Impact of anxiety associated with COVID-19 on tinnitus

Li Xia¹, Gang He¹, Yong Feng¹, Xiaoxu Yu¹, Xiaolong Zhao¹, Zhengnong Chen², Shankai Yin², Jian Wang³*, Jiangang Fan¹*, Chuan Dong¹*

¹Department of Otolaryngology-Head and Neck Surgery, Sichuan Provincial People’s Hospital and Sichuan Academy of Medical Sciences, Chengdu, Sichuan, 610072, China.
²Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 200233, Shanghai.
³School of Communication Science and Disorders, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.

*Corresponding authors: Chuan Dong (dc1220@sina.com) and Jian Wang (jian.wang@dal.ca) and Jiangang Fan (entscfig@163.com)
Abstract

Background
We investigated how the anxiety associated with COVID-19 impacts the severity of tinnitus and the outcomes of tinnitus therapy.

Methods and Findings
A retrospective research design was used to compare the clinical characteristics of tinnitus between patients from March to April 2020 under pandemic pressure and those from the matching period in 2019. Tinnitus severity was evaluated using the Tinnitus Handicap Inventory (THI) questionnaire and the minimum masking level (MML) measure while anxiety was quantified using the Zung’s Self-rating Anxiety Scale (SAS). The assessments were repeated after a 2-month interval, in which sound therapy was applied to a subgroup of patients. In all, 94 and 70 cases were reported in the 2020 and 2019 groups, respectively. The effects of the pandemic on emotional status were evident from a higher incidence of anxiety and much higher SAS scores in the 2020 group. There was also an increase in the THI scores in the 2020 group, but the between-year difference was smaller than that of the SAS score. Moreover, there was no between-year difference in MML or the treatment effect, as measured via both THI and MML. Furthermore, the reduction in SAS score in the second assessment was significantly smaller in the 2020 group. However, a positive correlation between the initial SAS score and the improvement was seen within the 2020 group.

Conclusions
Anxiety increased greatly in tinnitus subjects due to the COVID-19 pandemic. However, this was not associated with an increase in tinnitus severity in 2020. Instead, there was no
between-year difference in the THI score or MML or in the improvement of either measure after treatment. The smaller improvement in SAS score and the positive correlation with the initial SAS score in the 2020 group suggests that the SAS score change in this group might largely be due to the natural relief of pressure as the pandemic decelerated in China. Therefore, the anxiety change induced by the COVID-19 pandemic is not likely to have a strong impact on tinnitus.
Introduction

The spread of coronavirus disease 2019 (COVID-19) has already reached pandemic proportions, affecting the majority of countries, areas, and territories across the world [1]. By the end of June 2020, over nine million people had tested positive for COVID-19 with the death toll increasing to more than 484,000 globally [2]. Decisive containment measures in China have reduced new cases and the spread of infection [3]. However, worries about the spread of the disease, living difficulties, and financial burden related to the pandemic are likely to have had negative psychosocial impacts on residents, as reported by many recent studies [4-6]. It would be reasonable, therefore, to expect an increase in the incidence of disorders that are associated with psychological issues.

Tinnitus is typically referred to as the perception of sound in the absence of an acoustic stimulus or that is only generated by structures in the ear, commonly described as ringing in one or both ears [7]. While the exact mechanisms of tinnitus remain unclear, many risk or promoting factors have been identified, including sensorineural hearing loss, vestibular schwannoma, ototoxic medications, and emotional stress [8]. Tinnitus has been linked to stress and related disorders in many previous studies. This link has been thoroughly reviewed, repeatedly, by different authors (e.g., [9-15]). The direction and causality of this link remain unclear, as pointed out in many previous studies, although individuals’ emotional states appear to be an important factor mediating the effects of tinnitus loudness on tinnitus-related distress [16-18]; anxiety, somatization, and in particular depression have also been identified as possible mediators of tinnitus-related distress [19-22].

The clinicians in our department noticed that the tinnitus patients seen since the
hospital was reopened after COVID-19 had more emotional complaints than before. We thought that this might be related to the various pressures experienced by the patients during the pandemic event and the lockdown. Therefore, the COVID-19 pandemic and lockdown might provide a good opportunity to investigate whether anxiety impacts tinnitus as a promoting or enhancing factor. The present study explored whether anxiety was increased by the COVID-19 pandemic in subjects with tinnitus, and if so whether this increase in anxiety affected the severity of tinnitus and the outcomes of tinnitus therapies.

Methods

Study Design

In this retrospective study, clinical data from outpatients visiting our department (the Hearing Center of Otolaryngology Department of the Sichuan Provincial People’s Hospital and Sichuan Academy of Medical Sciences, Chengdu, Sichuan, People’s Republic of China) were collected over the same periods, from March 1 to April 14, in both 2020 and 2019. This period in 2020 was the first 6 weeks of the reopening of our department to non-emergency visits after the nationwide lockdown for COVID-19 in China (from January 23 to February 29, 2020) that coincided with the deceleration phase of the pandemic and the resumption of economic activities. In this period, there were concerns about a resurgence of COVID-19 [23].

