DETECTION OF AUTOLOGOUS BLOOD DOPING

Christer Malm,1,2 Irene Granlund,2 Michael Hall,2 Pernilla Lindén,2 Magnus Ericsson,3,4 James I. Langridge,5 Lee A. Gethings,5 Chris Hughes,5 and Nelson Khoo2

1Section of Sports Medicine, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden. 2Pro Test Diagnostics AB, Umeå, Sweden. 3AFLD - Agence Française de Lutte contre le Dopage, Département des analyses, Châtenay-Malabry, France. 5Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden. 5Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, UK.

ABSTRACT

Objectives: Autologous blood transfusion (ABT) enhances athlete’s performance, is banned as doping by the World Anti-Doping Agency (WADA). Currently, there is no implemented detection method for ABT. Transfusion of one’s own, long-term cryopreserved red blood cells (cryo-RBC) immediately increases circulating RBC count, hemoglobin mass, blood volume and oxygen carrying capacity, resulting in enhanced physical performance. Functional viability of cryo-RBC are maintained for decades, but storage lesions lead to removal of damaged RBC from circulation days after transfusion, with remaining circulating cryo-RBC displaying normal half-life. Methods: The cytosolic RBC peptidome from 22 human subjects (12 men and 10 women) was analyzed by UHPLC-MS/MS before and after ABT with cryo-RBC. As a control group and for investigation of confounders, 14 elite athletes and 5 recreational subjects were sampled multiple times, also at high altitude. Results: Here we report alteration in the cytosolic peptidome of circulating RBC weeks after ABT, discriminating doped from non-doped human subjects. A valid discriminating multivariate model (OPLS-DA) based on <200 peptides was accomplished (R²/Q² = 0.88/0.59, P CV-ANOVA < 0.0001, ROC AUC = 0.97). Models did not show bias for sex, high altitude or elite endurance training and racing. Conclusion: Identified peptides with low intra- and inter-individual variation, and high multivariate model weight and probability scores, create a direct method for the detection of autologous blood doping.

Key words: endurance, performance, doping, proteomics

Correspondence to: Christer Malm christer.malm@umu.se

Word count: 3286
INTRODUCTION

Autologous blood transfusion (ABT) enhances the athlete’s performance,¹ and is viewed as doping, thus banned by the World Anti-Doping Agency (WADA); but with no implemented direct detection method,² it remains difficult to survey by sporting authorities. Because cold-stored (+1º to +4ºC) blood is viable for a maximum of 42 days,³ during which time the athlete’s physical performance is compromised from blood donation,⁴,⁵ and erythropoietin is readily detected;⁶ the blood doping method of choice for cheating athletes is transfusion of one’s own, long-term cryopreserved red blood cells (cryo-RBC). Upon transfusion, increases are immediately observed in circulating RBC count, hemoglobin mass,⁷ blood volume and oxygen carrying capacity,⁸ resulting in enhanced physical performance.¹,⁹,¹⁰ Cryo-RBC in storage maintain their function for more than a decade,¹¹,¹² but display storage lesions altering physical properties¹³,¹⁴ of both cytosolic¹⁵ and membrane¹⁶ proteins, leading to an expedited removal of damaged cryo-RBC from circulation 6 h to 48 h after transfusion.¹⁷ The remaining circulating cryo-RBC display normal half-life¹⁹ despite observable altered metabolic profiles²⁰ and irreversible cytosolic protein alterations, derived from the process of freezing and thawing.²¹

Today, indirect detection of ABT exist using the hematological module of the Athletes Biological Passport (ABP). The ABP uses longitudinal monitoring of standard hematological parameters to identify possible blood manipulations,²² and can be considered less effective than anticipated in detecting ABT.²³,²⁴ Also, the ABP is affected by exercise²⁵ as well as increased fluid intake.²⁶ Moreover, several tests claim to detect ABT via: immunological reactions,²⁷ hematological variables,²⁸ phthalate/metabolites²⁹ and CO rebreathing³⁰,³¹, but no test is implemented for doping detection.

