Title page
Decontamination of N95 masks against coronavirus: a scoping review

Authors:
Rafael Sarkis-Onofre¹
Rafaela do Carmo Borges²
Giulia Demarco³
Lara Dotto¹
Falk Schwendicke⁴
Flávio Fernando Demarco²,⁵

Affiliations:
1) Graduate Program in Dentistry, IMED, Passo Fundo, Brazil
2) Graduate Program in Epidemiology, Federal University of Pelotas, Pelotas, RS, Brazil
3) Post-Graduate Program in Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
4) Department for Operative and Preventive Dentistry, Charité, Berlin, Germany
5) Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil

Corresponding author:
Flávio Fernando Demarco
Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
457, Gonçalves Chaves Street, Pelotas, Brazil
ffdemarco@gmail.com
Phone/fax: +55 (53) 3260-2801
Abstract

Background: At present, it remains uncertain which method to decontaminate N95 is most suitable and should be recommended to healthcare professionals worldwide.

Objectives: The aim of this scoping review was to map and compile the available evidence about the effectiveness of decontaminating N95 masks against coronavirus.

Methods: We selected studies written in English assessing or discussing decontamination strategies of N95 masks against coronavirus. The search and study screening were performed in PubMed and SCOPUS by two independent researchers. A descriptive analysis was performed considering the study design of included studies.

Results: We included nineteen studies. Eight articles were letter to the editors, five were in vitro studies, three were literature reviews, and three were classified as other study designs. The use of vaporized hydrogen peroxide and ultraviolet irradiation were the strategies most cited. However, there is a lack of evidence and consensus related to the best method of N95 masks decontamination.

Conclusion: The evidence towards decontamination strategies of N95 masks against coronavirus remains scarce. Vaporized hydrogen peroxide and ultraviolet irradiation seem the current standard for N95 masks decontamination.

Keywords: decontamination; reuse; N95 respirators; SARS-CoV 2; coronavirus; face mask
Introduction

The novel Coronavirus, known as SARS-Cov2, has produced a social disruption globally, with severe consequences for general health of the population. At the present moment, there are more than 11 million confirmed cases, with a cumulative number of deaths of over 500,000 according to World Health Organization (WHO) (updated data can be accessed in: https://www.worldometers.info/coronavirus/). Currently, vaccines are still under trial and there are no effective drugs for the treatment of this disease. Indeed, most of the available evidence provided is that social distancing, wearing masks and eye protection are effective in the prevention of transmission. Also, better hygiene (hand washing) and use of sanitizers are supported to detain spreading of the disease.

The use of masks has been recommended by WHO, and around the world governments have established face protection policies in public space. The resulting increase in demand and a shortage in their availability in the market have led to price spikes for masks. Health professionals are at high risk for infection with the new coronavirus, and a lack of adequate protective equipment during critical procedures in infected patients is increasing that risk considerably. In Brazil, for example, more nurses and nurses’ assistants have died due to Covid-19 than anywhere else and most of them have been infected during their work with infected patients.

N95 masks are a type of respirator mask used as a facial protection specifically by healthcare providers. They have the capacity to filter over 95% of pollutant particles (>0.3 µm) in the air and have been suggested to be used to reduce the risk of Covid-19 spreading, too. Due to their high costs and limited availability, different methods to decontaminate N95 masks has been discussed to allow multiple usage.
Decontamination methods can be classified into chemical or radiation treatment, dry heat or moist heat. Such methods need to fulfill certain criteria: elimination of all pathogens; no damage to the facemask structure; the filter capacity of masks should stay the same; and no residue of the decontamination process should remain. At present, it remains uncertain which method to decontaminate N95 is most suitable and should be recommended to healthcare professionals worldwide. The aim of this scoping review was to map and compile the evidences about the effectiveness of different decontamination strategies of N95 masks against coronavirus.

Methods

The protocol of this study is based on the framework proposed by Peters et al., 2015 and is available at the following link: https://osf.io/4t936/. The reporting of this scoping review was based on PRISMA Extension for Scoping Reviews.

Eligibility criteria

We selected studies assessing different decontamination strategies of N95 masks against coronavirus or discussing decontamination strategies such as letters, editorials and literature review. No specifications towards the coronavirus organisms (surrogate or not) used to test decontamination or the decontamination strategies themselves were applied.

