Ward-Level Factors Associated with Methicillin-Resistant *Staphylococcus aureus*

Acquisition – an Electronic Medical Records study in Singapore

Zaw Myo Tun*, Dale A Fisher2,3, Sharon Salmon4, Clarence C Tam1,5

1 Saw Swee Hock School of Public Health, National University of Singapore, Singapore
2 Division of Infectious Diseases, National University Hospital, Singapore
3 Yong Loo Lin School of Medicine, National University of Singapore
4 UNSW Medicine, University of New South Wales, Australia
5 London School of Hygiene and Tropical Medicine, United Kingdom

Word count: 2997

* Corresponding author:
Saw Swee Hock School of Public Health
National University of Singapore
Tahir Foundation Building (MD1)
12 Science Drive 2, Singapore 117549
Abstract

Background
Methicillin-Resistant *Staphylococcus aureus* (MRSA) is endemic in hospitals worldwide. When patients are transferred between wards within a hospital, their risk of acquiring MRSA may change. Studies investigating such association are rare. In this study, we assessed how wards are connected and investigated ward characteristics associated with MRSA acquisition.

Methods
We analysed electronic medical records from an acute-care tertiary hospital in Singapore using data of patient transfers and MRSA screening of hospitalized patients between 2010 and 2013. In multivariable analysis, we used mixed-effects Poisson models with wards and time as random intercept and random slope, respectively.

Results
Most patient transfers concentrated in a core network of wards that sustained over time. Overall MRSA acquisition rate declined over study period. Factors associated with MRSA acquisition were ward specialty other than surgical, orthopedics, and oncology (rate ratio (RR): 1.69, 95% CI: 1.28, 2.21) (compared to medical ward), MRSA admission prevalence (RR: 1.48, 95% CI: 1.28, 1.71, per one percentage point increase), presence of cohorting beds (RR: 1.81, 95% CI: 1.45, 2.27), critical-care ward (RR: 1.85, 95% CI: 1.21, 2.84) and average number of patients on a typical day (RR: 1.58, 95% CI: 1.24, 2.00, for every 10 patients quarterly). We did not find evidence that ward connectivity influenced MRSA acquisition rate after adjusting for other ward characteristics.

Conclusion
Our findings highlighted ward characteristics associated with MRSA acquisition. Linked with analytics infrastructure, similar methods could be used to understand the transmission of other nosocomial organisms to inform infection control efforts in real time.
Introduction

First emerged in 1960s, MRSA has become an endemic hospital infection worldwide, causing significant clinical and financial burden [1, 2]. According to the 2014 Antimicrobial Resistance Report of the World Health Organization, MRSA exceeded 20% of isolates of S. aureus bloodstream infections, with some countries reporting greater than 80% [3]. The incidence of hospital-onset MRSA bloodstream infection (BSI) in the United States (US) was estimated at approximately 3 cases per 100,000 population in 2017. The incidence has declined since 2005 but the decline has slowed down considerably since 2013 [4].

MRSA is a major nosocomial pathogen in Singapore hospitals. In 2006, a study based on a laboratory-based surveillance programme data showed that MRSA was found in as many as 35% of clinical isolates from six major public hospitals [5]. In the following years, a multi-pronged MRSA control strategy was implemented in acute care public hospitals in Singapore, coordinated by the Ministry of Health [6-8]. These activities were associated with a reduction in hospitalised MRSA infections including bacteremias [6].

MRSA colonization is a major risk factor for the invasive disease. In a case-control study, Win and colleagues documented MRSA acquisition rate of 4.8% in three selected infectious disease and dermatology wards of an acute care hospital in 2009 and 2010 [8]. In 2014, Chow and colleagues noted that 11.8% of randomly selected patients hospitalized in a large tertiary hospital were colonized by MRSA [9].

Numerous studies have identified factors associated with MRSA acquisition among hospitalized patients. These include patient factors: older age [10], previous hospitalization [10, 11], ICU admission [12], chronic illness [13], exposure to other patients known to be colonized with MRSA [14-16], antibiotic use [11, 14], prolonged hospital stay [15, 17], and receiving medical procedures during hospitalization [11]. Other factors include infection control practices (such as hand hygiene compliance [6], cohorting [6], environmental decontamination [18], MRSA colonization status of healthcare staff [19]), and organizational factors (such as staff to patient ratio [20], bed occupancy rate [21], patient capacity of a ward [22]).