A direct and valid detection method for ABT remains elusive and unavailable,¹,¹²,¹³ but must include intracellular biomarkers, as all cell-surface alterations, including storage-induced,³⁴ initiate rapid removal of cryo-RBC from circulation by spleen macrophages,¹⁸ thus circumventing the effectiveness of such markers for detection of ABT.

Proteomic and bioinformatic methodologies allows detection of sample differences in minutiae across subjects and chronology. We proposed that screening the cytosolic fraction of circulating RBC (RBCc) sampled before and after cryo-RBC transfusion, will provide markers specific to ABT. Subsequently, applying liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis will generate biomarkers (proteins and/or peptides), differentiating the two states of pre- and post-transfusion, defining Clean and Doped samples, respectively. In addition, identified biomarkers will be curated to remove those markers biased for sex, exercise, hypoxia and high-altitude exposure.

METHOD (APPENDIX 10)

SUBJECTS
Autologous blood transfusion of eight men (age 29; 24-36 years [mean; min-max]) and seven women (age 27; 23-38 years) with peak oxygen consumption (VO₂peak): Men (4.3; 3.2-5.0 L·min⁻¹/53; 33-59 mL·min⁻¹·kg⁻¹) and women (3.0; 2.4-3.6 L·min⁻¹/48; 45-56 mL·min⁻¹·kg⁻¹) with five recreational Control subjects sampled in parallel (Appendix 2, 3 & 9). Fourteen international level elite endurance athletes investigated confounders by resting blood samples at: Sea Level (<80 m), High Altitude Training (>1500 m), Hypoxic Tents (>10 h/day, 14 days, 3-4000 m) and in the Hypoxia group up to 28 days after a multisport race (700 km in 4.5 days reaching altitudes up to 4500 m, Appendix 2, 3 & 9).

TRANSFUSION

Women donated one (450 mL) and men two (900 mL) units of whole blood as described in detail previously. Whole blood was collected and glycerolized RBC stored at -80°C until transfusion.

SAMPLING

In total, participants (21 men and 15 women, Appendix 2, 3 & 9) gave 307 venous blood samples, where 85 were in a Doped state after cryo-RBC transfusion, 173 in a Clean state and 49 samples taken directly from the Blood Donation Bag (timeline for Transfusion indicated in Figure 1). Some samples were used multiple times (noted as Batch I, II and III in Tables and Appendices), resulting in 392 LC-MS/MS sample injections (Appendix 2, 3 & 9).

PREPARATION

Erythrocytes were lysed, the cytosol isolated and hemoglobin removed before determination of protein concentration. Pre-digest internal peptide standard was added before trypsin digestion. Clean-up of trypsin digest samples was performed by C18 and dried samples were stored at -80°C.

NANO-UPLC-MS/MS ANALYSIS

Internal retention time standards, pre-LC internal standard and TFA were added before injection using a nanoACQUITY UltraPerformance UPLC™ (Waters). Separated peptides were analyzed using a Synapt G2™ or G2Si™ (Waters). Initial data evaluation used the MassLynx™ software (Waters).

DATA PROCESSING AND ANALYSIS

Raw data processing, alignment, peptide identification, quantification (relative abundance) and comparative analysis were performed using Progenesis QI for Proteomics (Waters), Protein Lynx Global Server (Waters) and the open-source Skyline (https://skyline.ms). For peptide identification a curated human proteome database (Swiss-Prot) was used, acquired from Uniprot (www.uniprot.org).

STATISTICS

Mixed Model using Restricted Maximum Likelihood (REML) and multivariate analysis (MVA), with Principal Component Analysis (PCA), Orthogonal Projections of Latent Structures (OPLS), and its
discriminant analysis OPLS-DA36 were applied. Samples from blood donation (Clean) and after
transfusion (Doped), High Altitude Training, Hypoxic Tents and Elite Endurance Athletes created
MVA models (Appendix 5 & 9). Regression (R2) and prediction (Q2) were investigated, with valid R2
and Q2 set to > 0.60,35,37,38 in three datasets: Training (Men), Testing (Women) and Validation (Men
and Women) for Screening, Selection and Validation of Biomarkers (Appendix 5 & 9).