Information sources and search

The search was performed in two databases: Medline (PubMed) and Scopus; only articles written in English language were included. The search strategy was based on MeSH terms of PubMed and specific terms of Scopus and the last search was performed in May 2020.

The following strategies were used:
PubMed

SCOPUS

"Decontamination" OR “Disinfection” OR “Ultraviolet-C” OR “peracetic acid” AND "Masks" OR "Respiratory Protective Devices" OR “Device, Respiratory Protective” OR “Devices, Respiratory Protective” OR “Protective Device, Respiratory” OR “Protective Devices, Respiratory” OR “Respiratory Protective Device” OR “Respirators, Industrial” OR “Industrial Respirators” OR “Industrial Respirator” OR “Respirator, Industrial” OR “Respirators, Air-Purifying” OR “Air-Purifying Respirator” OR “Air-Purifying Respirators” OR “Respirator, Air-Purifying” OR “Respirators, Air Purifying” OR “N95” AND “SARS-CoV-2” OR “Coronavirus” OR “COVID-19” OR “Coronaviruses”

Selection

The search was undertaken using EndNote (EndNote X9, Thomson Reuters, New York, US). Two researches independently identified relevant records by analyzing titles and abstracts for relevance according to the eligibility criteria. Retrieved records were classified as include, exclude, or uncertain. The full-text articles of the included and
uncertain records were selected for further eligibility screening by the same two
reviewers, again independently. Discrepancies in screening of titles/abstracts and full
text articles were resolved through a discussion. In case of disagreement, the opinion of
a third reviewer was garnered.

Data charting and items

We created a form using Excel (Microsoft, Redmond, Washington, US), which was
pilot tested by three reviewers to reach a consensus on what data to collect and how.
Then, two reviewers extracted the data independently, this was reviewed by a third
reviewer. The following data were collected: study design; study objective,
decontamination regimens tested, organisms studied, method of evaluation and main
findings. For studies only discussing (and not reporting on) decontamination strategies,
the following data were collected: study design, strategies discussed and main findings.

Synthesis

A descriptive analysis was performed considering the study design and decontamination
regimens tested or discussed.

Results

The literature search yielded 178 titles and abstracts (Fig. 1). Nineteen studies\(^7,8,15,17-21,24-34\) fulfilled the eligibility criteria from which the data were extracted. Reasons
for exclusion are listed in the Supplemental Material.

Characteristics of included studies

Table I presents the characteristics of included studies. Related to study design
of included studies, eight articles were letter to the editors\(^8,15,18,20,26,28,29,33\), five were
in vitro studies\(^7,19,21,25,31\), three were literature reviews\(^17,24,27\), and three were
classified as other study designs \(30, 32, 34\). Considering only the eight letters to the editors, three letters discussed results of in vitro studies \(8, 15, 18\).

Related to decontamination regimens tested or discussed, the use of vaporized hydrogen peroxide and ultraviolet irradiation were the regimens most cited. The use of vaporized hydrogen peroxide was cited in four letters \(18, 20, 28, 33\), three in vitro studies \(7, 25, 31\), two reviews \(17, 24\) and two other study designs \(30, 32\). The use of ultraviolet irradiation vaporized hydrogen peroxide was cited in five letters \(9, 20, 26, 28, 29\), two in vitro studies \(7, 21\), two reviews \(17, 24\) and two other study designs \(30, 32\).

Vaporized hydrogen peroxide

Three studies reported the process for N95 decontamination with vaporized hydrogen peroxide. Schwartz et al. 2020 described the process implemented in the Duke University (US) and demonstrated that vaporized hydrogen peroxide is an efficacious decontamination method that does not cause physical or performance degradation of the masks \(33\).

Perkins et al. 2020 presented the process implemented in the University of New Mexico (US) and reported on the low toxicity of the methods. The authors highlighted the importance of physical assessment of the mask after decontamination \(31\).

Grossman et al. 2020 described the decontamination using vaporized hydroperoxide employed by Washington University (US). They demonstrated that the entire process requires less than 24 hours and showed that it is important to create a workflow to achieve an effective decontamination considering pre-processing steps, decontamination process and, post-processing steps \(25\).

Further studies evaluated that strategy combined with others or discussed its availability and feasibility. Cadnum et al. 2020 performed an in vitro study and compared the use of a high-level decontamination cabinet that generates aerosolized
peracetic acid and hydrogen peroxide with Ultraviolet-C light and dry heat at 70°C for 30 minutes. They demonstrated that aerosolized peracetic acid and hydrogen peroxide are effective for decontamination of N957.

