Covid-19 and dysregulated cerebral perfusion: observations with multimodal MRI

Marie-Cécile Henry-Feugeas¹, Augustin Gaudemer¹, Xavier Lescure², Antoine Dossier³, Romain Sonneville⁴, Carsten Ehmer¹, Christophe Choquet⁵, Theresa Israel¹, Agathe Raynaud Simon⁶, Raphael Borie⁷, Pierre Amarenco⁸, Antoine Khalil¹,⁹

¹ Service de Radiologie, Unité de Neuroradiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France
² Service des Maladies infectieuses et Tropicales, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France; Infections Antimicrobials Modelling Evolution (IAME) UMR 1137, Université Paris Diderot, Paris, France
³ Service de Médecine Interne, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France, Université Paris Diderot, Soronne-Paris Cité, Paris, France
⁴ Service de Réanimation médicale et des maladies infectieuses, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France, Inserm IAME U1137 IAME: Decision Sciences in Infectious Diseases (DeSciD), Université Paris Diderot, France
⁵ Service des Urgences, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France
⁶ Service de Gériatrie, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France, Université Paris Diderot, Paris, France
⁷ Service de Pneumologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France
8 Service de Neurologie et des Accidents Vasculaires Cérébraux, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France, INSERM Laboratory for Vascular Translational Science-Unité 1148, Département Hospitalo-Universitaire Fibrose Inflammation Remodelage, Université Paris-Diderot, Sorbonne-Paris Cité, Paris, France
9 Inserm UMR1152, Physiopathology and Epidemiology of Respiratory Diseases, Université Paris Diderot, Paris, France

Correspondence: Marie-Cécile Henry-Feugeas, Service de Radiologie, Unité de Neuroradiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France. 46 rue Henri Huchard, 75018 Paris, France, email: marie-cecile.henry-feugeas@bch.aphp.fr

Running title: Multimodal brain MRI in Covid-19
Summary

Key words: SARS-Cov2, MRI, COVID, encephalopathy, posterior reversible encephalopathy syndrome
INTRODUCTION

Covid-19 infection is associated with a high frequency of neurological manifestations, such as Covid-19-associated encephalopathy of uncertain pathogenesis. Central-nervous-system symptoms in Covid-19 most often include consciousness disorders (1, 2). Post-mortem studies have shown little structural brain damage in Covid-19 (3, 4), but hemodynamic brain dysfunction may underlie consciousness disturbances.

Traditional causes of hypoxia such as hypoxemia or reduced cerebral blood flow are infrequently observed in patients with Covid-19 and central-nervous-system symptoms. However, Covid-19 is characterized by a viral interference with microvascular tone loss up to complete loss of vascular tone (5). As recently observed, microvascular dysfunction may promote brain hypoxia (6, 7). Altered microvascular tone may especially be deleterious for cerebral autoregulation, which is mechanistically mediated by vasocontractile properties of microcirculation.

Disturbed cerebral autoregulation may induce posterior reversible encephalopathy syndrome (PRES) (8,9,10,11), whose diagnosis is based on MRI findings. Multimodal MRI, which includes brain anatomy and perfusion evaluation, may be more efficient than CT or structural MRI (12,13,14) for detecting hemodynamic changes.

We report here the preliminary multimodal MR observations of dysregulated brain perfusion in Covid-19 patients with neurological symptoms.
PATIENTS AND METHODS

Patients and MRI protocol

This retrospective analysis included 25 patients with Covid-19 confirmed by PCR of throat swab specimens and/or by concordant clinical and chest CT presentations who underwent brain MRI between March 30 and April 28 in our hospital. Institutional review board was approved (CRM-2005-086) and written informed consent waived.

The dedicated Covid-19 MRI protocol for the brain with our 1.5 Tesla MR imager includes the routine sequences of diffusion weighted imaging; susceptibility-weighted angiography; pre- and/or post-contrast fluid-attenuated inversion recovery (FLAIR), T2, and post-contrast-enhanced 3D T1 sequences; time-of-flight MR angiography (MRA); and 2 complementary perfusion-weighted MR sequences: dynamic susceptibility contrast (DSC) and arterial spin labelling (ASL) sequences.