CONFOUNDERS
Data from two LC-MS/MS analyses which differed to the biomarker screening dataset (Appendix 6),
were used to create four OPLS-DA models investigating confounders. Appendix 7: 1) If peptides
separating fresh and cryo-stored RBCs could separate Clean from Doped subject 2) Bias for Elite
Endurance training and 3) Summary model (four Y -variables) of Clean, Doped, Elite Athletes and
High-Altitude Training. Appendix 8: Bias for High Altitude Training and Hypoxic Tents.

PATIENT AND PUBLIC INVOLVEMENT STATEMENT
Participants in the study were recruited locally. Each participant was given continuous feedback.
Lectures informed staff, participants and colleagues of the study objectives.

ETHICAL CONSIDERATIONS
The Ethics Board for Northern Sweden approved the study (DNr: Ö1-2009, 08-196M, 2011-408-
32M), and transfusions performed in a hospital clinical. Risks reviewed in Appendix 1. The study was
conducted in accordance with the WMA Declaration of Helsinki 2013. Data is encrypted and stored on
security protected servers.

RESULTS (EXTENSIVE MODELS IN APPENDIX 5 & 9).
Normal distribution of samples is visualized in a PCA model for Hematological (Figure 1A) and
Proteomic (Figure 1B) data.

HEMATOLOGY
Autologous blood transfusion changed hematological variables (Figure 1, Table 3, Appendix 3 and 4),
but with large individual variations, making regression analysis and prediction of samples to Clean
(Before blood donation) or Doped (after transfusion of cryo-RBC) unreliable (Figure 2 and 3,
Appendix 3 and 4). The visualized OPLS-DA analysis (Figure 3) indicate models with low R2 (<0.6)
and Q2 (<0.2) in the Summary of Fit plot, and sensitivity and specificity displayed in the ROC curve,
where AUC for Men = 0.97 and Women = 0.79. Selection for prediction by VIP Pred indicate
different variables of importance for men and women.

Interpretation: Hematological data can generate weak regression models with low predictive power,
even when used in combinations.
Multivariate data analysis (MVA) of quantified and identified peptides from circulating RBC cytosol created significant and cross-validated PCA and OPLS-DA models for regression and prediction of analyzed samples to Clean and Doped groups (Figures 3, Appendix 6). Separation of Clean and Doped samples by OPLS-DA analysis resulted in R^2 and $Q^2$$>$0.9 for men, and $R^2$$>$0.6 and $Q^2$$<$0.2 for women, displayed in the Summary of Fit plot. Sensitivity and specificity are displayed in the ROC curve, where AUC for Men = 1.00 and Women = 0.68. Selection for prediction by VIP Pred indicate different variables of importance for men and women.

Further results when screening for biomarkers are displayed in Figure 4, where data is divided into three sets; Training (Men), Testing (Women) and Validation (Men and Women). Because the RBC cytosolic fraction (Hb removed) of RBC (RBCc) had different peptidomic profile in men and women, R^2(cum) = 0.99/Q^2 = 0.92; $P <0.0001$, different biomarkers in each sex may be assumed. Models excluding sex-separating peptides were also investigated (Appendix 6).

Training (Men) the model pared down data to the 200 most important peptides, separating Clean from Doped both in PCA and OPLS-DA analysis, with high R^2/Q^2 of 0.90/0.79, cross-validated by 100 permutations and predicting 28/28 samples to the correct class. AUC = 0.96.

Testing (Women) of the model as accomplished by applying the 200 peptides from the Training model on a cohort of women, resulted in R^2/Q^2 of 1.00/0.52, cross-validated by 100 permutations and predicting 28/28 samples to the correct class. AUC = 0.92.

Validation (Men and Women) of selected peptides for prediction of Doping used both male and female subjects in combination, starting with the 200 peptides from men and removing peptides until an optimized model was achieved, containing 50 peptides, reaching, R^2/Q^2 of 0.88/0.59, cross-validated by 100 permutations and predicting 56/56 samples to the correct class. AUC = 0.97.