Variation between hospital functional units in terms of infection control practices and organizational factors means that the risk of acquiring MRSA experienced by a patient is likely to change if they were transferred from one ward to another within a hospital. Studies investigating intrahospital patient transfer are rare. A case-control study by Dziekan and colleagues documented the association between the number of ward transfers and MRSA acquisition [23]. Patient transfers can be considered as linkages connecting hospital wards as a
network. We hypothesize that greater ward connectivity may be associated with higher risk of MRSA acquisition. In this study, we used high-resolution electronic medical records of inpatient ward transfers from a large acute care hospital in Singapore, together with active MRSA admission screening data, to identify ward characteristics associated with MRSA acquisition.

**Methods**

**Data sources**

We analyzed historical data of hospitalized patients in NUH between January 2010 and December 2013. These data were obtained from three sources: (1) Patient Affordability Simulation System (PASS); (2) MRSA active surveillance culture data set; and (3) hand hygiene compliance data set.

*Patient Affordability Simulation System (PASS)*

PASS records hospital service use and cost information [24]. The study team was granted access to a static historical dataset of PASS including data of hospital admissions between 1st January 2010 and 31st December 2013. We extracted the following variables: ward number and the timestamps of admission, transfer and discharge, ward specialty, patients’ age.

*MRSA Active Surveillance Cultures*

Patients admitted to NUH are routinely screened for MRSA in selected wards by obtaining nasal, axillary, and groin (NAG) swabs at admission, transfer, and discharge. These samples are cultured on selective chromogenic agar. Swabbing is done either on the day of or one day before/after the admission or transfer. Swabs are also obtained on the day of or one day before discharge. The exceptions are patients hospitalized for <48 hours, those with a MRSA positive result in a previous hospitalization, and deceased patients. We extracted MRSA results and sample collection time for admissions between 1st January 2010 and 31st December 2013.

*Hand-hygiene Compliance*

Infection control liaison nurses perform random audits in 40 inpatient wards once a month. Twenty observations of healthcare staff hand hygiene activities are recorded clandestinely at any time of the day [25]. Hand hygiene compliance is defined as per WHO guidance: the number of hand hygiene activities performed as a percentage of the total number of hand hygiene opportunities [26]. We obtained the quarterly hand hygiene compliance data between 2010 and 2013.

*Data linkage*
A third-party analyst who was not a study team member linked these data sets using unique patient identifiers and anonymized them before providing access to the study team.

**Network Analysis**

We constructed a weighted directed network based on patient transfer data to understand how hospital wards are connected. The network comprised 64 nodes (inpatient wards) connected via edges (patient transfers). Edges connecting two wards were directed, with the origin being the ward from which patient transfers originated and the target being the ward patients were transferred to. Edges were also given weights corresponding to the number of patients transferred between two wards over a specific time period.

We hypothesized that wards with a greater degree of connectedness had higher MRSA acquisition rates. We measured the connectivity using two attributes: in-degree and weighted in-degree. In-degree was defined as the number of other wards from which the ward received at least one patient during a specified period; weighted in-degree was defined as the total volume of patients that a ward received during a specified period. We constructed 16 quarterly networks from patient transfer data and computed ward attributes quarterly. Quarterly intervals were used because hand hygiene compliance data were available quarterly.

**Statistical Analyses**

We defined a hospitalization episode as the period between admission to and discharge from hospital. One hospitalization episode may contain one or more spells, defined as the period between entry into and exit from one hospital ward. Ward numbers were masked throughout the report.

*Estimating MRSA acquisition rate*

For each ward, we estimated the ward-specific MRSA acquisition rate, defined as the number of MRSA acquisitions per 100 patient-weeks. We computed patient-weeks at risk for each ward by summing the duration of the spells of the ward. Spells with a negative MRSA result were included. If a positive result was identified in a spell, subsequent spells in the same hospitalization episode were excluded.

In this analysis, we included 36 out of 64 inpatient wards; those in which MRSA screening was not routinely performed were not considered. The ineligible wards were obstetric, pediatric, psychiatric, acute stay wards, and other wards with a low screening rate (defined as <60% of patients screened at admission).
To estimate patient-weeks at risk in each ward, we excluded the following hospitalization episodes: (1) episodes with admission to an ineligible ward; (2) episodes with a positive or no screening result at admission; (3) episodes of patients younger than 15 (pediatric patients are not routinely screened for MRSA); (4) episodes with a negative MRSA result at admission but no subsequent MRSA screening results. Among the hospitalization episodes included in the analysis, spells of the ineligible wards were not considered in computing patient-weeks at risk.

