Title: Causal influence of dietary habits on the risk of major depressive disorder:

a diet-wide Mendelian randomization analysis

Tzu-Ting Chen¹, PhD; Chia-Yen Chen²,³, ScD; Chiu-Ping Fang¹, MS; Yen-Feng Lin¹,⁴, MD, ScD

¹Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan

²Biogen, Cambridge, MA, USA

³Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA

⁴School of Medicine, National Yang-Ming University, Taipei, Taiwan

Short title: dietary habits and depression

Corresponding Author & Requests for Single Reprints:

Dr. Yen-Feng Lin

Center for Neuropsychiatric Research

National Health Research Institutes

No. 35 Keyan Road

Zhunan, Miaoli County, Taiwan
Tel: +886-37-206-166 ext. 36707

Fax: +886-37-586-453

Email: yflin@nhri.edu.tw

Manuscript word count: 2525
Abstract

Background

Some evidence suggests that diet may potentially increase or decrease the risk of major depressive disorder (MDD). However, the association between dietary habits and MDD remains controversial. The aim of this study is to systemically investigate the causal influence of dietary habits on the risk of MDD by Mendelian randomization (MR) using diet-wide and genome-wide summary data.

Methods

To perform two-sample MR, we collected publicly available genome-wide association studies’ summary statistics for dietary habits from GeneATLAS ($n = 452,264$) and MDD from Psychiatric Genomics Consortium ($n = 43,204$). We used a weighted median approach to synthesize MR estimates across genetic instruments. For the robustness of our results, we compared weighted median results with an inverse-variance weighted method, weighted mode method and MR-PRESSO. We also assessed the bidirectional relationships between dietary habits and major depressive disorder through bidirectional Mendelian randomization.

Results

Beef intake showed significant protective effects on MDD ($\beta = -1.33$; p-value =
0.002; Bonferroni-corrected p-value = 0.034; 11 single nucleotide polymorphisms (SNPs), and cereal intake was nominally significantly protective (β = -0.15; p-value = 0.010; 51 SNPs). We obtained similar results by using an inverse-variance weighted method and weighted mode approach despite results in the weighted mode test being non-significant. We also found a potential effect of MDD on tea intake (β = 0.13; p-value = 0.021; 12 single SNPs).

Conclusions

In this two-sample MR, we observed that higher beef and cereal intake may be protective factors for MDD. We also found that MDD might trigger patients to drink more tea. Potential mechanisms need to be further investigated to support our novel findings.

Keywords: Mendelian randomization; major depressive disorder; dietary habits; beef intake; cereal intake; tea intake; GWAS
Introduction

Globally, major depressive disorder (MDD) has been one of the leading causes of non-fatal health loss for nearly three decades.\(^1\) In 2017, the prevalent cases and incident cases for MDD were approximately 163 million and 241.9 million, respectively. The number of all-age years lived with disability attributed to MDD increased by 32.1% from 1990 to 2007 and by 12.6% from 2007 to 2017.\(^1\)

Considering the issues of current treatments for depression, such as adverse side effects and unsatisfactory response rates to antidepressant medication, many studies have suggested that non-pharmacological prevention strategies, such as physical activity and healthy diet, may play an important role in reducing the disease burden of MDD.

In the past decade, a number of nutritional epidemiological studies have suggested that diet may potentially increase or decrease the risk of MDD. It is hypothesized that nutrition may activate hormonal, neurotransmitter and signaling pathways in the gut and then modulate depression-associated biomarkers.\(^2\) However, the findings are inconsistent and inconclusive for many diets’ effects on MDD. For example, a meta-analysis of observational studies reported that increased meat consumption is
associated with higher incidence but not prevalence of depression.\(^3\) Meanwhile, an observational study in females reported that red meat consumption less than the recommended intake may be associated with an increased risk of depression.\(^4\) Finally, a recent review on the association between meat abstention and depression showed mixed results; however, the majority of studies, and especially the most rigorous ones, demonstrated a higher risk of depression in those who avoided meat.\(^5\) Similarly, alcohol consumption was shown to be associated with increased risk of MDD in some studies,\(^6-9\) but not in the others.\(^10-12\) Several other potential protective factors for MDD were identified through randomized controlled trials (RCTs) and observational studies, including coffee and caffeine intake,\(^13\) omega-3 polyunsaturated fatty acid intake,\(^14\) fruit and vegetable intake,\(^15\) frequent fish consumption,\(^16\) plain water intake,\(^17\) and decreased fat intake (with induced body weight loss).\(^18\) However, there were also studies showing null association of MDD with consumption of tea, coffee\(^19\) and fish.\(^20\)