Imaging evaluation of the brain

Besides standard brain analysis, we detected any MR structural pattern suggestive of PRES. These MR patterns included edema and indirect signs such as blood-brain barrier breakdown, intracranial hyperperfusion and hypertension. They also included imaging patterns that frequently mimic vasoconstriction reversible syndrome (VRS) in PRES or VRS-like MR patterns.

PRES MR edema patterns

PRES MR edema patterns were defined as any confluent MR vasogenic edema that involved at least the immediate subcortical white matter in typical PRES locations. These locations mainly included the watershed parieto-occipital and superior frontal
sulcus regions or the high precentral/posterior frontal region. Additional criteria for PRES MR edema included lack of any associated solid tissue/mass lesion in these areas of vasogenic edema. PRES MR edema was graded mild, moderate or severe PRES-like changes according to the previously published PRES MR descriptions (11). Absence of PRES MR edema and any other parenchymal changes was considered a normal MR pattern (which included mild or non-specific MR changes).

Pericortical contrast leakage suggestive of blood-brain barrier breakdown observed in PRES was systematically assessed on contrast-enhanced FLAIR sequences. Optic-nerve tortuosity and sheath enlargement were systematically assessed as indirect markers of brain hyperperfusion and/or elevated intracranial pressure also observed in PRES (15). Finally, the presence of cytotoxic lesion of the corpus callosum as a possible manifestation of both PRES and encephalitis was defined with the previously described criteria for cytotoxic lesions of the corpus callosum (16).

Vasoconstriction reversible syndrome (VRS)-like MR patterns

VRS-like MRA patterns. These MRA patterns were defined as bilateral and extensive narrowings involving the distal intracerebral arteries. At least moderate or marked pruning of both the middle cerebral and posterior cerebral arteries was required for classification of VRS-like MR pattern (17).

VRS-like infarct was noted as a possible complication of PRES-associated VRS. Probable VRS infarct pattern was defined as bilateral and symmetric infarcts affecting the posterior watershed territories; possible VRS infarct pattern was defined as multifocal infarcts including at least one watershed location (17). Other VRS infarct
criteria included the absence of any proximal hemodynamic compromise on cerebral MRA or any arterial thrombus in the intracerebral arteries on susceptibility weighted images and/or head CT angiography.

PRES MR perfusion patterns

Perfusion assessment involved using the classical key hemodynamic ASL and DSC parameters and their known variations in hypo- and hyperperfusion brain states including ischemic hypoperfusion, posterior hyperperfusion or the most common hypoperfusion PRES MR patterns (9,10).

RESULTS

Patients

We examined 25 Covid-19 patients (19 men; mean age 66 years [range 38 to 85]; see Table). The most common indication for brain MRI was an altered mental state (n = 18), mainly confusion (n = 10). Hypertension was the most common comorbidity (n = 10). In all, 17 patients presented at least one possible precipitating factor for PRES, mainly hypertension, renal failure and septic schock.

Cerebrospinal fluid from 12 patients was normal (n=8) or showed mildly elevated proteinorachia (n=4) but no meningitis or pleiocytosis. Covid-19 PCR findings for cerebrospinal fluid were negative for all tested patients.

Electroencephalography performed in 13 patients was normal for 1 patient and showed focal and/or generalized slowing in the other cases but no status epilepticus.
MR observations

The full Covid-19 MR protocol was not always performed because of a hyperacute stroke context, patient agitation, or contrast contraindications or technical problems. However, all patients except 2 underwent combined structural and hemodynamic MR assessment. This multimodal MRI assessment confirmed both little structural brain changes and prevalent hemodynamic changes in our COVID patients (see Table, Figures 1 and 2).

Structural MRI

Fifteen of the 25 (60%) patients showed the previously defined normal brain MR pattern including one with only mild cytotoxic lesion of the corpus callosum.

The PRES MR edema pattern (n=8) most often appeared as mild and typically bilateral. Only the one patient who died showed severe PRES MR edema, which was mainly associated with a posterior and extensive MR pattern of hypoxic cortical damage or laminar necrosis. Contrast-enhanced FLAIR sequences (n=12) revealed focal pericortical enhancement in only 4 cases and was most often posterior and mild. Only the patient who died had massive posterior and infratentorial pericortical enhancement was only noted in the fatal COVID patient. Mild enlargement of optic nerves sheaths was frequent, and 3 patients showed moderate or marked enlargement.