The same protocol was followed for the treatment of patients during both years. On the initial visit, after collecting their history, every patient received a comprehensive audiological and psychological assessment. After the assessment, they were treated with
one of three methods based on reported efficacy, financial cost, and the patient’s preference: sound therapy with educational counseling and relaxation therapy, sound amplification with educational counseling and relaxation therapy, or educational counseling and relaxation therapy only. Two months after the initial appointment, every participant was examined in a second assessment. Fig 1 shows a flowchart of the major procedures of this study. Although no procedure was experimental, we sought and received approval for the study from the Review Board of the Sichuan Provincial People’s Hospital and Sichuan Academy of Medical Sciences (permit number: 2020–355). This study was conducted according to the principles expressed in the Declaration of Helsinki [24].
Fig 1. Flowchart of the major procedures in this study. *numbers in parentheses are those of cases that were lost to the study. THI: tinnitus handicap inventory, SAS: Zung’s Self-Rating Anxiety Sale, ST: sound therapy, HA: hearing aid, EC: educational counseling.

Audiological Tests and Tinnitus Evaluation

The procedures for all tests were explained to the patients before they were
conducted. All patients were examined using monocular otoscopy to identify any sign of blockage or inflammation in ear canals or perforation in the tympanic membrane. Tympanometry was tested at the most common 226 Hz probe tone, using an AT235 impedance meter (Interacoustics, Assens, Denmark); the type of tympanogram was determined for each ear (with type A as normal). Those who were abnormal in those tests were not included in this study.

The hearing status was tested with pure-tone audiometry (AC40, Interacoustics) in a soundproofed room. The air conduction threshold was examined for frequencies ranging from 250 Hz to 8 kHz using TDH 39 headphones (Telephonics, NY, USA) and bone conduction hearing was examined from 500 Hz to 4 kHz using a B-72 bone-conduction vibrator (Radioear, PA, USA), each in octave steps. The hearing thresholds were determined at each frequency using the standard Hughson–Westlake up–down procedure. Thresholds of 20 dB HL or lower were considered normal. The minimum masking level (MML) was tested in each ear with tinnitus, this test evaluates the maskability of tinnitus by external sounds. Broadband noise with a flat power spectrum was used for this evaluation, which was generated by a table-top sound generator (BTD01, BetterLife Medical Technology Co., Ltd., Jiangsu, China). To measure the MML, the level of the noise was gradually increased by the tester in 1 dB steps until the patient stated that the tinnitus had become nearly inaudible: then this level was recorded as the MML.

Educational Counseling and Relaxation Therapy

The counseling was performed by the audiologists for each patient with tinnitus to acknowledge the patient’s suffering, and to help the patient understand tinnitus,
demystify the condition, and correct any false preconceptions (duration 0.5–1 h) [25].

Relaxation therapy consisted of home-based exercises, such as listening to music, avoiding unnecessary tension, and tai chi [26, 27]. Patients were advised to execute this for two sessions of 30 min per day over a period of 8 weeks.

Sound Therapy

The first step of the sound therapy was to identify the nature of the tinnitus in pitch and loudness. Pitch matching was conducted using the same sound generator (BTD01) as in the MML test to produce pure tones for tonal tinnitus or narrow-band noise for non-tonal tinnitus. The match was established by adjusting the central frequency and bandwidth, which could be changed from 100 Hz to 1 kHz, around the center frequency. In loudness matching, the matched tone or noise was presented continuously, and the level of the matching signal was adjusted from low to high until the tinnitus could hardly be heard. In this report, loudness matching results are presented in dB SL. Using the pitch and loudness matching data, a sound file was generated for each individual to produce a sound matching their tinnitus in frequency and level. This sound file was the uploaded to an ear level sound generator (BTM-N6, BetterLife Medical Technology Co., Ltd.) that was dispensed to the patient. The patients were instructed to listen to the sound file for 30 min each time, and to gradually increase from once to 3–6 times per day, every day, during the whole course of home-based therapy, which lasted for 2 months.

Questionnaires

The tinnitus patients recruited in this study all completed two questionnaires at the
initial visit and again during the follow-up, two months later. The Chinese version of the
Tinnitus Handicap Inventory (THI) questionnaire was used in this study [28], consisting
of 25 questions to assess the difficulty caused by tinnitus with respect to its functional,
emotional, and catastrophic aspects [29, 30].

A Chinese version of Zung’s Self-rating Anxiety Scale (SAS) questionnaire was used,
which was adapted from a previous report [31, 32]. The raw scores were multiplied by
1.25 to generate the index scores [32]. We used a value of 45 as the cut-off for anxiety,
instead of 50, as reported in the most recent publication [33].

Statistical Analyses

All parametric data are presented as mean ± standard deviation unless otherwise
specified. When the parameters of participants were compared between two groups, the t-
test was used or, if among multiple groups, analysis of variance (ANOVA) was used for
continuous variables and the chi-square test for categorical variables, including sex, age,
and site of tinnitus, and for risk factors among groups. Treatment outcomes were
evaluated by comparing the scores of THI and SAS before and after the treatments, using
a paired t-test or ANOVA. All analyses were performed using the SPSS 19.0.0 software at
a significance level of 0.05.

