The National Early Warning Score (NEWS2) systematically underestimates the risk of in-hospital mortality in unplanned COVID-19 admissions to hospital.

Authors

Donald Richardson, FRCP
Deputy Medical Director, Chief Clinical Information Officer, Consultant Renal Physician
Department of Renal Medicine, York Teaching Hospitals NHS Foundation Trust,
E-mail: drichardson@doctors.org.uk

Muhammad Faisal, PhD
Senior Research Fellow in Biostatistics
Faculty of Health Studies, University of Bradford, Bradford, UK
Bradford Institute for Health Research
E-mail: M.Faisal1@bradford.ac.uk

Massimo Fiori
Senior Analyst/Programmer
York Teaching Hospitals NHS Foundation Trust, England UK
E-mail: massimo.fiori@york.nhs.uk

Kevin Beatson, MSc
Development Manager
York Teaching Hospital NHS Foundation Trust
E-mail: Kevin.Beatson@York.NHS.uk

Mohammed A Mohammed, PhD
Professor of Healthcare Quality & Effectiveness
Faculty of Health Studies, University of Bradford, Bradford, UK
The Strategy Unit, NHS Midlands and Lancashire Commissioning Support Unit
E-mail: M.A.Mohammed5@Bradford.ac.uk

Correspondence to Mohammed Amin Mohammed

Faculty of Health Studies, University of Bradford, Richmond Road, BD7 1DP Bradford, UK
Abstract

Background: Although the National Early Warning Score (NEWS) and its latest version NEWS2 are recommended for monitoring for deterioration in patients admitted to hospital, little is known about their performance in COVID-19 patients. We analysed the performance of National Early Warning Score (NEWS2) during the first phase of the COVID-19 pandemic.

Methods: Adult non-elective admissions discharged between 11-March-2020 to 13-June-2020 with an index NEWS2 electronically recorded within ±24 hours of admission are used to predict mortality at four time points (in-hospital, 24hours, 48hours, and 72hours) in COVID-19 versus non-COVID-19 admissions.

Results: Out of 6480 non-elective admissions, 620 (9.6%) had a diagnosis of COVID-19. They were older (73.3 vs 67.7yrs), more often male (54.7% vs 50.1%), had higher index NEWS (4 vs 2.5) and NEWS2 (4.6 vs 2.8) scores and higher in-hospital mortality (32.1% vs 5.8%). The c-statistics for predicting in-hospital mortality in COVID-19 admissions was significantly lower using NEWS (0.64 vs 0.74) or NEWS2 (0.64 vs 0.74), however these differences reduced at 72hours (NEWS: 0.75 vs 0.81; NEWS2: 0.71 vs 0.81), 48 hours (NEWS: 0.78 vs 0.81; NEWS2: 0.76 vs 0.82) and 24hours (NEWS: 0.84 vs 0.84; NEWS2: 0.86 vs 0.84). Increasing NEWS2 values reflected increased mortality, but for any given value the absolute risk was on average 24% higher (e.g. NEWS2=5: 36% vs 9%).

Interpretation: NEWS2 is a valid predictor of the mortality risk but substantially underestimates the absolute mortality risk in COVID-19 patients. Clinical staff and escalation protocols based on NEWS2 need to make note of this finding.

Key words: NEWS, NEWS2, COVID-19, mortality risk, early warning scores
Introduction

The novel coronavirus SARS-19, which was declared as a pandemic on 11-March 2020, produces the newly identified disease ‘COVID-19’ in patients with symptoms (Coronaviridae Study Group of the International Committee on Taxonomy of Viruses(1)) which has challenged health care systems worldwide.

COVID-19 patients admitted acutely to hospital can develop severe disease with life threatening respiratory and/or multi-organ failure (2,3) with a high risk of mortality in part due to the lack of an effective treatment (bar supportive care) for the underlying disease. Thus, it is recommended that patients at risk of deterioration are referred to critical care. The appropriate early assessment and management of patients with COVID-19 is important in ensuring high-quality care, whether that includes effective isolation, escalation to critical care, ward level care or the need for high quality palliative care.