Overall, 7/25 (28%) had brain infarcts, with possible (n=4) or probable (n=2) VRS infarct MR patterns. Four patients had a few (≤ 3) brain microbleeds. We observed one
hemorrhagic transformation of brain infarcts, one subacute subdural hematoma and one old deep-brain hematoma.

MRA

Among the 23 patients who underwent MRA, all but 3 showed moderate or marked bilateral and extensive narrowings of the intracerebral distal arteries. Follow-up at 8 days in 1 patient confirmed the reversibility of cerebral artery narrowings.

MR perfusion

All but one MR perfusion examination showed typical posterior PRES-like hypoperfusion (n = 16/20) or hyperperfusion (n = 3/20). When available, mean transit time and cerebral blood volume maps from DSC perfusion (n=10) confirmed PRES and not ischemic MR patterns of posterior PRES-like hypoperfusion. MRI for 1 patient with recent convulsions revealed diffuse brain hyperperfusion suggesting non-specific post-convulsion changes rather than typical PRES hyperperfusion.

DISCUSSION

These still preliminary MR observations support a preponderant role of dysregulated brain perfusion rather than infectious/inflammatory brain damage in Covid-19 patients with encephalopathy. Indeed, we observed a high frequency of normal brain structure on MRI, in line with the high frequency, 56%, of normal brain MRI findings in another study of Covid-19 patients with neurological symptoms (14). Acute disseminated encephalomyelitis diagnosis was excluded by normal brain MRI findings at the acute stage.
Extensive white-matter changes in our patient who died were similar to those observed in Covid-19 patients who required intensive care (14). This observation suggests that severe infection may promote a deeper extent of PRES MR edema. In the same way, pericortical enhancement was abundant in our patient who died, which agrees with the frequent but otherwise similar pericortical enhancement in Covid-19 patients who required intensive care (2, 14). Indeed, linear or round pericortical enhancements that were best depicted on post-contrast FLAIR sequences seemed consistent with perivascular contrast leakages due to blood-brain barrier disruption in these patients (2, 14). Extensive cortical laminar necrosis in the patient who died also supports a hypoxic origin of gyriform cortical MR restricted diffusion in Covid-19 patients who required intensive care (14). Of note, dysregulated brain perfusion is known to sometimes mimic acute necrotizing encephalopathy or limbic encephalitis-like MR patterns as previously reported in 2 patients with Covid-19 (12, 13). The high frequency of both VRS angiography and PRES perfusion patterns in our series despite non-specific brain MR morphology findings confirms that use of multimodal MRI may increase both the MRI sensitivity and specificity in patients with Covid-19. MRA evidence of PRES vasoconstriction may also help identify a PRES MR pattern in Covid-19 patients with posterior relative hyperperfusion (2).

Previous pathology descriptions of microvascular congestion or microvascular widening in patients with Covid-19 (4, 18) suggest abnormal microvascular hyperperfusion with microvascular vasoplegcy (5). Such microvascular hyperperfusion may promote PRES-like brain edema, compensatory upstream neurogenic large-artery and arteriolar constriction and vasoconstriction on MRA. High heterogeneity of cerebral
MR perfusion may reflect variable compensatory upstream vascular response according to the vascular territories. Uncontrolled compensatory but deleterious vasoconstriction changes may contribute to VRS-like infarct, whereas microvascular dysfunction may promote hypoxic encephalopathy. Global brain hyperperfusion may explain the MR signs of intracranial hypertension/hyper-perfusion in our patients, in line with a report of markedly elevated intracranial pressure in a patient with Covid-19 (12).

Possible triggering factors for dysregulated brain perfusion, such as hypertension, renal failure or septic shock, were frequent but not prevalent in our patients. However, virus-induced endothelitis may promote endothelial dysfunction in patients with Covid-19 (18) and thus dysregulated brain perfusion (8). Elevated lactate dehydrogenase level, an early biochemical marker of endothelial dysfunction, seems a good prognostic indicator in both severe Covid-19 and PRES (8, 11).