Results

A total of 99 cases were collected between March 1 and April 14, 2020 (this year),
and 76 in the same period in 2019 (Fig 1). Table 1 compares the demographics and
tinnitus characteristics between the 2 years’ groups. The case load for tinnitus appeared to
be higher in 2020 than in the same period in 2019 (99 vs. 76, or an increase of 30.3%).

Such an increase could be fully attributed to a normal fluctuation due to the temporary pause on non-emergency patients in our hospital between January and February 2020. The two groups were matched by age and sex despite their different sizes.

Table 1. Comparison of initial clinical characteristics of patients between 2020 and 2019

<table>
<thead>
<tr>
<th></th>
<th>March-April 2020</th>
<th>March-April 2019</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M:F)</td>
<td>43:56</td>
<td>39:37</td>
<td>.3</td>
</tr>
<tr>
<td>Age (years, mean ± standard deviation)</td>
<td>50.8 ± 15.1</td>
<td>51.5 ± 14.8</td>
<td>.834</td>
</tr>
<tr>
<td>Educational background</td>
<td></td>
<td></td>
<td>.658</td>
</tr>
<tr>
<td>Bachelor’s degree and above</td>
<td>54</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Less than bachelor’s degree</td>
<td>45</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Duration (month)</td>
<td>25 ± 53.6</td>
<td>31.8 ± 51.0</td>
<td>.064</td>
</tr>
<tr>
<td>Site</td>
<td></td>
<td></td>
<td>.02</td>
</tr>
<tr>
<td>Bilateral</td>
<td>36</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td>63</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Anxiety involved/total #</td>
<td>74/99 (74%)</td>
<td>41/76 (53%)</td>
<td>.004</td>
</tr>
<tr>
<td>Risk factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensorineural hearing loss</td>
<td>69</td>
<td>58</td>
<td>.331</td>
</tr>
<tr>
<td>Noise exposure</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hypertension</td>
<td>3</td>
<td>6</td>
<td>.179</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Head/neck trauma</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The chi-square test was used for the between-group comparison of sex, educational background, site, anxiety, and the risk factor of sensorineural hearing loss; the t-test was used for age; a Mann–Whitney rank-sum test was used for duration; and a Fisher’s exact test was used for the risk factors of noise exposure, hypertension, hyperthyroidism, and head or neck trauma.

Impact of Anxiety on THI and MML

In the 2020 group, 74 out of 99 subjects had an SAS score higher than 45 (the criterion for anxiety), thus the incidence of anxiety was 74.7% in this group, significantly higher than that in the 2019 group (41/76, 53.9%, $\chi^2 = 8.256$, $p = 0.004$). To further investigate the difference in the involvement of anxiety in tinnitus, a two-way ANOVA
was performed on the SAS scores against the factors of year group (2020 vs. 2019) and anxiety (with anxiety vs. without). Overall, the group had a significant effect, with the 2020 group having higher SAS scores (61.9 ± 11.9) than the 2019 group (48.2 ± 8.2; F1, 171 = 74.684, p < 0.001, Fig 2A). The anxiety effect also significantly interacted with the group effect (F1, 171 = 44.486, p < 0.001). The average SAS score was significantly higher in 2020 patients than in 2019 patients, according to a post hoc pairwise test using the Tukey method (68.0 ± 6.4 in 2020 vs. 53.5 ± 7.8 in 2019; q = 18.146, p < 0.001, Fig 2B); this method was used throughout for all such tests. This result suggests that the COVID-19 outbreak not only increased the incidence of anxiety but also the degree of anxiety in those who suffered from it. No significant differences in the averaged SAS score was seen between the patients without anxiety in 2020 and 2019 (43.9 ± 1.5 vs. 42.0 ± 2.2; q = 1.738, p = 0.219; Figs 2A and 2B).
Fig 2. Initial comparisons of SAS scores, THI scores and MML against year group and anxiety.
(A) The SAS score changes with the two main factors (year group and anxiety) and significance was found for both. (B) The year difference in SAS score in subgroups with and without anxiety. The SAS scores were higher in the 2020 subgroup with anxiety compared to those in 2019; there was no between-year difference in the subgroups without anxiety. (C) The THI score changes with the two main factors. (D) The year difference in THI in subgroups with and without anxiety. The THI increase in 2020 was seen only in the subgroup with anxiety. (E) The MML score changes with the two main factors. Overall, MML was significantly higher in the 2020 group, and there were no differences in MML between subjects with and without anxiety. (F) Post hoc comparison of MML. Within 2020, subjects with anxiety appeared to have a significantly higher MML, while the opposite was seen in 2019. Moreover, the subjects without anxiety in 2020 showed a lower MML than the 2019 subjects without anxiety. Significance: *p < 0.05, ** p < 0.01, *** p < 0.001. THI: tinnitus handicap inventory, SAS: Zung’s Self-Rating Anxiety Sale, MML: minimum masking levels.