In the UK National Health Service (NHS), the patient’s vital signs are monitored and summarised into a National Early Warning Score (NEWS) or its latest iteration (NEWS2)(4). NEWS is used the world over(4). NEWS and NEWS2 are derived from six physiological variables or vital signs—respiration rate, oxygen saturations, temperature, systolic blood pressure, heart rate and level of consciousness (alert, confusion, voice, pain, unresponsive) and also use of supplemental oxygen—which are routinely collected by nursing staff as an integral part of the process of care, usually for all patients, and then repeated thereafter depending on local hospital protocols. NEWS2 includes two oxygen saturation scales (scale 1 and scale 2) and new confusion(5). NEWS2 points are allocated according to basic clinical observations and the higher the NEWS2 the more likely it is that the patient is deteriorating.

Although NEWS2 is recommended for use in COVID-19 patients(6), little is known about how NEWS2 performs in practice. We compare the performance of NEWS2 in unplanned admissions to a teaching hospital during the first phase of the novel coronavirus SARS Cov-2 (COVID-19) pandemic in predicting in-hospital mortality at four time points (24hours, 48hours,72hours and in-hospital mortality) in COVID-19 versus non-COVID-19 admissions.
Methods

Setting & data
Our cohort of unplanned admissions are from two acute hospitals which are approximately 65 kilometres apart in the Yorkshire & Humberside region of England – Scarborough hospital (n~300 beds) and York Hospital (YH) (n~700 beds), managed by York Teaching Hospitals NHS Foundation Trust. For the purposes of this study, the two acute hospitals are combined into a single dataset and analysed collectively. The hospitals have electronic NEWS2 scores and vital signs recording which are routinely collected as part of the patient’s process of care.

We considered all adult (age ≥ 18 years) unplanned admissions to medicine, elderly and general surgery (excluding ambulatory care area patients), discharged during a 3-month period (11 March 2020 to 13 June 2020), with electronic NEWS2 recorded within ±24 hours of admission. For each emergency admission, we obtained a pseudonymised patient identifier, patient’s age (years), gender (male/female), ethnicity, body mass index (BMI kg/m²), discharge status (alive/dead), admission and discharge date and time, diagnoses codes based on the 10th revision of the International Statistical Classification of Diseases (ICD-10), NEWS2(2) (including its subcomponents respiratory rate, temperature, systolic pressure, pulse rate, oxygen saturation, oxygen supplementation, oxygen scales 1 & 2, and alertness including confusion). The diastolic blood pressure was recorded at the same time as systolic blood pressure. Historically, diastolic blood pressure has always been a routinely collected physiological variable on vital sign charts and is still collected where electronic observations are in place. NEWS2 produces integer values that range from 0 (indicating the lowest severity of illness) to 23 (the maximum NEWS2 value possible). The index NEWS2 was defined as the first electronically recorded NEWS2 within ±24 hours of the admission time. We excluded records where the first NEWS2 was not within ±24 hours of admission or was missing/not recorded (see Table 1). The ICD-10 code ‘U071’ was used to identify records with COVID-19. We searched, primary and secondary ICD-10 codes for ‘U071’ for identifying COVID-19.
Statistical Modelling

We began with exploratory analyses including line plots that showed the relationship between age, vital signs, NEWS2 and risk of in-hospital death in COVID-19 and non-COVID-19. We compared the continuous covariates using a two-sample independent t-test (for normal data) or Wilcoxon rank sum test (for non-normal data). We compared the categorical covariates using a Chi-square proportion test. P-values less than 0.05 were defined as statistically significant.

We determined the discrimination of NEWS2. Discrimination relates to how well a model can separate, (or discriminate between), those who died and those who did not. The concordance statistic (c-statistic) is a commonly used measure of discrimination. For a binary outcome (alive/died), the c-statistic is the area under the Receiver Operating Characteristics (ROC) curve. The ROC curve is a plot of the sensitivity, (true positive rate), versus 1-specificity, (false positive rate), for consecutive predicted risks. A c-statistic of 0.5 is no better than tossing a coin, whilst a perfect model has a c-statistic of 1. In general, values less than 0.7 are considered to show poor discrimination, values of 0.7 to 0.8 can be described as reasonable, and values above 0.8 suggest good discrimination(7). We developed two separate logistic regression models for predicting in-hospital mortality with NEWS and NEWS2 as covariates respectively. We assessed their performance in predicting the mortality at four specified time points - 24hour, 48hour, 72hour and in-hospital in COVID-19 and non-COVID-19 patients using the c-statistic. We assessed the sensitivity, specificity, positive predictive value, negative predictive value and likelihood ratios for NEWS and NEWS2 at values ≥5 which is the usual threshold value for escalation to critical care. The 95% confidence interval for the c-statistic was derived using DeLong’s method as implemented in the pROC library (8) in R (9). All analyses were undertaken using R (9) and Stata (10).