Ranking peptides by OPLS-DA loading scores suggests potential candidates for development of diagnostic tools applicable for the detection of autologous blood doping in humans (Figure 5). Merging hematological and peptidomic signature variables, demonstrate a lower loading impact of hematological variables, compared to peptides (Figure 5) in MVA modeling, supporting the previously demonstrated lack of predictive power using hematology (Figure 1, 2 and 3).
CONFIDENTERS

In vitro peptides quantified and identified from analysis of the cytosolic fraction of RBCs, harvested from transfusion bags before and after cryo-preservation, created significant and cross-validated OPLS-DA models for the two conditions (Bags, Figure 6). *In vitro* identified peptides did not create significant and cross-validated OPLS-DA models for venous blood samples taken before and after cryo-RBC transfusion (i.e. autologous blood doping, Blood Sample, Figure 6). *In vivo* peptides quantified and identified from analysis of RBCs taken by venous blood sampling in humans before and after cryo-RBC transfusion, created significant and cross-validated OPLS-DA models (Appendix 9/Table 6/Model 19). *In vivo* Doped peptides (top 200 from the OPLS-DA coefficients for Doped) also separated venous blood samples taken from individuals (Elite Athletes) trained at High Altitude, living in Hypoxic Tents and Elite Athlete sampled at sea level (Figure 6, Appendix 9/Table 6). In the Summary plot (Figure 6), samples from Doped do not overlap with other investigated cohorts.

Interpretation: Proteomic data can generate strong regression models with high predictive power, both for Men and Women, with no impact (bias) from investigated confounders.

DISCUSSION

Autologous blood doping with cryo-RBC is detected in human subjects by unlabeled, quantitative nano-UPLC-MS/MS. Comparing peptide patterns from RBCs separated Clean from Doped individuals using the multivariate discriminating method OPLS-DA ($R^2>0.90$, $Q^2>0.90$, $p<0.001$, $X<200$). Cross-validated models did not show bias for sex, strenuous physical exercise, hypoxia exposure and high-altitude training in elite athletes. In comparison, hematological variables alone failed to generate significant OPLS-DA models when analyzed in parallel blood samples. Investigations were executed using prospective case-control, cohort and cross-sectional study designs.

BIOMARKERS IN BIOLOGICAL MATRIXES

Biomarkers for any diagnostics must be reliable, sensitive, specific, and discriminative. In addition, validation must determine predictability of unknown samples to correct state (i.e. Clean or Doped). For practical implementation in anti-doping efforts to keep sports clean, aspects such as
available sample matrices, Doping Control Laboratory (DCL) facilities, transport systems and cost are also important considerations.

Red blood cells are closed systems, unable to synthesis protein and with a life cycle of approximately 120 days in adult humans. Once set in circulation, RBC undergo an ageing processes, with changing plasma membrane and external structures, making them susceptible to recognition and subsequent systemic removal by spleen macrophages. While homologous blood transfusion can be detected via surface antigens, the only current method to detect autologous blood transfusion is via Hb mass by CO-rebreathing. The WADA research initiative states that there is no unequivocal detection method for autologous blood doping, as CO is toxic it has no relevance in anti-doping control of healthy athletes who would be reluctant to have a toxic agent imposed on them repeatedly. Autologous blood doping with cryo-RBC is the preferred choice of cheating athletes, as RBC in cold storage (+4°C) has a known clinical safety limit of 42 days after donation, necessitating repeated blood donation, and subsequent decreased performance during the preparation phase for competition as the red blood cell population are regenerated to compensate for the loss. Cryo-RBC on the other hand, may be stored for decades.

Regardless of storage procedure, a fraction of all transfused RBCs is damaged and, just as aging RBC, removed from circulation not in 120 days but within 6 h to 48 h. Consequently, RBC with intact cell surface proteins, and remaining in circulation 48 h after transfusion, may be viewed as circulating time-stamps, containing bioinformation useful in the detection of ABT. The cryo-induced formation of ice crystals, permanently damaging cytosolic RBC proteins, serves as a probable, but not the only inducer of potential biomarkers – creating unique detectable peptide fragments after protein trypsinization. An additional advantage of using altered cytosolic biomarkers, compared to hematological variables, is that plasma volume changes will not influence analytical results.