Kobayashi et al. 2020 assessed the authority recommendations in the Netherlands, the states governments in the US, and the European Commission Directorate-General for Health and Consumers as well as the European Medicines Agency on the use of vaporous hydrogen peroxide. They found that while this method seems to lead to acceptable decontamination while retaining mask integrity according to visual inspection, this type of decontamination is not available throughout all countries and institutions and currently no standard for its application exists28.

Garcia-Godoy et al. 2020 and Rowan et al. 2020 discussed that the use of vaporous hydrogen peroxide seems to be one of the most promising method for N95 decontamination24, 32.

Ultraviolet C light

Hamzanzi et al., 2020 presented a prototype model for N95 decontamination using Ultraviolet germicidal irradiation that would allow decontamination of 18 to 27 masks in one process26.

Kobayashi et al. 2020 assessed the authority recommendations on the use of Ultraviolet germicidal irradiation and found that while this method is promising, it has not been standardized by any of the authorities so far28.

Cadnum et al. 2020 demonstrated that the use of Ultraviolet C could reduce N95 contamination, but efficacy varied with different masks types and locations on the respirator7.
Vo et al. 2009 showed that high doses of Ultraviolet irradiation (>7.20 J/cm²; UV intensity, 0.4 mW/cm²; contact times, >5 h) could inactivate virus loaded in N95 masks.

Garcia-Godoy et al. 2020 discussed that the Ultraviolet germicidal irradiation seems to be one of the most promising method for N95 decontamination.

Narla et al. 2020 highlighted that is necessary at least 1 J/cm² to all surfaces to ensure N95 decontamination. However, the authors emphasized that Ultraviolet decontamination has limitations, mainly as each type of mask needs a specific dosage of irradiation to be reliably effective.

Other methods

Carillo et al. 2020 indicated that immediate use steam sterilization is an applicable decontamination method.

Li et al. 2020 demonstrated that steam treatment using a rice cooker-steamer is effective for decontamination of N95 masks.

Vo et al 2009, showed that treatment with sodium hypochlorite was an effective decontamination method.

Ma et al. 2020 demonstrated that steam decontamination could be used as a decontamination of N95 masks.

Kampf et al. 2020 showed that a thermal decontamination at 60°C for 30 min, 65°C for 15 min and 80°C for 1 min was effective to reduce coronavirus infectivity.

Discussion

This is the first study to map the evidence about the effectiveness of decontamination strategies of N95 masks against coronavirus. Our results demonstrate that there is a lack of evidence and consensus related to the best method of N95 masks decontamination. However, the use of vaporized hydrogen peroxide and ultraviolet
irradiation were the regimens most cited and seem to be the most promising methods for N95 masks decontamination.

Hydrogen peroxide vapor decontamination is a common method used in different fields and facilities, including scientific, pharmaceutical, and medical ones. The method has low toxicity and uses the catalytic reduction of peroxide to oxygen and water35. However, it needs a specific room and equipment to achieve an effective decontamination and, hence, is rather expensive. Ultraviolet irradiation is a method of decontamination using Ultraviolet light to inactivate microorganisms through DNA damage and jeopardizing cell functions36. The use of this decontamination method has limitations due different mask needing different irradiation dosages; high dosage in turn could result in high toxicity and structural damage of the mask. Moreover, it also needs specific equipment, limiting its availability.

Ideally, any decontamination method should eliminate all pathogens; maintain mask integrity and filter capacity; at low toxicity and costs. Until a method does not fulfill these criteria, the extended use of masks seems to be a good and low-cost approach to overcome the discussed limitations in availability. Current recommendations consider mask wearing periods between 4 and 40 hours28. Notably, additional protection such as use of face shield and strict adherence to hand hygiene practices are needed, especially if extending mask wearing periods37.

Outcomes such as mechanical integrity and performance of N95 masks should be observed when assessing decontamination strategies of N95 masks, as decontamination may come at a price; decontaminated but not effective masks are not useful or even dangerous. Ozog et al., 2020 indicated that a fit testing must be performed after decontamination and if a decontamination is achieved but the masks lost their integrity, further usage should be stopped20. Hence, both integrity and
performance should be prioritized when implementing decontamination strategies, while not all included studies concomitantly tested decontamination and subsequent performance of the mask.