Since NEWS2 extends NEWS, we used the same dataset to compare NEWS and NEWS2 especially as NEWS is still in widespread use.

Ethical Approval

This study was deemed to be exempt from ethical approval because it was classified as an evaluation. Furthermore, this study used already de-identified data from an ongoing study involving NEWS which received ethical approval from Health Research Authority (HRA) and Health and Care Research Wales (HCRW) (reference number 19/HRA/0548).
Results

Cohort description

There were 6480 discharges over a 3-month period. We excluded 36 (0.6%) records because the index NEWS2 was not recorded within ±24 hours of the admission date/time or NEWS2 was missing or no recorded at all (see Table S1 in supplementary material).

We analysed data from 6444 admissions, of which 9.6% (620/6444) were diagnosed COVID-19. The demographic, vital signs and outcome profiles of the COVID-19 versus non-COVID-19 admissions is shown in Table 1 and Figure 1. COVID-19 admissions were older (73.3 vs 67.7, p<0.001), more likely to be male (54.7% vs 50.1%, p<0.001), with higher BMI (kg/m2) (27.5 vs 26, p<0.001) than non-COVID-19 admissions. COVID-19 admissions had higher index NEWS (4 vs 2.5, p<0.001) and index NEWS2 (4.6 vs 2.8, p<0.001) than non-COVID-19 admissions which was reflected in differences in vital signs notably, a higher respiratory rate (23.5 vs 19.8, p<0.001), lower oxygen saturation (94.8% vs 96.4%, p<0.001), higher oxygen supplementation (33.4% vs 11.5%, p<0.001), lower systolic blood pressure (136.1 mmHg vs 142.5 mm Hg, p<0.001) and less likely to be alert (82.9% vs 90%, p<0.001). COVID-19 admissions were more likely to be referred to the critical outreach team (14.7% vs 3.6%, p<0.001), admitted to the intensive care unit (ICU) (6.8% vs 2.5%) and referred to palliative care (10.5% vs 4.9%). COVID-19 admissions had longer hospital stay (7.3 days vs 3 days, p<0.001) and higher in-hospital mortality (32.1% vs 5.8%, p<0.001).

Figure 2 shows the relationship between continuous covariates and the risk of in-hospital mortality in COVID-19 versus non-COVID-19 admissions. Whilst the pattern of mortality was broadly similar between COVID-19 and non-COVID-19 admissions, COVID-19 admissions had a consistently higher risk of mortality for the range of covariate values. Although increasing NEWS and NEWS2 scores reflected increased mortality, but for any given value of NEWS or NEWS2 the risk of mortality for COVID-19 was on average 24% higher and at a NEWS or NEWS2 of 5 the risk of mortality in COVID-19 vs Non-COVID-19 was 36% versus 9%.