The THI score in the 2020 group was 40.1 ± 6.9, significantly higher than that in the 2019 group (33.6 ± 8.7) as shown by the group effect in a two-way ANOVA (F₁,₁₇₁ = 15.223, p < 0.001), which also demonstrated a significant effect for anxiety: 39.1 ± 8.5 for subjects with anxiety and 33.9 ± 6.9 for those without (F₁,₁₇₁ = 8.697, p = 0.004). However, there was not a significant interaction between two factors (F₁,₁₇₁ = 2.867, p = 0.092). From a post hoc pairwise comparison in the subjects with anxiety, the THI score in 2020 was 41.7 ± 7.7, which was significantly higher than in those with anxiety in 2019 (34.3 ± 8.3; q = 6.631, p < 0.001) and those without anxiety in 2020 (35.6 ± 5.0; q = 4.63, p < 0.05). However, there were no significant differences in THI score between the years in subjects without anxiety (Fig 2C and 2D).

The between-year difference in THI was further analyzed using a breakdown of the scores in the emotional, functional, and catastrophic questionnaire sections. A significant difference was seen between years in the emotional score using the Mann–Whitney rank-
sum test (14.636 \pm 3.7 in 2020 and 12.211 \pm 3.5 in 2019, U = 5130, p < 0.001) and in the functional score (18.515 \pm 3.6 in 2020 and 15.342 \pm 4.5 in 2019, U = 5353.5, p < 0.001), but not in the catastrophic scores (7.0 \pm 2.5 vs. 6.0 \pm 2.5, U = 4462, p = 0.031). This result suggests that the increase in THI in 2020 could be partially related to the increase in anxiety.

A two-way ANOVA was performed on MMLs against both year group and anxiety. The subjects in 2020 had significantly lower MMLs (8.3 \pm 3.5 dB SL) compared to those in the 2019 group (10.0 \pm 4.2 dB SL; F_{1,171} = 15.281, p < 0.001), while the effects of psychological status were not significant (F_{1,171} = 0.569, p = 0.452; Fig 2E). However, the interaction between anxiety and year was significant (F_{1,171} = 19.184, p < 0.001). Post hoc pairwise tests showed that 2019 patients without anxiety had a higher MML (11.6 \pm 4.3 dB SL) than the patients with anxiety in 2020 (8.6 \pm 3.6 dB SL, q = 5.148, p < 0.001). However, the opposite was seen in 2020, in that patients with anxiety had an MML of 8.9 \pm 3.7 dB SL, which was slightly but significantly higher than those without anxiety in 2020 (6.7 \pm 2.0 dB SL, q = 3.616, p \leq 0.01; Fig 2F). Furthermore, the 2019 subgroup without anxiety showed a higher MML than the 2019 subgroup with anxiety and the 2020 subgroup without (Fig 2F). Considering all of these analyses together, no clear indication can be seen as to whether anxiety played a role in the loudness of tinnitus.

Treatment Outcomes

The 94 patients in the 2020 group completed their face-to-face follow-up 2 months after the first assessment, while this number was 70 in the 2019 group (Fig 1). The numbers of patients who received sound therapy, a hearing aid, or counseling alone were
38, 14, and 42, respectively, while the respective numbers were 58, 10, and 2 in the 2019 group. Due to the large difference in the number of patients requesting counseling alone between the years and the small sample sizes in patients receiving hearing aids, we analyzed only the treatment outcomes for sound therapy.

Table 2. Between-year comparison of the characteristics of tinnitus patients receiving sound therapy

<table>
<thead>
<tr>
<th></th>
<th>May-June 2020</th>
<th>May-June 2019</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M:F)</td>
<td>16:22</td>
<td>30:28</td>
<td>.356</td>
</tr>
<tr>
<td>Age (year old, mean ± standard deviation)</td>
<td>48.9 ± 16.5</td>
<td>50.2 ± 14.1</td>
<td>.871</td>
</tr>
<tr>
<td>Educational background</td>
<td></td>
<td></td>
<td>.658</td>
</tr>
<tr>
<td>Bachelor and superior</td>
<td>21</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Inferior to bachelor</td>
<td>17</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Duration (month)</td>
<td>31.8 ± 54.3</td>
<td>25.5 ± 43.7</td>
<td>.428</td>
</tr>
<tr>
<td>Site</td>
<td></td>
<td></td>
<td>.312</td>
</tr>
<tr>
<td>Bilateral</td>
<td>18</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td>20</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Anxiety involved/total #</td>
<td>29/38 (76%)</td>
<td>32/58 (55%)</td>
<td>.035</td>
</tr>
<tr>
<td>Risk factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensorineural hearing loss</td>
<td>24</td>
<td>40</td>
<td>.555</td>
</tr>
<tr>
<td>Noise exposure</td>
<td>0</td>
<td>0</td>
<td>\</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1</td>
<td>6</td>
<td>.396</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>0</td>
<td>0</td>
<td>\</td>
</tr>
<tr>
<td>Head/neck trauma</td>
<td>0</td>
<td>0</td>
<td>\</td>
</tr>
</tbody>
</table>

The chi-square test was used for between-group comparisons of sex, educational background, site, anxiety, and the risk factor of sensorineural hearing loss; the t-test was used for age; and the Fisher’s exact test was used for the risk factor of hypertension.