Our study presents some limitations. First, because this was a scoping review, we did not conduct a risk of bias/quality assessment of the included studies. Second, we included only studies in English. Third, the included studies present different designs and protocols, making it difficult to compare the results specially because many brands of N95 are available on the market, different regimens were tested and individual scenarios of wearers (such as, influence of as cosmetics or sunscreens use for Ultraviolet decontamination) are difficult to test. Finally, we included article discussing decontamination methods based on opinions over evidences making it difficult better conclusions and recommendations.

Considering that the global pandemic accelerates its spread at present, and taking into account the shortage of protective equipment, especially for healthcare workers, more investigations for safely decontaminating N95 masks are needed. Also, the availability and cost-effectiveness of decontamination should be considered by future studies.

Conclusion

The evidence towards decontamination strategies of N95 masks against coronavirus remains scarce. Vaporized hydrogen peroxide and ultraviolet irradiation seem the current standard for N95 masks decontamination.
Transparency declaration

Conflict of interest

The authors deny any conflicts of interest related to this study.

Funding: The authors thank the funding from FAPERGS PRONEX (16.0471-4) and CAPES Print UFPel. This study was conducted in a Graduate Program supported by CAPES, Brazil (Finance Code 001).

Acknowledgments

RSO is funded in part by Meridional Foundation (Passo Fundo, Brazil) and LD is funded by Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil). RCB is funded by National Council for Scientific and Technological Development (CNPQ, Brazil) and FFD is funded in part by National Council for Scientific and Technological Development (CNPQ, Brazil).

Contribution:

RSO - Conceptualization, Methodology, Investigation, Project administration, Supervision, Writing-original draft.
RCB - Data curation, Investigation, Writing – Review & Editing
GD - Data curation, Investigation, Writing – Review & Editing
LD - Data curation, Investigation, Writing – Review & Editing
FS - Methodology, Validation, Writing-review & editing.
FFD - Conceptualization, Methodology, Project Administration, Writing – Review & Editing, Funding acquisition.

REFERENCES

34. Prakash A, Rao HB, Nair P, Talwar S, Kumar VA, Talwar D. Sterilization of N95 respirators: The time for action is upon us! Lung India. 2020;37(3):260-2. Epub 2020/05/06.