The performance of index NEWS2 to predict the risk of death (24hour, 48hour, 72hour, in-hospital) in COVID-19 and non-COVID-19 emergency medical admissions is shown in the supplementary Table S3 and Figure 3. The c-statistics for predicting in-hospital mortality in covid-19 admissions was significantly lower using NEWS (0.64 vs 0.74) or NEWS2 (0.64 vs 0.74), however these differences reduced at 72hours (NEWS: 0.75 vs 0.81; NEWS2: 0.71 vs 0.81), 48 hours (NEWS: 0.78 vs 0.81; NEWS2: 0.76 vs 0.82) and 24h ours (NEWS: 0.84 vs 0.84; NEWS2: 0.86 vs 0.84).
Table S3 includes the sensitivity, specificity, positive and negative predictive values for NEWS and NEWS2 for COVID-19 and non-COVID-19 patients. NEWS2 had a higher sensitivity but lower specificity compared to NEWS.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>COVID-19</th>
<th>Non-COVID-19</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>620</td>
<td>5824</td>
<td>-</td>
</tr>
<tr>
<td>Male (%)</td>
<td>339 (54.7)</td>
<td>2918 (50.1)</td>
<td>0.033</td>
</tr>
<tr>
<td>Mean Age [years] (SD)</td>
<td>73.3 (15.4)</td>
<td>67.7 (19)</td>
<td><0.001</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>British</td>
<td>465 (75)</td>
<td>4668 (80.2)</td>
<td></td>
</tr>
<tr>
<td>Black, Asian, and other minority ethnic</td>
<td>34 (5.5)</td>
<td>152 (2.6)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>121 (19.5)</td>
<td>1004 (17.2)</td>
<td></td>
</tr>
<tr>
<td>Median BMI (IQR)* [kg/m²]</td>
<td>27.5 (8.4)</td>
<td>26 (7.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean NEWS (SD)</td>
<td>4 (2.8)</td>
<td>2.5 (2.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean NEWS2 (SD)</td>
<td>4.6 (3)</td>
<td>2.8 (2.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Vital Signs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Respiratory rate [breaths per minute] (SD)</td>
<td>23.5 (6.6)</td>
<td>19.8 (5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean Temperature [oC] (SD)</td>
<td>36.8 (1.1)</td>
<td>36.3 (0.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean Systolic pressure [mmHg] (SD)</td>
<td>136.1 (25.8)</td>
<td>142.5 (29.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean Diastolic pressure [mmHg] (SD)</td>
<td>76.5 (16.3)</td>
<td>79.4 (16.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean Pulse rate [beats per minute] (SD)</td>
<td>92.2 (22.1)</td>
<td>88.5 (22.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean % Oxygen saturation (SD)</td>
<td>94.8 (4.4)</td>
<td>96.4 (2.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Oxygen supplementation (%)</td>
<td>207 (33.4)</td>
<td>667 (11.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean oxygen flow rate (SD)</td>
<td>7.6 (5.8)</td>
<td>6.4 (5.5)</td>
<td>0.008</td>
</tr>
<tr>
<td>Oxygen scale 2 (%)</td>
<td>42 (6.8)</td>
<td>361 (6.2)</td>
<td>0.634</td>
</tr>
<tr>
<td>Alertness</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Alert (%)</td>
<td>514 (82.9)</td>
<td>5239 (90)</td>
<td></td>
</tr>
<tr>
<td>Baseline confusion (%)</td>
<td>5 (0.8)</td>
<td>45 (0.8)</td>
<td></td>
</tr>
<tr>
<td>New confusion (%)</td>
<td>19 (3.1)</td>
<td>82 (1.4)</td>
<td></td>
</tr>
<tr>
<td>Pain (%)</td>
<td>0 (0)</td>
<td>49 (0.8)</td>
<td></td>
</tr>
<tr>
<td>Voice (%)</td>
<td>58 (9.4)</td>
<td>227 (3.9)</td>
<td></td>
</tr>
<tr>
<td>Unconscious (%)</td>
<td>24 (3.9)</td>
<td>182 (3.1)</td>
<td></td>
</tr>
<tr>
<td>Critical outreach team (%)</td>
<td>91 (14.7)</td>
<td>211 (3.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Admission to ICU (%)</td>
<td>42 (6.8)</td>
<td>147 (2.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Palliative care (%)</td>
<td>65 (10.5)</td>
<td>288 (4.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>On ventilation (%)</td>
<td>18 (2.9)</td>
<td>12 (0.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Median Length of Stay (days) (IQR)</td>
<td>7.3 (11.7)</td>
<td>3 (5.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mortality with-in 24 hours (%)</td>
<td>9 (1.5)</td>
<td>53 (0.9)</td>
<td>0.273</td>
</tr>
<tr>
<td>Mortality with-in 48 hours (%)</td>
<td>15 (2.4)</td>
<td>94 (1.6)</td>
<td>0.189</td>
</tr>
<tr>
<td>Mortality with-in 72 hours (%)</td>
<td>33 (5.3)</td>
<td>131 (2.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>In-hospital Mortality</td>
<td>199 (32.1)</td>
<td>336 (5.8)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 1 Characteristics of emergency medical admissions in COVID-19 versus non-COVID-19

* BMI is missing 188 (30.3%) for COVID and 2283 (39.2%) for Non-COVID
Figure 1 Boxplots without outliers for continuous covariates for COVID-19 versus Non-COVID-19 admissions
Figure 2 Line plots showing the observed risk of death with continuous covariates for COVID-19 (black colour) and Non-COVID-19 (grey colour) admissions.

