.
ACKNOWLEDGEMENTS:

Funding sources: None declared
Device status: None declared
Ethics: The Sydney Local Health District Human Ethics Committee approved the study. It was deemed low-negligible risk.

Declaration of interest: The authors have no other relevant affiliations or financial involvement with any organisation or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

REFERENCES

Table 1: Differences between men and women regarding their age, duration of pain, the total daily dose of ketamine, duration of treatment, and reduction in pain score (NPRS).

<table>
<thead>
<tr>
<th>Age</th>
<th>All (n=29)</th>
<th>Women (n=19)</th>
<th>Men (n=10)</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>48.0</td>
<td>13.9</td>
<td>51.1</td>
<td>15.5</td>
<td>0.055</td>
</tr>
<tr>
<td>Duration of Pain (months)</td>
<td>177.1</td>
<td>205.6</td>
<td>126</td>
<td>0.089</td>
</tr>
<tr>
<td>Total Daily Dose (mg)</td>
<td>216.4</td>
<td>231.4</td>
<td>189.5</td>
<td>0.37</td>
</tr>
<tr>
<td>Duration of Treatment (months)</td>
<td>31.3</td>
<td>27.4</td>
<td>38.4</td>
<td>0.38</td>
</tr>
<tr>
<td>Pain Score Reduction (NPRS)</td>
<td>5.8</td>
<td>6.1</td>
<td>5.2</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Figure 1: Indications: Chronic non-malignant pain conditions that have responded poorly to conventional analgesics, opioids and anti-neuropathic medications, opioid tolerance, or opioid induced hyperalgesia.
Figure 2: Use of opioids without or without troches / lozenges after infusion

![Pie chart showing the use of opioids after infusion](image)

- **Complete Cessation:** 10%
- **Increase in Opiate Use:** 0%
- **Reduction in Opiate Use:** 28%
- **No Change in Opiate Use:** 62%

Figure 3: Side effect profile

<table>
<thead>
<tr>
<th>Side Effect</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nightmares / Vivid Dreams</td>
<td>3%</td>
</tr>
<tr>
<td>Light Headed / Dizziness</td>
<td>9%</td>
</tr>
<tr>
<td>Dysphoria</td>
<td>3%</td>
</tr>
<tr>
<td>Drowsiness / Sedation</td>
<td>15%</td>
</tr>
<tr>
<td>None</td>
<td>65%</td>
</tr>
</tbody>
</table>
Figure 1: Indications: Chronic non-malignant pain conditions that have responded poorly to conventional analgesics, opioids and anti-neuropathic medications, opioid tolerance, or opioid-induced hyperalgesia.
Figure 2: Use of opioids without or without trowches / lozenges after infusion

- Complete Cessation: 10%
- Increase in Opiate use: 0%
- Reduction in Opiate Use: 28%
- No Change in Opiate Use: 62%