**Statistical Modelling**

We used mixed-effects Poisson regression to identify ward-level factors associated with MRSA acquisition. The outcome was the total number of MRSA acquisitions in a specific ward in each quarter. The natural logarithm of the total patient-weeks at risk was used as an offset. We modelled wards as a random intercept and time (in quarters) as a random slope to account for ward-level variability in MRSA acquisition rates and their trends, respectively.

We studied 10 explanatory variables. Time-varying variables included quarterly measures of ward connectedness (in-degree, weighted in-degree), number of patients in a ward on a typical day, MRSA admission prevalence, length of stay (LOS), and hand hygiene compliance. Time-invariant variables were critical care ward (i.e. intensive care and high dependency units), ward specialty (medical, surgical, orthopedics, oncology, and other), and presence of the cohorting beds for MRSA-positive patients.

The number of patients in a ward on a typical day was the quarterly average number of patients registered in each ward on the middle day of each month. This was considered a proxy for patient capacity of a ward as data on its direct measure was unavailable. MRSA admission prevalence was measured using only the first hospitalization episode of patients admitted between 2010 and 2013. This is because, as per the MRSA screening protocol, no screening is performed in subsequent hospitalizations if a patient has been previously identified as MRSA positive. Including all hospitalization episodes would underestimate admission prevalence.

**Sensitivity Analyses for Missing Screening Results**

In 301 out of 2,435 (12.4%) MRSA-positive hospitalization episodes, screening results were missing in spells before the positive one. For these episodes, we could not determine the exact ward in which patients acquired MRSA. To assess the impact of these missing results, we conducted sensitivity analyses using five scenarios: (1) complete case analysis – we only included episodes with complete screening results for all hospitalization spells; (2) mid-point analysis – we assumed that MRSA acquisition occurred in the ward where the mid-point of last-known negative spell and the positive spell; in the next three scenarios, we probabilistically attributed the MRSA acquisition to spells with missing MRSA results (3) by random selection;
(4) by selecting randomly, using a probability weighted by the patient's length of stay in each ward with missing MRSA results [15, 17, 27-29]; and (5) by selecting randomly, using a selection probability weighted by both length of stay and MRSA admission prevalence of the ward [15, 27-29]. For scenarios 1 and 2, we obtained point estimates and confidence intervals from the multivariable regression model. For scenarios 3 to 5, we iterated the imputation and model fitting 10,000 times to obtain an empirical distribution of point estimates for each parameter. We took the median, 2.5th and 97.5th percentiles of these distributions as the point estimate, and lower and upper confidence bounds.

We considered scenario five as the main analysis as we deemed its assumptions to more realistically capture the uncertainty associated with missing MRSA results, compared to other scenarios. Analyses were carried out using R (version 3.5.2) [30]. Network analysis was performed using the igraph package [31] and mixed-effects models were fitted using the lme4 package [32].

Ethics review

Ethical exemption for this secondary data analysis was obtained from the National Healthcare Group Domain Specific Review Board (reference number: 2018/00890).

Results

A total of 71,666 out of 290,193 (25%) hospitalization episodes registered between January 2010 and December 2013 in PASS were eligible. Among them, a single transfer was observed in 11,371 (16%) episodes while more than one transfer was reported in 7,297 (10%) episodes.

From the MRSA Active Surveillance Cultures dataset, 252,526 (92%) screening results were successfully linked to PASS by mapping the sample collection time to corresponding patient transfer time.

Characteristics of Inpatient Wards

Among 36 eligible wards, 8 (22%) were critical care wards; 8 (22%) contained MRSA-cohorting beds. Median MRSA admission prevalence was 1.8% (range: 0, 4.7); median hand hygiene compliance was 70.4% (range: 61.8, 83.7). The quarterly number of unique sequences of transfer in a single hospitalization episode ranged from 1075 to 1361. Edges that exist in all quarters can be considered the core flows where most clinical activities happened. On average, these edges made up 47% (standard deviation (SD): 2.2) of quarterly patient transfers. The distribution of median in-degree and weighted in-degree is described in Table 1.
MRSA acquisition rates

MRSA acquisitions were identified in 2,435 out of 71,666 (3.4%) eligible hospitalization episodes (Figure 1). In the main analysis, the median overall acquisition rate was 3.3 acquisitions per 100 patient-weeks (95% confidence interval (CI): 3.2, 3.5). The hospital wards with the highest acquisition rates were in the following specialty: surgery, geriatric medicine, orthopedics, and cardiac. Quarterly overall MRSA acquisition rates are presented in Supplementary Figure 1.