In nutritional epidemiology studies, it is very challenging to minimize confounding bias that may contribute to the inconsistent results regarding the relationship between diet and MDD. Recently, several GWAS have indicated that dietary habits are heritable traits,\(^21,22\) therefore, Mendelian randomization (MR), which leverages
genetic instruments to reduce potential confounding biases, may be an appropriate study design to evaluate the effects of diet on a disease or a health outcome.\textsuperscript{23} The aim of this study is to systemically investigate the causal influence of dietary habits on the risk of MDD by MR approach using diet-wide and genome-wide summary data.

**Methods**

**Study Design**

We applied a two-sample MR study design that uses genetic variants as instrumental variables (IVs) for exposure to investigate the causal relationship between exposure and outcome.\textsuperscript{24-26} We leveraged summary statistics from large-scale genome-wide association studies’ (GWAS) meta-analyses to increase statistical power in the two-sample MR study. Our MR method is described in detail in Supplemental Methods.

**Dietary habits GWAS summary statistics**

We obtained genome-wide associations for 20 dietary habits from GeneATLAS (Table 1).\textsuperscript{27} The questionnaire for these dietary habits is summarized in eTable 23. GeneATLAS included GWAS performed using 452,264 participants of European ancestry with 9,113,133 genetic variants in UK Biobank (see also Supplemental
Methods). We further filtered the summary statistics to include only imputed and genotyped variants with minor allele frequency ≥ 0.05, with imputation information score ≥ 0.8, and with p-value for departure from the Hardy–Weinberg equilibrium ≥ 1 × 10⁻⁴. We selected genome-wide significant single nucleotide polymorphisms (SNPs) with association p-value < 5 × 10⁻⁸.

Major depressive disorder GWAS summary statistics

The Psychiatric Genomics Consortium (PGC) provided summary statistics from a genome-wide association meta-analysis of MDD (see Supplementary Methods for cohort details).²⁸ This meta-analysis included 43,204 MDD patients and 95,680 controls of European ancestry, with 12,148,694 genetic variants. We filtered to include imputed and genotyped variants with minor allele frequency ≥ 0.05 and imputation information score ≥ 0.8. We used a relaxed threshold of association p-value < 1 × 10⁻⁶, which has been used in previous psychiatric MR studies to select genetic instruments.²⁹-³¹

Statistical Analysis

We assessed the bidirectional relationships between dietary habits and MDD by two-sample MR. We performed linkage disequilibrium clumping on significant SNPs to keep independent SNPs as genetic instruments. When the SNPs were not available in
the outcome summary data, we replaced them with proxy SNPs in the highest linkage disequilibrium with $r^2 \geq 0.8$. Next, we harmonized exposure and outcome data, and aligned the effect allele in exposure and outcome GWAS. We inferred positive strand alleles using allele frequencies for palindromic SNPs, and removed palindromic SNPs with a minor allele frequency $>0.42$, for which alleles cannot be reliably aligned. A weighted median approach was used to synthesize MR estimates. For the robustness of our results, we compared weighted median results with other estimates, including an inverse-variance weighted (IVW) method and a weighted mode method.

In an MR study, it is essential to check for horizontal pleiotropy, which will lead to biased estimates. We used a MR-PRESSO test to detect horizontal pleiotropic outliers in the multi-instrument MR study and to correct for horizontal pleiotropy via outlier removal. In addition, we examined horizontal pleiotropy by test for the intercept in the MR-Egger regression, MR-Egger test and Cochran’s Q test for heterogeneity, and the leave-one-out analysis. All analyses were performed using the statistical software R with TwoSampleMR package for processing and harmonizing exposure and outcome data, and conducting MR analyses with the iegwasmr package for linkage disequilibrium clumping.
Results

Beef intake showed a causally protective effect on MDD after Bonferroni correction ($\beta = -1.33$; $p$-value = 0.002; Bonferroni-corrected $p$-value = 0.034; 11 SNPs) (Table 1). We also found cereal intake showing a protective effect on MDD, with a nominally significant $p$-value ($\beta = -0.15$; $p$-value = 0.010; 51 SNPs) (Table 1). The causal effect estimate from each SNP and the distribution of genetic effects on exposure and outcome are summarized in Figure 1 for beef intake and Figure 2 for cereal intake on MDD. We obtained similar results by using the IVW method and weighted mode approach, despite results in the weighted mode test being non-significant. SNPs selected as instrumental variables for MR analyses for effects of dietary habits on MDD are listed in eTables 1-20.