As shown in Table 3, out of the 38 patients treated in 2020, 27 (71%) reported a significant reduction of tinnitus loudness from the treatment, which was significantly lower than the rate in 2019 in which 51 out of 58 (87.9%) reported a mitigation of tinnitus ($\chi^2 = 4.293, p = 0.038$). This rate was slightly lower in the subjects with anxiety in 2020, in which only 20 out of 29 subjects (68.9%) reported an improvement, while it
was 90.6% (29/32) in 2019 subjects with anxiety ($\chi^2 = 4.516, p = 0.034$). There was no significant between-year difference in this rate in subjects without anxiety (7 out of 9 or 80.3% in 2020 and 22 out of 26 or 82.8% in 2019; $\chi^2 = 0.93, p = 0.76$). These results suggest that the increased anxiety probably reduced the effectiveness of the treatment.

Table 3. Self-reported improvement during follow-up from tinnitus treatment by sound therapy

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>Anxiety</th>
<th>No Anxiety</th>
<th>Anxiety effect within year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>27/38</td>
<td>20/29</td>
<td>7/9</td>
<td>p = 1*</td>
</tr>
<tr>
<td>2019</td>
<td>51/58</td>
<td>29/32</td>
<td>22/26</td>
<td>p = 0.689*</td>
</tr>
<tr>
<td>Group effect</td>
<td>p = 0.038</td>
<td>p = 0.034</td>
<td>p = 0.635*</td>
<td></td>
</tr>
</tbody>
</table>

*comparison via Fisher’s exact test; all other comparisons were conducted using the chi-square test

To fully evaluate the effects of the sound treatment, the changes in SAS, THI, and MML scores were compared between years, as shown in Fig 3. First, the SAS score was significantly reduced in both years after treatment, as indicated by the significant treatment effect in two-way repeated measure (RM) ANOVA ($F_{1, 94} = 71.614, p < 0.001$). However, the SAS score was generally higher in 2020 than in 2019, as indicated by the significant year effect in the ANOVA ($F_{1, 94} = 61.19, p < 0.001$; Fig 3A). There was no significant interaction between the factors of year and treatment. The SAS score was reduced in both years in post hoc tests for the effects of the treatment ($q = 6.911, p < 0.001$ in 2020 and $q = 10.48, p < 0.001$ in 2019). Interestingly, however, the SAS score of the 2020 group after being reduced by the treatment (58.0 ± 10.6) was significantly higher than the before-treatment SAS score in the 2019 group (48.3 ± 8.5) according to a Mann–Whitney rank-sum test ($U = 534, p < 0.001$). These results suggest that the anxiety associated with COVID-19 had not been counteracted by the treatment.
Fig 3. Treatment-related changes in SAS, THI and MML scores. Two-way repeated measure analysis of variance (ANOVA) was performed on these measures against the treatment and the year group (A–C), and on the SAS score improvements against the anxiety and the year group (D). A significant effect for treatment was seen in all three measures tested, and the improvements of the patients without anxiety in 2020 were significantly lower. Significance: *p < 0.05, **p < 0.01, ***p < 0.001 in ANOVA; ###p < 0.001 in a Mann–Whitney rank-sum test. SAS: Zung’s Self-rating Anxiety Scale (SAS), THI: Tinnitus Handicap Inventory, MML: minimum masking level.

To further identify the between-year difference and the effects of anxiety on the SAS
score improvements, another two-way ANOVA was performed (Fig 3D). The improvement in the SAS score appeared to be slightly but significantly smaller in 2020 (5.0 ± 8.6) than in 2019 (6.1 ± 3.8, $F_{1,92} = 6.046$, $p = 0.016$). A significant effect for anxiety was revealed, in that the tinnitus patients with anxiety received more benefit from the sound therapy (6.6 ± 6.2 in anxiety group vs. 4.0 ± 5.9 in no-anxiety group; $F_{1,92} = 10.447$, $p = 0.002$).

A significant interaction between the two factors was also seen ($F_{1,92} = 9.037$, $p = 0.002$). Correspondingly, the amount of the SAS score reduction from the treatment in the patients without anxiety was significantly smaller (-1.5 ± 7.2) than those with anxiety in 2020 (7.0 ± 8.0, $q = 5.364$, $p < 0.001$) and those without anxiety in 2019 (6.0 ± 3.5, $q = 4.636$, $p = 0.002$; Fig 3D). That is, the patients without anxiety in 2020 had less improvement in SAS score. However, no difference was seen in SAS score improvement in 2019 between the subjects with and without anxiety.