These observations support the use of systematic multimodal MRI assessment of Covid-19 associated encephalopathy. They promote the need for limiting any factor of brain hyperperfusion, such as arterial hypertension, inflammation and sepsis, or any cause of reduced brain oxygenation, such as microthrombosis or even mild anemia. They also support a key role for any treatment that may reduce endothelial cell injury induced by Covid-19.
REFERENCES

17 Singhal AB, Bernstein RA. Postpartum angiopathy and other cerebral vasoconstriction syndromes. Neurocrit Care. 2005;3:91-7

Figure 1. Covid-19 infection and multimodal brain MRI

58-year-old Covid-19 patient with psychomotor slowing. MR angiography (1A) shows bilateral and extensive vasoconstriction of the distal intracerebral arteries (arrows) or vasoconstriction reversible syndrome (VRS)-like MR pattern. A cerebral blood flow (CBF) map generated by arterial spin labelling (ASL) perfusion (1B) shows typical posterior reversible encephalopathy syndrome (PRES)-like posterior ASL hypoperfusion (1B; arrows); notably, all anatomic MR images including the corresponding T1 weighted image (1C) showed only a normal MR appearance.

76-year-old Covid-19 patient with confusion. MR angiography (1D) did not show any VRS-like MR pattern, but the CBF map generated by ASL perfusion (1E) revealed typical PRES-like posterior hyperperfusion (1E, arrows). In this case also, all anatomic MR images including the corresponding T1 weighted image (1F) all showed a normal MR appearance.
Figure 2. Multimodal brain MRI and dysautoregulated brain perfusion in Covid-19 patients with neurological symptoms

Normal MRI included MRI with normal parenchyma signal or mild or unspecific brain MR changes only.