We also assessed the effect of MDD as an exposure on dietary habits (Table 2). We found that MDD may be causally increasing tea intake, with a nominally significant $p$-value ($\beta = 0.13$; $p$-value = 0.021; 12 SNPs) (Figure 3). We observed similar results by using the IVW method and a weighted mode approach, despite seeing non-significant results in both tests. SNPs selected as potential instrumental variables for MR analyses for effects of MDD on dietary habits are listed in eTable 21.
To detect horizontal pleiotropy, the MR-PRESSO global test detected two, two and one potential outlier in the MR effect of beef intake on MDD, cereal intake on MDD, and MDD on tea intake, respectively (eTable 22). The effect estimates for beef intake on MDD ($\beta = -1.19$; p-value $= 0.006$) and cereal intake on MDD ($\beta = -0.14$; p-value $= 0.006$) remained significant after correcting for horizontal pleiotropy via outlier removal. In contrast, the effect of MDD on tea intake was no longer statistically significant when we excluded the outlier. However, none of the MR-PRESSO distortion tests showed significant distortion in the causal estimates before or after outlier removal. Moreover, we examined the horizontal pleiotropy by using a MR-Egger intercept test, which showed that the horizontal pleiotropy is negligible. We investigated the horizontal pleiotropy by Cochran’s Q statistic, MR-Egger test approach (eTable 22), and funnel plots (eFigure 1-3). The results show that horizontal pleiotropy may exist in the effects of beef intake on MDD, cereal intake on MDD, and MDD on tea intake.

In our sensitivity analysis, we conducted leave-one-out analyses, excluding one significant SNP each time. The effect of beef intake on MDD (eFigure 4) in leave-one-out analyses was similar to the main MR result. Although a few MR leave-one-
out estimates were not statistically significant, we observed a similar trend for the effect of cereal intake on MDD across them (eFigure 5). In the leave-one-out analyses for the effect of MDD on tea intake, the result was consistent with the main MR result (eFigure 6).

**Discussion**

In this two-sample MR using the largest diet GWAS results available to date, we systemically examined the causal relationships between 20 dietary habits and MDD. We observed potential protective effects of beef intake and cereal intake on MDD, while other dietary habits did not show significant effects on MDD. The results were consistent after we corrected horizontal pleiotropy via outlier removal by using MR-PRESSO. We did not observe a significant effect of MDD on either beef or cereal intake. On the other hand, we found a nominally significant effect of MDD on increasing tea intake. However, the effect of MDD on tea intake was no longer statistically significant when we excluded the outlier using MR-PRESSO.

We found a protective effect of beef intake on MDD, but consumptions of processed meat, poultry, lamb/mutton, and pork were not seen to significantly influence MDD.
Previous studies show inconsistent results for the effect of meat intake on MDD, which may be partly due to differences in study designs and methods, including different food frequency questionnaires, diagnostic tools for depression and differential residual confounding.\textsuperscript{3,4,34,35} In the present study, residual confounding was minimized by applying a two-sample MR study design that used genetic variants as IVs for meat intake to estimate the causal relationship between the consumption of each category of meat and MDD. In addition, meat consumption in the current study was divided into five different exposures, each for a different type of meat. This distinction of meat type was not always considered in previous studies and may contribute to the inconsistent results. There are several potential mechanisms that may possibly explain the observed beneficial effect of beef consumption on MDD. Beef contains nutrients that may be beneficial in the prevention of MDD, such as zinc, iron, and protein. A meta-analysis found that dietary zinc and iron intake significantly decrease the risk of depression.\textsuperscript{36} Sufficient protein intake is essential to building and maintaining lean muscle mass, while lower lean muscle mass has been reported to be associated with more depressive symptoms.\textsuperscript{37} To the best of our knowledge, this is the first study reporting a potential beneficial causal effect of beef intake on lowering the risk of MDD. Therefore, our MR results need to be interpreted cautiously, especially considering the potential pleiotropic bias in MR analysis. Further investigation of the
causal relationship between beef intake and MDD is also warranted in order to validate the results.