The sound therapy appeared to reduce the THI scores in both years, as indicated by the significant treatment effect in the two-way RM ANOVA ($F_{1,94} = 58.405$, $p < 0.001$). A significant effect of the year was evidenced by an overall higher THI in the subjects, overall, in the 2020 group (40.7 ± 6.7) than for those in the 2019 group (32.7 ± 8.3, $F_{1,94} = 27.073$ and $p < 0.001$), although a significant interaction between year and treatment was not seen ($F_{1,94} = 1.054$, $p = 0.307$). The THI scores in the 2020 group improved from 40.7 ± 6.7 to 37.7 ± 8.0 according to the Tukey method ($p < 0.001$), while those in 2019 improved from 32.7 ± 8.3 to 28.7 ± 7.6 ($p < 0.001$; Fig 3B). It is noticeable that the post-treatment THI in the 2020 group was even higher than pre-treatment in 2019. Furthermore, the improvement (the pre-treatment score minus the post-treatment) was
slightly larger in the 2019 group (4.0 ± 3.0) than in 2020 (3.0 ± 5.5), but the difference was not significant (U = 1211, p = 0.413).

A significant effect of the treatment on MML was also shown by a two-way RM ANOVA (F1, 94 = 69.105, p < 0.001) against the treatment and year group. Significant improvements were observed in both the 2020 and 2019 groups (from 9 ± 4.4 dB SL to 7.3 ± 4.2 dB SL and from 10.0 ± 3.8 dB SL to 7.9 ± 3.8 dB SL respectively, Fig 3C). There were no significant differences between years in the overall MML (F1, 94 = 0.916, p = 0.341) and no significant interaction between year and treatment (F1, 94 = 1.247, p = 0.267). The improvement of MML in 2019 (2.1 ± 1.7 dB) was a little higher than that in 2020 (1.6 ± 2.7 dB), but this was not statistically significant (U = 1247, p = 0.255).

To further evaluate whether the initial anxiety was a factor that impacted on the treatment, the Pearson product moment correlation was calculated between the initial SAS score and the changes in the SAS, THI, and MML scores. There was a weak, positive, linear relationship between the initial SAS score and the SAS score improvement across all of the subjects pooled from both years (r = 0.253, p = 0.01, Fig 4A). When separated into the two years, a moderate positive correlation was seen in the 2020 group (r = 0.511, p = 0.001) and no significant correlation was found in the 2019 group (Fig 4B). These results suggest that the treatment was more effective for mitigating anxiety in subjects with higher SAS scores, which was associated with the COVID-19 pandemic in 2020. However, no significant correlation was seen between the initial SAS score and reductions in MML or THI score, either in the total sample or separated into different year groups (p > 0.05). This suggests that the initial anxiety status was not related to the effectiveness of the treatment of sound therapy for tinnitus.
Fig 4. Correlations between the initial SAS score and the improvement in SAS score. (A) The correlation in all subjects pooled across both years. (B) The correlations by year. A significant, moderate correlation was seen only in the 2020 group, in which the average initial SAS score was much higher. SAS: Zung’s Self-rating Anxiety Scale.

Discussion

In this retrospective study, we compared the severity of our tinnitus patients over a 6-week period between 2020, which was under the influence of the COVID-19 pandemic, and 2019. A significant increase was seen in 2020 in the incidence of subjects who were judged as having anxiety by the current criterion of their SAS score (Fig 2A and 2B). Furthermore, the average SAS score was much higher in 2020 than in 2019 in the subgroups with anxiety (Fig 2C and 2D). This demonstrates that the psychological stress in dealing with various pressures related to the COVID-19 pandemic not only increased the prevalence of anxiety in the tinnitus patients, but also greatly elevated the level of anxiety in the subjects who suffered from it. We attributed the changes to increased stress under the COVID-19 pandemic because the subjects in both years were matched in many major factors (such as age and sex; Table 1) that might have affected tinnitus. However, the increased anxiety was not clearly linked to the maskability of the tinnitus itself, as evaluated by MML (Fig 2E and 2F). The proportion of subjects who reported a mitigation
in tinnitus after sound therapy was slightly but significantly lower in 2020 than in 2019. This reduction was likely linked to the increased anxiety in 2020. While the treatment reduced SAS score more effectively in 2019, the improvement in SAS score was positively correlated with initial SAS score only in the 2020 group, in which patients without anxiety showed no improvement at all (in fact, with a slightly increased SAS score, Fig 3D). Furthermore, the initial state of anxiety appeared to be a factor only in the improvement of the SAS score, not in the THI score or MML. Although the increased anxiety was one of the reasons for the increased THI score, there was no clear link between the changes in anxiety and the maskability of tinnitus, as evaluated by MML.