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Study design</th>
<th>Objective</th>
<th>Decontamination regimens tested or discussed</th>
<th>Organisms tested or discussed</th>
<th>Method of evaluation</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boskoski et al., 2020</td>
<td>Review</td>
<td>The aim of this review was to summarize the protective efficacy of masks and respirators in preventing the spread of respiratory infections and to propose a proper biological decontamination process to take into consideration respirators reuse.</td>
<td>Autoclave, 160°C dry heat, 70% isopropyl alcohol, soap and water, ultraviolet germicidal irradiation (UVGI), ethylene oxide (EtO), vaporized hydrogen peroxide (VHP), microwave oven irradiation and bleach</td>
<td>H5N1 influenza virus, SARS-CoV and H1N1 influenza -</td>
<td></td>
<td>The study suggests that the UVGI method proved to be a valid alternative to decontaminate N95 respirators, but it requires careful consideration of the type of respirator and of the biological target.</td>
</tr>
<tr>
<td>Cadnum et al., 2020</td>
<td>In vitro</td>
<td>The goal of the current study was to examine the effectiveness of UV-C light and a high-level disinfection cabinet on the decontamination of N95 respirators.</td>
<td>Ultraviolet-C Light, Multi-purpose high-level disinfection cabinet that generates aerosolized peracetic acid and dry heat</td>
<td>Bacteriophages MS2, Bacteriophages Phi6, BacteriophagesPhi X174, Acinetobacter baumanii, Vancomycin-resistant Enterococcus faecium, NDM1-producing Klebsiella pneumoniae, MRSA, Escherichia coli, candida auris, Candida albicans, Clostridioides difficile, Bacillus subtilis</td>
<td></td>
<td>The study found that UV-C reduced contamination of N95 respirators with Phi6 and MS2 bacteriophages and MRSA. However, efficacy varied with different respirator types and with different locations on the respirator. A high-level disinfection cabinet using submicron droplets of aerosolized peracetic acid and hydrogen peroxide was substantially more effective for decontamination of N95 respirators and with 3 consecutive cycles or a single extended cycle achieved >6-log10 reductions meeting criteria for disinfection.</td>
</tr>
<tr>
<td>Carrillo et al., 2020</td>
<td>Letter</td>
<td>Letter reporting an in vitro study assessing the use of Immediate-use steam sterilization for decontamination of N95 respirators.</td>
<td>Immediate-use steam sterilization (IUSS), using a Steris Amsco Evolution HC1500 PreVac Steam Sterilizer autoclave</td>
<td>It was tested sterilization and it was not tested specific organism</td>
<td>TSI PortaCount Respirator Fit Tester</td>
<td>“The data of this study provides a valid base for the use of the IUSS method for decontamination of N95 masks to prevent the spread of the virus SARS-CoV-2 to health care workers.”</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cheng et al., 2020</td>
<td>Letter</td>
<td>Letter reporting an in vitro study assessing the use of Ionized H2O2 for decontamination of N95 respirators.</td>
<td>Ionized H2O2 (iHP)</td>
<td>H1N1 (enveloped RNA virus that has similar virological characteristics as coronaviruses)</td>
<td>The virus was eluted from N95 respirators for viral culture in MDCK cells. Cytopathic changes of MDCK cells were observed daily for 7 days by light microscopy and the samples were subcultured again on MDCK cells for a further seven days. It was preformed immunofluorescence staining to detect influenza A antigen.</td>
<td>“This experiment showed that iHP can kill influenza A virus at moderate to high levels of inoculum. And the level of H2O2 on the inner surface of N95 respirators was 0.6 ppm (below the safety limit of <1 ppm) at 2 h and undetectable at 3 h. The speed of H2O2 release from N95 respirators may be variable and affected by the air current.”</td>
</tr>
<tr>
<td>Garcia-Godoy et al., 2020</td>
<td>Review</td>
<td>The purpose of the scoping review is to compile existing evidence on the use and efficacy of medical grade and alternative forms of facial protection for healthcare workers amidst the growing global shortage.</td>
<td>Ultraviolet germicidal irradiation (UVGI), Microwave irradiation, microwave-generated steam, moist heat, bleach, hydrogen peroxide gas plasma, autoclave, 160°C dry heat, 70% isopropyl alcohol, soaking in soap and water</td>
<td>SARS-CoV-1</td>
<td>-</td>
<td>“The study shows that overall, strategies involving the use of UVGI, ethylene oxide, dry oven heating and hydrogen peroxide may be most promising for preservation of mask function and integrity. Decontamination with UVGI, moist heat incubation and microwave-generated steam does not appear to significantly affect N95 respirator fit or comfort. Until application of these methods has been adequately investigated in the hospital setting, their safety and effectiveness in the particular context of the SARS-CoV-2 outbreak is unknown.”</td>
</tr>
</tbody>
</table>
| Grossman et al., 2020 | In vitro | The objective of the study was to examine the feasibility of vaporizing hydrogen peroxide for N95 respirator disinfection. The study showed that a reproducible and scalable process for implementing N95 respirator disinfection within a large academic hospital and healthcare system is achievable through multidisciplinary collaboration and rapid adaptation in the setting of the COVID-19 pandemic and critical N95 respirator shortages.

| Hamzavi et al., 2020 | Letter | Proposed the use of phototherapy devices, including these UVB units, to serve as a platform for UVGI, a possible repurposing of phototherapy devices to serve as a platform for UVC germicidal irradiation. The study shows that a reproducible and scalable process for implementing N95 respirator disinfection within a large academic hospital and healthcare system is achievable through multidisciplinary collaboration and rapid adaptation in the setting of the COVID-19 pandemic and critical N95 respirator shortages.

| | | N95 respirators used by healthcare workers were vaporized with hydrogen peroxide vaporized in a closed chamber. After each disinfection cycle, biologic indicators were transferred to commercially available trypticase soy broth (TSB) with a color indicator (Mesa Labs and Steris) and incubated at 56°C for at least 24 hours. A negative result indicated a successful disinfection cycle.

| | | Ultraviolet germicidal irradiation (UVGI) and repurposing phototherapy devices could be the best practical solution at this time.