The present series of studies follows a general procedure for biomarker discovery and validation, including establishing robust baseline values by repeated sample collection at rest in all investigated groups, transports and storage conditions and routine procedures in accredited, clinical laboratories. Current approaches with multiplexing orthogonal biomarkers into one assay increase robustness to confounders and inter-laboratory variations, while reducing analytical costs. The results are reliable, validated for several known possible confounders, have high specificity, sensitivity and discriminating power.

TRUE POSITIVES AND NEGATIVES

One unavoidable challenge when investigating ABT is the inclusion of true positives, vital for all statistical analysis and legal actions. As previously directly shown by us, argued by others and here again demonstrated (Figures 2 and 3) - hematological markers are indirect indicators of ABT, and will always be subject for interpretation (what are limits for normal intra-individual variation?) and
significant confounder (exercise, hydration, high altitude, diet, illness etc.) opening for cheating athletes to be legally dismissed from conviction. When investigating hematological intra- and inter-individual variations over time in Clean vs. Doped subjects, neither regression nor prediction models are reliable (Appendix 5). In the context of doping detection, median/range values from elite athletes\(^1\) can also stay within \(95\%\) CI (Figure 2 & Appendix 5). Also, when using cold stored RBC, detection of ABT by hematological measurements has shown low specificity and sensitivity\(^{31, 49, 50}\). Hematological variables changed with investigated confounders, even when more advanced statistical approaches are applied (Figure 1).

The present use of clean elite athletes for comparison is not often possible when validating biomarkers for doping, as athletes cannot serve as subjects. Using cohorts of elite athletes from routine sampling as controls adds uncertainty to any model, as their true state of Clean or Doped cannot be known. Elite athletes participating in this study volunteered to live for extended periods of time in hypoxic tents, before training and competing at high altitude. Knowing they would be tested for blood doping, it is highly unlikely doped athletes are included, also confirmed by the OPLS-DA analysis.

WINDOW OF DETECTION

Theoretically, transfusion of cryo-RBC can be detected for up to 120 days, if the youngest RBCs at time of donation could be identified after transfusion.\(^19\) Limits of Quantification (LOQ) with the presented method is still not fully investigated, but a few samples (\(N=14\)) taken four and five weeks after transfusion (Batch I) are below critical limits (99%) when analyzed by Hotelling’s \(T^2\) indicating that these samples are no different compared to samples taken one to three weeks after transfusion. Because cryo-induced peptide abundance diminish as RCBs are aged and removed, LOQ should be determined by target analysis methods. Determining LOQ will also be valuable for detection of micro-dosing with cryo-RBC, a practice likely to be used by cheating athletes to avoid detection.

ALTERNATIVE INTERPRETATIONS AND LIMITATIONS

An alternative biomarker selection procedure for Clean vs. Doped models could be to exclude the most important (highest OPLS-DA coefficient scores) peptides separating RBCc from Men and Women taken at rest (Clean). This approach may potentially remove peptides important for detecting reinfusion of only one unit cryo-RBC. Creating OPLS-DA models that include 5000 peptides which are most relevant for separating of Men and Women, then selecting the 200 peptides with the highest coefficient score for Doped, creates models for Clean vs. Doped, still biased for sex in the regression models, but without predictive power: Men vs. Women \(R^2 = 0.45\) and \(Q^2 = -1.55\), CV-ANOVA \(p = 1.00\). Data remaining after removing 5 000 peptides from the model of Men vs. Women, provides an OPLS-DA model for Clean vs. Doped using 200 peptides with \(R^2/Q^2 = 0.64/0.24\), CV-ANOVA \(p < 0.001\). Removing 10 000 peptides gives \(R^2/Q^2 = 0.79/0.38\), CV-ANOVA \(p < 0.001\). As discussed,
approaching the biomarker selection via a Training set consisting of Men (reinfused with two units RBC) resulted in stronger regression and prediction models (Figure 4). Alternatively, the models for sex investigate cryo-RBC reinfusion of one vs. two units. Data from the present study design cannot distinguish these two options.