Factors associated with Ward-Level MRSA Acquisition Rates

In the main analysis, we found that the following factors were associated with a higher MRSA acquisition rate: ward specialty other than surgical, orthopedics, and oncology (rate ratio (RR): 1.69, 95% CI: 1.28, 2.21) (compared to medical ward), MRSA admission prevalence (RR: 1.48, 95% CI: 1.28, 1.71, per one percentage point increase), presence of cohorting beds (RR: 1.81, 95% CI: 1.45, 2.27), critical care ward (RR: 1.85, 95% CI: 1.21, 2.84) and higher average number of patients on a typical day (RR: 1.58, 95% CI: 1.24, 2.00, for every 10 patients quarterly). MRSA acquisition rate obtained from 10,000 iterations in the main analysis did not show much variability (Supplementary Figure 1). In all sensitivity analyses, the direction of association for most parameters was consistent. (Figure 2)

Discussion

Using electronic medical records, we could comprehensively assess how hospital wards are connected through patient transfers and investigate characteristics of hospital wards associated with MRSA acquisition. Across four years, patient transfers were more common in a small number of hospital wards. The overall MRSA acquisition rate was 3.3 acquisitions per 100 patient-weeks with a decreasing trend from 2010 to 2013 supporting earlier data [6]. We did not find evidence that ward connectedness measures (i.e. in-degree and weighted in-degree) influenced MRSA acquisition rate after adjusting for other ward characteristics. Sensitivity analyses showed that the missing results among MRSA-positive episodes did not impact the study results in a meaningful way.

Our results showed that ward specialty other than surgical, orthopedics, and oncology was associated with higher MRSA acquisition rate (compared to medical ward). Ward specialty is partly an indicator for patients with different acquisition risks [33]. However, surgical, orthopedic and oncology wards also manage higher risk patients and are likely to implement screening and infection control measures more stringently and effectively [34].
Once identified as MRSA positive, patients should be allocated to the cohort beds as per the hospital's infection control protocol. In our analysis, we found that patients staying in the wards equipped with these beds are more likely to acquire MRSA. This suggests that patients allocated to these beds, despite existing infection control measures, are likely to contribute to the overall colonization pressure in the ward.

In our analysis, we defined ward connectedness based on in-degree (the number of other wards a focal ward receives patients from) and weighted in-degree (the number of patients a focal ward receives from other wards). We did not find evidence that these measures influenced ward-level MRSA acquisition after adjusting for other ward characteristics. It could be because in-degree and weighted in-degree do not adequately capture the total number of transfers experienced by individual patients. For instance, although a highly connected ward may have better infection control measures in place, individual patients from this ward with more transfers could still experience higher MRSA acquisition risk. A previous study noted that patients who experienced one or more transfers were more likely to acquire MRSA [23].

The median hand hygiene compliance in NUH was 70.4%, comparable to large tertiary hospitals in Hong Kong [35] and Taiwan [36] using similar monitoring protocols. We did not find an association between hand hygiene compliance and MRSA acquisition. This finding is consistent with a 2017 Cochrane review in which hand hygiene improvement as a component of multimodal interventions showed little or no reduction in hospital infection or colonization rates [37]. In addition, the temporal resolution of hand hygiene compliance data was coarse, as they are only available quarterly, and there was little variation between wards (Supplementary Figure 2). While the majority of healthcare staff may truly observe the hand hygiene measures, Hawthorne effect may play a role as previously recognized by Fisher and colleagues [6]: the staff member may behave desirably during the audit as the infection control nurse may not always be able to observe the hand hygiene activities in an obscure manner.

In line with previous studies [12, 33, 38], we found that critical care ward status was associated with MRSA acquisition. Notably, we observed a higher MRSA acquisition rate in critical care wards but the association was reversed after adjusting for average patient number on a typical day. This suggests that infection control measures were effectively implemented in these wards despite higher MRSA acquisition risk of patients.