In the present study, we found that cereal intake might be causally decreasing MDD, with a nominally significant p-value. Previous studies show inconclusive evidence for the effect of cereal intake on MDD. Although it has been suggested that increasing consumption of wholegrain cereals may prevent depression, several other studies have shown either a null effect or protective effect of cereal intake on depression only in older adults. One possible explanation for the potential protective effect is that cereal fiber may modulate gut microbiota and subsequently influence depressive illness through the mediation of gut microbiota. This hypothesis needs to be confirmed in further studies.

We found that MDD might also causally increase tea intake, but not vice versa. A systematic review and dose-response meta-analysis of 12 observational studies showed a protective effect of tea intake on risk of depression in cross-sectional studies. However, the association between tea intake and depression was not statistically significant in prospective studies and pooled analysis. The one-directional effect of MDD on tea intake we observed may explain why previous studies found
only an association in cross-sectional studies but not in prospective studies. 

Some evidence suggests that fruit, vegetable, coffee, water, and moderate alcohol consumption are considered as protective factors for MDD;\textsuperscript{10-13,15,17} but several other studies have failed to replicate these associations.\textsuperscript{6-9,19} Considering potential residual bias, insufficient power and a lack of temporality in cross-sectional studies, a carefully designed study with a large sample size, such as an MR study, is therefore required to help resolve this controversial issue. For example, omega-3 polyunsaturated fatty acids, especially adequate eicosapentaenoic acid (EPA), are generally suggested as being beneficial against depression.\textsuperscript{14} However, for dietary fish intake, an RCT showed that fish consumption is not associated with the risk of MDD,\textsuperscript{20} and a dose-response meta-analysis of 10 prospective cohort studies showed non-significant effect of an increment of one serving per week of dietary fish consumption on depression.\textsuperscript{44} These negative findings are consistent with our MR results and may be due to insufficient dosage of EPA from dietary fish consumption. 

Our study may suffer from the common limitations of the MR study; that is, assumption may be violated due to horizontal pleiotropy. A genetic variant affecting the outcome through a different pathway from the exposure under investigation will lead to biased estimates. Consequently, we did several sensitivity analyses to detect
and to minimize the bias, including a MR-PRESSO test, an intercept test in the MR-Egger regression, a heterogeneity test, and a leave-one-out analysis, and observed consistent results. Second, while the effects of diets on MDD may vary across difference sex and age groups, we examined only the overall effects adjusted for sex and age due to limitation of publicly available GWAS summary statistics.

Furthermore, the present study included individuals of only European ancestry, and thus the results might lack generalizability to other populations. Last, as information about dietary habits was collected retrospectively by a shortened food frequency questionnaire, recall bias cannot be excluded. In addition, several dietary habits, depending on overall daily or weekly frequency, were regarded as ordinal variables, and the effect of SNPs on dietary habits was assumed to be linear. This strong assumption may bias the GWAS results towards the null and consequently result in a false negative result for the relationship between dietary habits and MDD. Thus, we suggest further studies to collect detailed dietary data prospectively and to test for the non-linear association between dietary habits and MDD.

Despite the limitations, to our knowledge, this study is the most comprehensive MR study to date to evaluate the causal role of dietary habits on the risk of MDD. We leveraged summary statistics from large-scale GWAS meta-analysis to increase statistical power. In addition, sensitivity analyses found no substantial difference in
the results from those of the main analysis, thereby indicating that our findings are robust. Identification of protective dietary habits for MDD is crucial for primary prevention; however, interpretation of the evidence of causality from our study needs to be done so cautiously. We have stressed the need for further investigation to confirm and generalize our findings.

Conclusion

In this two-sample MR, we observed that increased beef intake and cereal intake may be protective against MDD. We did not observe effects of MDD on beef or cereal intake. We also found that MDD may trigger patients to drink more tea. Further validation of these novel findings and investigations on potential mechanisms is required.