Abbreviations

ASL, arterial spin labelling MR perfusion; DSC, dynamic susceptibility contrast MR perfusion; MRA, MR angiography; P patient; PRES, posterior reversible encephalopathy syndrome; VRS, vasoconstriction reversible syndrome.
<table>
<thead>
<tr>
<th>Patients age range (years)</th>
<th>Main possible risk factors for PRES or RVS (other than uncomplicated COVID 19)</th>
<th>MR indications</th>
<th>EEG data CSF data</th>
<th>MR sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 80’s</td>
<td>COVID 19 associated sepsis</td>
<td>Confusion</td>
<td>EEG: NA CSF: normal</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1</td>
</tr>
<tr>
<td>P2 60’s</td>
<td>Covid-19 associated ARDS</td>
<td>Confusion</td>
<td>EEG:slowing CSF: NA</td>
<td>DWI / FLAIR</td>
</tr>
<tr>
<td>P3 60’s</td>
<td>Rheumatoid arthritis</td>
<td>Convulsions</td>
<td>EEG: NA CSF: normal</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1</td>
</tr>
<tr>
<td>P4 70’s</td>
<td>No evidence of any main risk factor</td>
<td>Confusion</td>
<td>EEG: normal CSF: NA</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1</td>
</tr>
<tr>
<td>P5 60’s</td>
<td>Hypertension, depression</td>
<td>Confusion</td>
<td>EEG:slowing CSF: normal*</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1</td>
</tr>
<tr>
<td>P6 50’s</td>
<td>Catamenial migraine</td>
<td>Headache</td>
<td>EEG: NA CSF:hyperproteinorachia</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1</td>
</tr>
<tr>
<td>P7 70’s</td>
<td>No evidence of any main risk factor</td>
<td>Confusion</td>
<td>EEG:slowing CSF:hyperproteinorachia*</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1 / CE FLAIR</td>
</tr>
<tr>
<td>P8 50’s</td>
<td>No evidence of any main risk factor</td>
<td>Cognitive impairment</td>
<td>EEG: NA CSF: NA</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1</td>
</tr>
<tr>
<td>P9 60’s</td>
<td>Hypertension, HIV infection</td>
<td>Confusion</td>
<td>EEG:slowing CSF: normal</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1 / CE FLAIR</td>
</tr>
<tr>
<td>P10 70’s</td>
<td>No evidence of any main risk factor</td>
<td>Hallucinations</td>
<td>EEG:slowing CSF: normal*</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1 / CE FLAIR</td>
</tr>
<tr>
<td>P11 50’s</td>
<td>No evidence of any main risk factor</td>
<td>Odd behavior</td>
<td>EEG:slowing CSF: normal*</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1</td>
</tr>
<tr>
<td>P12 80’s</td>
<td>Hypertension</td>
<td>T1A</td>
<td>EEG: NA CSF: NA</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1</td>
</tr>
<tr>
<td>P13 80’s</td>
<td>Hypertension, depression</td>
<td>T1A</td>
<td>EEG: NA CSF: NA</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1</td>
</tr>
<tr>
<td>P14 30’s</td>
<td>Covid-19 associated ARDS+septic shock</td>
<td>Altered gait equilibrium</td>
<td>EEG: NA CSF: NA</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1</td>
</tr>
<tr>
<td>P15 70’s</td>
<td>Covid-19 associated ARDS</td>
<td>Cognitive impairment</td>
<td>EEG: NA CSF: NA</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1</td>
</tr>
<tr>
<td>P16 50’s</td>
<td>No evidence of any main risk factor</td>
<td>Stroke</td>
<td>EEG: NA CSF: NA</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1</td>
</tr>
<tr>
<td>P17 70’s</td>
<td>Hypertension renal failure</td>
<td>Confusion</td>
<td>EEG:slowing CSF: NA</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1</td>
</tr>
<tr>
<td>P18 40’s</td>
<td>Covid-19 associated ARDS+ renal failure +septic shock+hypertension</td>
<td>Impaired consciousness</td>
<td>EEG:slowing CSF: NA</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1 / CE FLAIR</td>
</tr>
<tr>
<td>P19 60’s</td>
<td>Hypertension+ renal failure+HIV infection</td>
<td>Cognitive impairment</td>
<td>EEG: NA CSF: NA</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1 / CE FLAIR</td>
</tr>
<tr>
<td>P20 60’s</td>
<td>No evidence of any main risk factor</td>
<td>Stroke</td>
<td>EEG: NA CSF: NA</td>
<td>DWI / FLAIR / SWAN / T2 / CE T1 / CE FLAIR</td>
</tr>
</tbody>
</table>
TABLE Clinical and MR features of patients with Covid-19 who underwent brain MRI

<table>
<thead>
<tr>
<th>Age (s)</th>
<th>Clinical Diagnosis</th>
<th>MRI Findings</th>
<th>CSF Findings</th>
<th>MR Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>50’s</td>
<td>Malignant hypertension, renal failure septic shock</td>
<td>Confusion</td>
<td>CSF: normal*</td>
<td>TOF MRA/ ASL/ CE MRA</td>
</tr>
<tr>
<td>P21 70’s</td>
<td>No evidence of any main risk factor</td>
<td>Confusion</td>
<td>EEG: slowing, CSF: hyperproteinorachia</td>
<td>DWI/ FLAIR/ SWAN/ T2/ CE T1/ CE FLAIR TOF MRA/ ASL/ DSC</td>
</tr>
<tr>
<td>P22 70’s</td>
<td>Hypertension</td>
<td>Confusion</td>
<td>EEG: NA, CSF: hyperproteinorachia</td>
<td>DWI/ FLAIR/ SWAN/ T2/ CE T1/ CE FLAIR TOF MRA/ ASL/ DSC</td>
</tr>
</tbody>
</table>

*Negative PCR findings for Covid-19 in the cerebrospinal fluid

Abbreviations

ARDS, acute respiratory distress syndrome; CSF, cerebrospinal fluid; EEG, electroencephalography; F, female; TIA, transient ischemic attack; M, male; P patient.

MR sequences: ASL, arterial spin labelling MR perfusion; CE, contrast enhanced; CE MRA, contrast enhanced MR angiography; CE MRV, contrast enhanced MR venography; DSC, dynamic susceptibility contrast MR perfusion; DWI, diffusion weighted imaging; FLAIR, fluid attenuated inversion recuperation; SWAN, susceptibility weighted angiography; TOF MRA, time of flight MR angiography.