We did not find evidence that median length of stay was associated with MRSA acquisition although it is a known important patient-level risk factor [15, 17, 27-29]. On the other hand, our finding that MRSA admission prevalence was associated with higher acquisition rate is consistent with previous studies [12, 15, 27].
Our study has several limitations. In our analysis, we could not adjust for ward staffing level [20, 39], and MRSA colonization status and compliance with contact precaution measures of healthcare staff [19, 40] as we did not have access to these data. Additionally, the current ward-level analysis cannot account for individual-level differences in MRSA acquisition risk, including age, gender, comorbidities, and use of out-patient services. More detailed individual-level analyses could investigate the interaction between individual and ward-level risk factors.

Nonetheless, the use of electronic medical records with detailed temporal information on patient transfers and MRSA acquisition within the hospital is a major strength of this analysis. Electronic medical records provide objective measures of patients’ transfers through hospital that do not rely on recall and self-report.

Conclusion

Our analysis demonstrates an efficient use of linked electronic medical records and infection control data to comprehensively study the complexity of intrahospital patient transfer patterns. Although we did not find evidence of the association of ward connectivity and MRSA acquisition, our findings highlighted other ward characteristics associated with MRSA acquisition rate. These findings point to a need for further investigation and strengthening MRSA control efforts. Similar methods could be used to understand the transmission dynamics of other nosocomial organisms. In addition, linked with other data analytics infrastructure, our approach can be potentially useful in informing hospital infection control efforts in real time.

Funding

No funding was received for this work.

Acknowledgement

The authors acknowledge Mark Salloway and Joanne Chee on their assistance in data retrieval.
References


Table 1. Characteristics and connectedness measures of eligible wards at the National University Hospital, Singapore in 2010-2013

<table>
<thead>
<tr>
<th>Time invariant variable</th>
<th>No. wards</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical care wards</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>Presence of MRSA designated beds</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>Ward specialty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>Surgical</td>
<td>10</td>
<td>28</td>
</tr>
<tr>
<td>Oncology</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>Orthopedics</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Other</td>
<td>8</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time varying variable*</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients in a ward on a typical day</td>
<td>21.8</td>
<td>2.7, 54.2</td>
</tr>
<tr>
<td>Length of stay (days)</td>
<td>3.3</td>
<td>2.6, 7.7</td>
</tr>
<tr>
<td>Admission prevalence of MRSA</td>
<td>1.8</td>
<td>0, 4.7</td>
</tr>
<tr>
<td>Hand hygiene compliance (%)</td>
<td>70.4</td>
<td>61.8, 83.7</td>
</tr>
<tr>
<td>Measure of ward connectedness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-degree</td>
<td>21.5</td>
<td>6, 30</td>
</tr>
<tr>
<td>Weighted in-degree</td>
<td>137</td>
<td>16, 410.5</td>
</tr>
</tbody>
</table>

MRSA, Methicillin-resistant *Staphylococcus aureus*

* Median of quarterly measurements was quantified for each ward. Median and range of these values from 36 eligible in-patient wards were presented.
All hospitalization episodes were assessed eligibility (n = 290,193)

Episodes with admission to an ineligible ward (n = 150,258)
- Ineligible wards include 3 obstetric wards, 2 psychiatry wards, 10 pediatric wards, 4 acute-stay wards, and 9 other wards with screening rate <60% at admission

Episodes with admission to 36 eligible wards (n = 139,935)

Episodes excluded (n = 27,102):
- Positive result at admission (n = 4,320)
- No screening at admission (n = 22,782)

Episodes with a MRSA negative screening result at admission (n = 112,833)

Episodes of patients younger than 15 years old excluded (n = 6)

Episodes of patients 15 years and older (n = 112,827)

Episodes with no subsequent screening after admission excluded (n = 41,161)

Remaining episodes (n = 71,666)

Episodes without transfer (n = 52,998)
- 1,397 MRSA acquisitions

Episodes with one transfer (n = 11,371)
- 589 MRSA acquisitions

Episodes with >1 transfer (n = 7,297)
- 449 MRSA acquisitions

Figure 1. Eligibility of hospitalization episodes from 2010 to 2013 in National University Hospital, Singapore
Figure 2. Five sensitivity analyses accounting for the impact of missing screening results in MRSA-positive hospitalization episodes. In our main analysis, spells with missing results in a hospitalization episode were assigned MRSA acquisition with a probability weighted by LOS and AP of these spells. Each panel describes rate ratio with corresponding 95% confidence interval of each term included in the multivariable models.

AP, Admission prevalence; LOS, Length of stay