Regardless, with the presented list of peptides (Appendix 6 & 9) ABT can be detected in both men and women, reinfused with either one or two units cryo-RBC for at least two weeks after reinfusion.

CONCLUSION

- Doping with ABT is directly detected by cryo-induced alterations in cytosolic RBC peptides, with high sensitivity and specificity in both men and women.
- Elite endurance training at low and high altitude did not significantly affect peptides discriminating Clean from Doped samples.
- Presented peptides can be used for direct detection of autologous blood doping using standard equipment available in Doping Control Laboratories.

FUTURE RESEARCH

The potential of selected peptides for labeling and direct detection of autologous blood doping by target analysis should be explored, with independent prospective case-control trials and cross-sectional studies, including inter- and intra-laboratory analytical variability. Larger, both-sex cohorts of clean and doped subjects, elite athletes and different ethnic groups need to be sampled for investigation of sensitivity, specificity, false positive and likelihood ratios.

ACKNOWLEDGEMENTS

Outstanding contributions were given by: The staff at Sunderby Hospital, Luleå for hosting the first series of blood transfusions, under the medical responsibility of Staffan Wikström. The staff at Winternet, Boden for performing all exercise testing and blood sample collection, especially Anna Tano-Nordin and Eva Edholm. The staff at Björknäs Health Center, Boden under guidance of Lillian Falk for organizing the first round of blood donations. The staff at Huddinge Blood Central, where Eva Trollin and Linda Larsson were responsible for blood cryopreservation, and head of unit Hans Gulliksson kindly supported the project. Blood donation, cryopreservation and transfusion, as well as blood sampling, has also been executed by the Center for Stem Cell Apheresis and Management at Huddinge University Hospital, where Emma Watz, Beatrice Asperval Diedrich and Peter Matha managed the study. Ogonna Obudulu for consultation on multivariate statistics. Gunnar Wingsle for technical support with LC-MS/MS, Raik Wagner and Johan Jakobsson for proof-reading and improving the manuscript. All participating subjects for enduring blood loss, exhaustive exercise and numerous trips to the labs.
CONTRIBUTORS

CM conceived the idea, received funding, developed the methodology and clinical study, performed statistical analysis and was lead writer. IG, MH, PL developed the methodology, prepared samples, executed LC-MS/MS analysis and data cleanup. JL, LG, CH developed the method and executed LC-MS/MS analysis. NK developed the methodology, designed experiments and improved data cleanup. All authors participated in writing and editing the final manuscript.

FUNDING

This work was funded by WADA: R07A1CM, 08C06CM and T13M04CM, VINNOVA; 2009-00462, 2013-05410, 2015-05299, 2018-0188, Centrum för Idrottsforskning; 2008 88/08 and Umeå Biotech Incubator. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

REFERENCES

12. MacLare G. Request for the extended storage of frozen red cells beyond 10 years to be considered for inclusion within UK Guidelines. 2016

42. Hult A. Towards a detailed understanding of the red blood cell storage lesion: and its consequences for in vivo survival following transfusion. Umeå University, 2015.

Hematology

Scores Scatterplot

Within Group Variation

Between Group Variation

Scores Scatterplot

Summary of Fit

Summary of Fit

ROC

Biomarker Selection

Peptidomics

Scores Scatterplot

Within Group Variation

Between Group Variation

Scores Scatterplot

Summary of Fit

Summary of Fit

ROC

Biomarker Selection
The diagram illustrates the application of PCA and OPLS-DA for classification tasks. It shows the variation between and within groups for data sets labeled as 'Train', 'Test', and 'Valid'. The left column depicts scatter plots with different markers for 'Clean Women', 'Clean Men', 'Doped Women', and 'Doped Men'. The right column presents bar charts and correlation plots, indicating classification performance and the number of predicted and true classes for each group. The legend includes details on the predicted and true classes, with '14' and '28' indicating the respective counts for each.