There is no doubt that a significant increase in psychological stress developed as a result of the COVID-19 pandemic. Many recently published articles have revealed the high prevalence of anxiety across China during the COVID-19 pandemic, from 28.8% to 35.1% [34, 35], compared to the previously reported prevalences of 5.6% and 7.6% for the years of 2009 and 2019, respectively [36, 37]. A cross-sectional survey, using the same anxiety questionnaire as adapted in the present study, reported an average SAS score of 45.89 ± 1.1 among front-line clinical staff during the pandemic [38]. This value was located between the scores for our subjects with and without anxiety (68.0 ± 6.0 vs. 43.9 ± 1.5), and lower than the average for all of our subjects in the 2020 group (61.9 ± 10.9). This implies that our tinnitus patients seen in 2020 have experienced extremely high psychological pressure, even higher than those medical doctors who were in the most challenging job during the pandemic. The number of tinnitus subjects seen in the 6-week period in 2020 was higher than that last year. However, this increase may be largely attributable to the accumulation of patients during the hospital closure in the
The COVID-19 pandemic provides a good opportunity to investigate whether stress or anxiety could impact tinnitus as a causative or promotive factor. The association between tinnitus and anxiety has been investigated in many previous studies and has been well reviewed [9-15]. However, no information is available on the direction and causality between the two ends of the link [13, 15, 39-41], although many studies have implied that psychological states, such as those related to common stressors, influence perception of or coping with tinnitus [42, 43]. In this regard, two related systems are involved in tinnitus: (1) the brain regions along the hypothalamic–pituitary–adrenal axis (see reviews [9, 13]), which is the main neuroendocrine system involved in stress response, and (2) the limbic system including the hippocampus and amygdala, which regulates the perception of tinnitus and the adaptation (thereby, the ability to cope with stress) [44-49]. While the data from the previous studies have indicated the possible role of emotional factors in tinnitus via those systems, the relationship was mostly investigated in cross-sectional comparisons across subjects with different levels of tinnitus and those without.

Furthermore, several other limitations exist for the generalization of the findings in relevant research. First, different populations have been targeted by different studies. For example, one study was completed amongst male veterans [50], one study reported more recently was on subjects over 75 years old [40], while other studies were conducted on a more general population [51]. Second, various methods have been used to measure anxiety, including ICD-9 codes [50], the Hospital Anxiety and Depression Scale (HADS) [40, 52], the Anxiety Sensitivity Index [51], the State Trait Anxiety Inventory [53], as
well as the SAS [54]. Third, the cause of anxiety also varied, or was not clear at all, in
different studies. In the studies above, one showed a clear goal to examine how the
anxiety related to sleep disorders affected tinnitus [54], while in most other studies the
cause of anxiety was not specified [40, 50, 51, 53, 54]. This variation makes it difficult, if
not impossible, to compare the outcomes across different studies. For example, in one
study amongst male veterans, the incidence of tinnitus subjects with anxiety (quantified
via the ICD-9 code) was reported to be very high (79.1%) [50]. This high incidence of
anxiety probably related to the special population investigated in this study, because the
incidence has been found to be much lower in other studies of the general population. For
example, in a recent study, most subjects with tinnitus (68%) were free of anxiety [53]. In
that study, the anxiety was assessed using the State Trait Anxiety Inventory and the result
was consistent with another study in which only 23.4% of the tinnitus participants were
diagnosed as having anxiety via the Anxiety Sensitivity Index [51].

It is also noticeable that, in most of the previous studies, the goal was to evaluate
how tinnitus worked as a promoting factor for anxiety [40], or to simply established
whether there was a link between anxiety and tinnitus [40, 50, 51, 53, 54]. In the present
study, we evaluated whether anxiety plays a causative role in promoting the development
or the enhancement of tinnitus. The increased stress under COVID-19 resulted in an
increase in anxiety with a clear cause and was encountered, inevitably, by most of the
population who lived in the same area. Although large variation existed across different
individuals in relationship to their jobs and financial situations, as well as their closeness
to COVID-19 patients, the stress factor associated with this study was much more
homogeneous than those that had been examined in previous studies. We therefore think
that the between-year differences in the tinnitus clinic afforded a good chance to verify whether anxiety plays a causative or promotive role for tinnitus.

Consistency exists across different studies in that an increase in anxiety is positively associated with the severity of tinnitus whether it is examined with the THI score [50], MML [55], or not quantitatively but with the answers to two simple questions [56].

Unfortunately, the level of anxiety was also evaluated with different methods in these studies (ICD-9 code, HADS, and symptoms of depression and anxiety, respectively). In the present study, SAS was used as the evaluation tool to quantify the degree of anxiety, because the SAS has good psychometric credentials and continues to be widely used in clinical screening [33]. The severity of tinnitus was quantified by both THI and MML in the present study. Therefore, we will compare our results with those previous studies with similar methodologies. In one study reporting on 543 tinnitus cases in China, the average SAS score was 37.26 ± 8.99 (mean ± standard deviation) [54]. If this study focused on the association between psychiatric disorders and tinnitus, the SAS scores were most likely to be the raw value, which should be converted by multiplying by 1.25 before comparing with the results in the present study. After this conversion, the mean SAS score becomes 46.575, which is much lower than the initial SAS score of 61.9 in our 2020 group and comparable with the value in our 2019 group (48.2, or 22.1% lower than 2020 group; Fig 2A). The average THI score in this study was 40.87 ± 22.68, which was comparable to our 2020 group (40.1 ± 6.9) and the results from another previous study (40.1 ± 24.1, [53]). A higher THI (>51 on average) was also reported in tinnitus subjects with anxiety [51]. In addition, our 2019 group showed a lower THI score overall (33.6 ± 8.7), yielding a between-year difference of 16.2% on average (Fig 2D). Taken
together, the much higher anxiety in SAS score in the 2020 group in the present study was largely, but not fully, matched by the between-year difference in the THI score. Furthermore, the between-year difference in THI scores were seen in the functional and emotional sections, but not in the catastrophic section.