Acknowledgments: None

Funding: None

Conflict of interests: None

Availability of all data: We collected publicly available genome-wide association studies’ summary statistics for dietary habits from GeneATLAS and MDD from Psychiatric Genomics Consortium (PGC). We obtained genome-wide associations for
20 dietary habits from GeneATLAS website

(http://geneatlas.roslin.ed.ac.uk/downloads/). The PGC provided summary statistics from a genome-wide association meta-analysis of MDD on the website (https://www.med.unc.edu/pgc/download-results/).
References


33. Burgess S, Thompson SG. Interpreting findings from Mendelian


Figure legend

Figure 1. Mendelian randomization results for estimating the causal effects of beef intake on major depressive disorder. (A) Scatter plot showing the effects of SNPs on beef intake versus major depressive disorder. (B) Forest plot of Mendelian randomization effect size for beef intake on major depressive disorder.

Figure 2. Mendelian randomization results for estimating the causal effects of cereal intake on major depressive disorder. (A) Scatter plot showing the effects of SNPs on cereal intake versus major depressive disorder. (B) Forest plot of Mendelian randomization effect size for cereal intake on major depressive disorder.

Figure 3. Mendelian randomization results for estimating the causal effects of major depressive disorder on tea intake. (A) Scatter plot showing the effects of SNPs on major depressive disorder versus tea intake. (B) Forest plot of Mendelian randomization effect size for major depressive disorder on tea intake.
Table 1. Mendelian randomization results by using weighted median approach for estimating the causal effect of dietary habits on major depressive disorder

<table>
<thead>
<tr>
<th>Dietary habits</th>
<th>Number of SNPs</th>
<th>$\beta$</th>
<th>Standard error</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooked vegetable intake</td>
<td>14</td>
<td>0.077</td>
<td>0.202</td>
<td>0.702</td>
</tr>
<tr>
<td>Salad/raw vegetable intake</td>
<td>19</td>
<td>-0.151</td>
<td>0.147</td>
<td>0.304</td>
</tr>
<tr>
<td>Fresh fruit intake</td>
<td>62</td>
<td>0.119</td>
<td>0.099</td>
<td>0.231</td>
</tr>
<tr>
<td>Dried fruit intake</td>
<td>10</td>
<td>0.006</td>
<td>0.271</td>
<td>0.982</td>
</tr>
<tr>
<td>Oily fish intake</td>
<td>53</td>
<td>0.071</td>
<td>0.164</td>
<td>0.664</td>
</tr>
<tr>
<td>Non-oily fish intake</td>
<td>9</td>
<td>0.390</td>
<td>0.430</td>
<td>0.364</td>
</tr>
<tr>
<td>Processed meat intake</td>
<td>17</td>
<td>0.155</td>
<td>0.265</td>
<td>0.559</td>
</tr>
<tr>
<td>Poultry intake</td>
<td>5</td>
<td>0.006</td>
<td>0.514</td>
<td>0.991</td>
</tr>
<tr>
<td>Beef intake $^a$</td>
<td>11</td>
<td>-1.328</td>
<td>0.423</td>
<td>0.002</td>
</tr>
<tr>
<td>Lamb/mutton intake</td>
<td>25</td>
<td>0.587</td>
<td>0.339</td>
<td>0.084</td>
</tr>
<tr>
<td>Pork intake</td>
<td>10</td>
<td>0.949</td>
<td>0.514</td>
<td>0.065</td>
</tr>
<tr>
<td>Cheese intake</td>
<td>43</td>
<td>-0.237</td>
<td>0.175</td>
<td>0.176</td>
</tr>
<tr>
<td>Bread intake</td>
<td>25</td>
<td>0.015</td>
<td>0.025</td>
<td>0.543</td>
</tr>
<tr>
<td>Cereal intake</td>
<td>51</td>
<td>-0.146</td>
<td>0.057</td>
<td>0.010</td>
</tr>
<tr>
<td>Salt added to food</td>
<td>86</td>
<td>0.099</td>
<td>0.137</td>
<td>0.470</td>
</tr>
<tr>
<td>Tea intake</td>
<td>39</td>
<td>-0.030</td>
<td>0.056</td>
<td>0.586</td>
</tr>
<tr>
<td>Coffee intake</td>
<td>35</td>
<td>0.030</td>
<td>0.058</td>
<td>0.609</td>
</tr>
<tr>
<td>Hot drink temperature</td>
<td>69</td>
<td>0.358</td>
<td>0.256</td>
<td>0.163</td>
</tr>
<tr>
<td>Water intake</td>
<td>45</td>
<td>0.037</td>
<td>0.079</td>
<td>0.644</td>
</tr>
<tr>
<td>Alcohol intake frequency</td>
<td>72</td>
<td>-0.025</td>
<td>0.094</td>
<td>0.790</td>
</tr>
</tbody>
</table>