| | | The use of UVGI and repurposing phototherapy devices could be the best practical solution at this time.
<p>| Kampf et al., 2020 | Review | Published data were reviewed to find out which temperature and exposure time is necessary for inactivation of coronaviruses. | Thermal disinfection (various temperatures) | SARS-CoV | - | - | “Overall a thermal disinfection at 60°C for 30 min, 65°C for 15 min and 80°C for 1 min was effective to strongly reduce coronavirus infectivity. Data do not allow to evaluate if the function of a face mask remains unchanged after heat treatment. If thermal disinfection is used for the re-use of masks all institutions should evaluate the effect on their own masks in use, as different brands of masks and different specifications (e.g. with or without cellulose) will react individually towards a combination of time and heat. Easy test to do are “fitting” and “water-resistance”. In addition, the numbers of re-uses should be traced (mark at the side of mask per cycle) and its effects examined.” |
| Kobayashi et al., 2020 | Letter | Letter showing an overview of national regulatory authority recommendations. | Dry heat in a drying cabinet at 65–70°C (Germany); vaporous hydrogen peroxide (Netherlands, Europe, and the United States); ultraviolet germicidal irradiation and moist heat (Europe and the United States) | - | - | - | “The Ministry of Labor and Social Affairs of Germany described the recommended decontamination method for N95 respirators in detail (ie, dry heat at 65–70°C in a drying cabinet for 30 minutes). On the other hand, up to 60% of the screened countries did not report any recommendations for extended use or reuse or decontamination of N95 respirators.” |</p>
<table>
<thead>
<tr>
<th>Authors, Year</th>
<th>Study Type</th>
<th>Study Description</th>
<th>Decontamination Method</th>
<th>Pathogen</th>
<th>Assay</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li et al., 2020</td>
<td>Letter</td>
<td>Letter discussing an in vitro study that tested Rice Cooker-Steamer for Decontamination of Cloth and Surgical Face Masks and N95 Respirators.</td>
<td>Ultraviolet light treatment, hydrogen peroxide vapor, moist or dry heat, steam treatment via rice cooker steam</td>
<td>Clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA) and the nonenveloped, single-stranded RNA virus bacteriophage MS2</td>
<td>Unclear</td>
<td>“The results of the study demonstrate that steam treatment using a rice cooker-steamer is effective for decontamination of face masks and N95 respirators. Investigations of moist heat are also needed as 20 minutes of exposure to moist heat at 65°C has been reported to be effective with minimal adverse effects on respirator performance.”</td>
</tr>
<tr>
<td>Ma et al., 2020</td>
<td>In vitro</td>
<td>The study verified a simple decontamination measure suitable to most people for reuse of MMIs and N95Ms.</td>
<td>Steam on boiling water</td>
<td>Avian coronavirus of infectious bronchitis virus H120</td>
<td>Vaccine strain of avian infectious bronchitis virus H120</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Narla et al., 2020</td>
<td>Letter</td>
<td>Letter discussing the importance of the minimum dosage necessary for UVC decontamination of N95 respirators during the COVID-19 pandemic.</td>
<td>Ultraviolet C (UVC)</td>
<td>influenza A (H1N1), avian influenza A virus (H5N1), influenza A (H7N9) A/Anhui/1/2013, influenza A (H7N9) A/Shanghai/1/2013SARS-CoV-2, SARS-CoV and MERS-CoV</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
| Authors | Year | Type of Publication
|---------|------|-------------------|
| Nogee and Tomassoni, 2020 | Others | Authors propose investigating the use of ultraviolet germicidal irradiation (UVGI) to sterilize masks of SARS-CoV-2 for safer reuse.
| Ultrasound germicidal irradiation (UVGI), ethylene oxide and vaporized hydrogen peroxide | Influenza virus, SARS-CoV-2 and SARS-CoV | - | - | “The study observes that although further work will be needed to determine dosages of UVGI to effectively sterilize SARS-CoV-2 contaminated FFRs, UVGI provides a potential avenue for greatly extending the limited FFR supply in the face of the ongoing COVID-19 pandemic in a simple, cost-effective, and rapidly deployable manner. Hospitals and healthcare facilities should consider immediate implementation of collection programs for used FFRs in anticipation of near-future sterilization and reuse programs.”