Discrepancies were also noted between the present study and previous ones, particularly in the evaluation of tinnitus loudness. In the present report, the MML was lower in the 2020 group, which had much higher SAS and THI scores than the 2019 group (Fig 3F). This conflicts with one previous study in which tinnitus patients with anxiety had a larger MML than those without [51]. However, results that were qualitatively similar to ours were also reported in a study in which the group with a higher anxiety score (by HADS) exhibited a significantly lower MML (49.3 ± 22.5 dB HL) than the group with a lower anxiety score (57.9 ± 18.9 dB HL), although the difference in the HADS scores between the groups was not statistically significant [57]. More importantly, in the present study, the MML was only slightly higher in subjects with anxiety in 2020 than those without, while the SAS score had a large difference between the two subgroups in 2020. Taken together, we believe that the anxiety induced by the pandemic has had an extremely limited, if any, impact on tinnitus loudness.

Therefore, the anxiety increase caused by the COVID-19 pandemic seems to have had a limited impact on tinnitus itself. This idea is further supported by the outcomes of the sound therapy in the present study, compared to the results from previous reports. The effects of the treatment were evaluated using three measurements (SAS, THI, and MML) in the present study. The SAS score improvement was slightly but significantly less in the
2020 group in which the initial SAS score was very high. However, the improvement in SAS score was well correlated with the initial SAS score in 2020 but not in 2019. This is superficially paradoxical but explainable if the improvement of the SAS score in the 2020 group was not because of the treatment, but instead because of the natural release of the underlying stress in association with the deceleration of the pandemic during the two-month interval between the two evaluations in the present study. With this idea, it becomes understandable that those who had a higher SAS score might achieve more recovery during this period when the pandemic situation decelerated, and it may not have been a result from the therapy. Otherwise, the relationship should have been similar to that seen in the 2019 group.

This idea is further supported by the fact that there was no significant between-year difference in the improvements in the THI score and MML in the present study. Our results on the relationship between anxiety and the treatment effects on both THI and MML also contradicted those reported in previous studies. For example, THI score reductions were reported to be larger in subjects with anxiety (e.g., by higher HADS scores in [52]) and furthermore, the reduction in anxiety was found to parallel the improvement in THI by sound therapy [58, 59]. In the present study, however, the improvements in both THI score and MML were not larger in the 2020 group, in which anxiety was much more severe. This conflict can also be explained by an assumption that the anxiety induced by the COVID-19 pandemic has had little or no impact on tinnitus severity, and therefore no impact on the treatment outcome.

Limitations

There were several limitations to our study. This was a retrospective study in which
only the SAS was used to evaluate anxiety. This makes it difficult to compare our study with previous ones. In addition, only sound therapy with counseling produced reliable data that allowed a comparison between years and the number of subjects using this therapy decreased in 2020. Many tinnitus patients in 2020 selected educational counseling alone for their treatment, over the other two, probably due to financial constraints. The combination of counseling with another therapy has been suggested by others to achieve better outcomes [60-63]. In addition, the overall sample size in the present study was small as the data were collected only from one hospital within a limited period. Although the data and conclusion are solid in the present study, further investigation would be helpful to verify the conclusion with a larger sample.

Conclusion

There was a substantial increase in anxiety of tinnitus subjects in 2020 under the pressures produced by the COVID-19 pandemic. However, this increase was not matched by the between-year difference in tinnitus loudness but matched better the change in THI score. The efficacy of sound therapy on tinnitus itself showed no significant difference between years. While the post-treatment SAS score was still much higher in the 2020 group, there was a positive correlation between the SAS score improvement and the initial SAS score in that group. This might have resulted from the natural reduction in stress from the pandemic reaching another stage in China. Therefore, the anxiety caused by the pandemic is unlikely to be a promoting or enhancing factor for tinnitus.

Acknowledgement

The authors acknowledge the colleagues for participating in this study. We are deeply
indebted to the families who participated in the study.

Financial Disclosure

This study was supported by the research grants from Health and Family Planning Commission of Sichuan Province of China [18PJ078], the National Natural Science Foundation of China [81770998], Natural Science & Engineering Research Council of Canada [RGPIN 2017-04493].

Competing interests

The authors have declared that no competing interests exist.

References

20. Bartels H, Pedersen SS, van der Laan BF, Staal MJ, Albers FW, Middel B. The impact of Type D personality on health-related quality of life in tinnitus patients is mainly mediated by anxiety and

34. Huang Y, Zhao N. Generalized anxiety disorder, depressive symptoms and sleep quality during

45. Kapolowicz MR, Thompson LT. Plasticity in Limbic Regions at Early Time Points in

Randomized, Double-Blind, Placebo Controlled Trial. Nutrients. 2019;11(12).

61. Sereda M, Xia J, El Refaie A, Hall DA, Hoare DJ. Sound therapy (using amplification devices and/or sound generators) for tinnitus. The Cochrane database of systematic reviews. 2018;12(12):CD013094-CD.