SNP, single nucleotide polymorphism

$^a$ Bonferroni-corrected p-value for the effect of beef intake on major depressive disorder is 0.034.
Table 2. Mendelian randomization results by using weighted median approach for estimating the causal effect of major depressive disorder on dietary habits

<table>
<thead>
<tr>
<th>Dietary habits</th>
<th>$\beta^a$</th>
<th>Standard error</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooked vegetable intake</td>
<td>0.015</td>
<td>0.029</td>
<td>0.592</td>
</tr>
<tr>
<td>Salad / raw vegetable intake</td>
<td>0.021</td>
<td>0.034</td>
<td>0.540</td>
</tr>
<tr>
<td>Fresh fruit intake</td>
<td>0.005</td>
<td>0.029</td>
<td>0.853</td>
</tr>
<tr>
<td>Dried fruit intake</td>
<td>-0.002</td>
<td>0.030</td>
<td>0.950</td>
</tr>
<tr>
<td>Oily fish intake</td>
<td>0.020</td>
<td>0.020</td>
<td>0.307</td>
</tr>
<tr>
<td>Non-oily fish intake</td>
<td>0.014</td>
<td>0.013</td>
<td>0.275</td>
</tr>
<tr>
<td>Processed meat intake</td>
<td>-0.012</td>
<td>0.017</td>
<td>0.497</td>
</tr>
<tr>
<td>Poultry intake</td>
<td>-0.024</td>
<td>0.015</td>
<td>0.121</td>
</tr>
<tr>
<td>Beef intake</td>
<td>-0.027</td>
<td>0.014</td>
<td>0.055</td>
</tr>
<tr>
<td>Lamb/mutton intake</td>
<td>-0.017</td>
<td>0.012</td>
<td>0.167</td>
</tr>
<tr>
<td>Pork intake</td>
<td>-0.022</td>
<td>0.013</td>
<td>0.091</td>
</tr>
<tr>
<td>Cheese intake</td>
<td>0.001</td>
<td>0.017</td>
<td>0.942</td>
</tr>
<tr>
<td>Bread intake</td>
<td>-0.104</td>
<td>0.137</td>
<td>0.448</td>
</tr>
<tr>
<td>Cereal intake</td>
<td>0.061</td>
<td>0.048</td>
<td>0.204</td>
</tr>
<tr>
<td>Salt added to food</td>
<td>0.004</td>
<td>0.019</td>
<td>0.821</td>
</tr>
<tr>
<td>Tea intake</td>
<td>0.125</td>
<td>0.054</td>
<td>0.021</td>
</tr>
<tr>
<td>Coffee intake</td>
<td>0.024</td>
<td>0.035</td>
<td>0.501</td>
</tr>
<tr>
<td>Hot drink temperature</td>
<td>0.011</td>
<td>0.011</td>
<td>0.301</td>
</tr>
<tr>
<td>Water intake</td>
<td>0.045</td>
<td>0.039</td>
<td>0.246</td>
</tr>
<tr>
<td>Alcohol intake frequency</td>
<td>-0.019</td>
<td>0.029</td>
<td>0.512</td>
</tr>
</tbody>
</table>

*a Included 12 SNPs meeting the relaxed threshold ($1 \times 10^{-6}$)
Figure 1. Mendelian randomization results for estimating the causal effects of beef intake on major depressive disorder. (A) Scatter plot showing the effects of SNPs on beef intake versus major depressive disorder. (B) Forest plot of Mendelian randomization effect size for beef intake on major depressive disorder.
Figure 2. Mendelian randomization results for estimating the causal effects of cereal intake on major depressive disorder. (A) Scatter plot showing the effects of SNPs on cereal intake versus major depressive disorder. (B) Forest plot of Mendelian randomization effect size for cereal intake on major depressive disorder.
Figure 3. Mendelian randomization results for estimating the causal effects of major depressive disorder on tea intake. (A) Scatter plot showing the effects of SNPs on major depressive disorder versus tea intake. (B) Forest plot of Mendelian randomization effect size for major depressive disorder on tea intake.