| Ozog et al., 2020 | Letter | Letter discussing the Importance of Fit-Testing in Decontamination of N95 1 Respirators
<p>| Ultraviolet germicidal irradiation (UVGI), hydrogen peroxide vaporization, microwave generated steaming and dry heating | The study discussed about fit-testing performance collected for the different respirator models treated with UVGI. | - | - | “The data of this study strongly indicates that to protect the safety of the N95 respirator user, fit-testing after decontamination must be done each time a new model is introduced to a healthcare system. This has significant safety implications as varied decontamination methods are being used by different institutions.” |
| Perkins et al., 2020 | In vitro | Describe the development of a process that began in late February 2020 for selecting and implementing the use of hydrogen peroxide vapor (HPV) as viable method to reprocess N95 respirators | Hydrogen peroxide vapor (HPV) | N95 filtering facepiece respirators used by healthcare personnel | Culture and visual inspection | “The data of the study presented in this article are meant to serve as an information sharing tool for other institutions who may wish to set up such processes, particularly for those who do not already have specific HPV chambers already in place. The two most important lessons learned from our experience are: (1) develop an adequate reserve of PPE for efficiently implementing the reprocessing workflow and (2) locate a suitable environment for the HPV decontamination procedure, such as an operating room, which has the pre-existing conditions required for conducting the HPV decontamination process.” |
| Prakash et al., 2020 | Others | The article proposed the validation and eventual use of gamma irradiation, to disinfect FFRs in bulk. | Gamma irradiation | H1N1 influenza, MS2 virus and SARS-CoV-2 | SARS-CoV-2 | - | “The data on re-sterilization strategies are scarce and do not address major concerns that allow for mass application. It needs to be stressed, in no uncertain terms, that sterilization techniques, such as gamma irradiation in this context need validation, which if performed on a war footing, may just be of vital importance in these times.” |
| Rowan and Laffey, 2020 | Others | Article discussed concern regarding the shortage in supply chain of critical one-time-use personal and protective equipment. | Vaporised hydrogen peroxide, UV irradiation and High-level liquid disinfection (Actichlor+), | - | - | - | “The article observes that the best evidence suggests that preferred candidates for meeting this gap appears to be use of vaporised hydrogen peroxide (VHP) and UV irradiation technologies.” |</p>
<table>
<thead>
<tr>
<th>Ethylene oxide (Eto) and pulsed UV technology (PUV)</th>
<th>Schwartz et al., 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decontamination and reuse of N95 Respirators with Hydrogen Peroxide Vapor (HPV)</td>
<td>Authors shared processes of decontamination and reuse of N95 Respirators with Hydrogen Peroxide Vapor (HPV)</td>
</tr>
</tbody>
</table>

The study talks about a quality assurance (QA) step, after complete aeration, to ensure both qualitative and quantitative degradation has not occurred, ensuring that there was no physical or performance degradation. Also, a standardized quantitative fit testing was performed to ensure the integrity of the respirators is maintained over many decontamination cycles. In addition, we validated the efficacy of the decontamination process by using 9 individual 6-log biological indicators (Geobacillus stearothermophilus spores).

"Using hydrogen peroxide vapor is a proven method of decontamination. Authors believe that decontamination with hydrogen peroxide vapor is one such solution that affords us better ability to protect our health care workers as we continue to tackle the monumental issue."
The aim of the present study was to develop a test system to evaluate the effectiveness of procedures for decontamination of respirators contaminated with viral droplets. Sodium hypochlorite and UV irradiation were used as decontamination methods. The study aimed to analyze the efficacy of decontamination (ED) for MS2 of sodium hypochlorite decontamination, where the number of viable MS2 phage was determined by a plaque assay, was calculated by determining the log reduction as follows: ED log (N°/N), where N° is the mean number of viable MS2 phage applied to the control coupons and N is the number of viable MS2 phage recovered from test coupons after decontamination. The efficacy of UV decontamination for viable MS2 was calculated as described for the efficacy of sodium hypochlorite decontamination.

The results demonstrated that the size range of the droplets was 0.5 to 15 μm and that the majority of the droplet particles were between 0.74 and 3.5 μm in diameter. Treatment with sodium hypochlorite (bleach) was an efficient chemical decontamination method for MS2 virus loaded onto FFRs. Treatment with low sodium hypochlorite doses (2.75 to 5.50 mg/liter) resulted in approximately 3- to 4-log reductions in the levels of MS2 coliphage, while treatment with higher sodium hypochlorite doses (8.25 mg/liter) resulted in no detectable MS2 virus. UV irradiation was also demonstrated to be an efficient physical decontamination treatment for MS2 virus. Treatment with low UV irradiation doses (4.32 to 5.76 J/cm²) resulted in 3.00- to 3.16-log reductions in the levels of MS2 coliphage, while treatment with higher UV irradiation doses (7.20 J/cm²) resulted in no detectable MS2 virus.
Figure Captions

Figure 1: Flowchart of identification, screening, and assessing studies for inclusion eligibility