Note: Size of circles reflects sample size independently in the COVID-19 and non-COVID-19 groups.
Figure 3 Receiver Operating Characteristic curve for NEWS2 and NEWS in predicting the risk of in-hospital mortality, mortality within 24 hours, 48 hours, and 72 hours in the COVID-19 (black colour) and Non-COVID-19 (grey colour) admissions.
Discussion

We have found that while NEWS2 is a valid predictor of in-hospital mortality, it systematically underestimates the risk of in-hospital mortality in unplanned COVID-19 admissions by an average of 24%, compared to non-COVID-19 admissions. These findings were also seen in NEWS and to a large extent were reflected in the profile of the underlying vital signs data. The World Health Organisation (WHO) describes the range of symptoms seen in COVID-19 which include (but are not limited to) dyspnoea, reduced alertness, delirium, fever, tachypnoea and hypoxia (as a common sign in moderate to severe disease). All of which are reflected in the physiological observation set underpinning NEWS and NEWS2 and were more frequent in our COVID-19 patients compared to non-COVID-19 patients. Nevertheless, we also found evidence of lower blood pressure and higher pulse rate in COVID-19 patients. Furthermore, there appeared to be no clear advantage of NEWS2 over NEWS in our study.

Whilst guidelines for using NEWS and NEWS2 have emphasised the importance of clinical judgement when using these scoring systems, the systematic underestimation of mortality in unplanned COVID-19 admissions has not previously been reported. This needs to be brought to the attention of medical and nursing staff and reflected in escalation protocols and guidelines to mitigate any potential threats to patient safety by promoting situational awareness about the actual mortality risk for COVID-19 patients. The NEWS2 guidelines do note that patients with COVID-19 can develop ‘silent hypoxia’ where oxygen saturations can drop to low levels and precipitate acute respiratory failure quickly without the presence of obvious symptoms of respiratory distress. As such any patients admitted and on supplemental oxygen may develop a rapidly increasing oxygen requirement that may not result in an increase in the NEWS2 score. It is stressed that any increase in oxygen requirement should trigger an escalation for review by a competent senior decision maker.

Consideration should be also be given to enhancing NEWS or NEWS2 so that they can be used in COVID-19 and non-COVID-19 patients rather than needing to change scoring systems or adjust estimations of risk dependent on diagnosis. We have previously demonstrated how a fully automated computer enhanced NEWS score can be developed which requires no additional data collection and builds on the standardisation provided by NEWS. We now propose to extend this to include COVID-19 status.

There are several limitations to our study. (1) This is a data from a single NHS Trust and the extent to which these findings, especially to populations with a higher proportions of minority ethnic groups
because of the higher mortality associated with these groups, is required. (2) We used the index NEWS2 which reflects the ‘on-admission’ risk of mortality of the patients. Nonetheless, NEWS2 is repeatedly updated for each patient according to local hospital protocols, and the extent to which changes in NEWS2 over time reflect changes in mortality risk needs further study. (3) Although we found no evidence of NEWS2 as having superior performance to NEWS this does suggest that the additional enhancements in NEWS2 are having limited impact and the underlying reasons needs further study. Nevertheless it is worth noting that a recent, albeit small Italian study based on 71 hospitalised COVID-19 patients found NEWS2 to be a good predictor (with a high c-statistic 0.90) of subsequent ICU admission for COVID-19 patients but was not able to consider mortality because of insufficient events(12).

Conclusions

NEWS2 and NEWS predict mortality in COVID-19 patients in addition to non-COVID-19 patients but significantly underestimate the mortality risk at equivalent values in COVID-19 patients. Clinical staff and escalation protocols based on NEWS2 or NEWS need to take note of this finding.

Contributorship

DR & MAM had the original idea for this work. MF undertook the statistical analyses with guidance from MAM. MF & KB extracted the necessary data frames. DR gave a clinical perspective. DR, MF and MAM wrote the first draft of this paper and all authors subsequently assisted in redrafting and have approved the final version.

Competing Interests

The authors declare no conflicts of interest.

Funding

This research was supported by the Health Foundation. The Health Foundation is an independent charity working to improve the quality of health care in the UK.

This research was supported by the National Institute for Health Research (NIHR) Yorkshire and Humberside Patient Safety Translational Research Centre (NIHR YHPSTRC). The views expressed in this article are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care.
Data Availability Statement

Our data sharing agreement with NHS York hospital trust does not permit us to share this data with other parties. Nonetheless if anyone is interested in the data, then they should contact the R&D offices in the first instance.

Word count (excluding the references, tables and figure legends): 1964

References

