Profiling pre-symptomatic and asymptomatic cases with confirmed SARS-CoV-2 infection in Mexico City

Omar Yaxmehen Bello-Chavolla MD, PhD¹, Neftali Eduardo Antonio-Villa MD², Arsenio Vargas-Vázquez², Carlos A. Fermín-Martínez², Alejandro Márquez-Salinas², Jessica Paola Bahena-López MD²

¹Division of Research, Instituto Nacional de Geriatría. ²MD/PhD (PECEM), Faculty of Medicine, National Autonomous University of Mexico.

Short title: Asymptomatic SARS-CoV-2 in Mexico City

Corresponding author
Omar Yaxmehen Bello-Chavolla. Division of Research. Instituto Nacional Geriatría. Anillo Perif. 2767, San Jerónimo Lídice, La Magdalena Contreras, 10200, Mexico City, Mexico.
Phone: +52 (55) 5548486885. E-mail: oyaxbell@yahoo.com.mx

CONFLICT OF INTERESTS: Nothing to disclose.

FUNDING: This research received no specific funding

Word count: 1,198 words; 2 Figures, 1 Table.
ABSTRACT (295 WORDS)

IMPORTANCE: Asymptomatic SARS-CoV-2 infections are potential sources for transmission; characterization of these cases has not been conducted in most low/middle income countries, including Mexico.

OBJECTIVE: To profile pre-symptomatic/asymptomatic SARS-CoV-2 infections in Mexico City, its associated comorbidities and outcomes.

DESIGN: Prospective observational study

SETTING: Subjects assessed by convenience sampling within the National Epidemiological Surveillance System in Mexico City.

PARTICIPANTS: Subjects with and without respiratory and non-respiratory symptoms (RS, NRS, respectively) assessed for SARS-CoV-2 using real time RT-PCR from nasopharyngeal swabs.

OUTCOMES: Severe COVID-19, intensive care unit admission, 30-day mortality and their outcomes in cases RS or NRS and asymptomatic cases.

RESULTS: Amongst 60121 cases with confirmed SARS-CoV-2 infection as of July 1st, 2020, we identified 5982 cases without RS (9.9%) and 2452 who were asymptomatic at first evaluation (4.1%). Compared to cases with RS, NRS and asymptomatic cases were younger and had lower rates of comorbidities. Cases with NRS had higher rates of severe COVID-19 outcomes including hospitalization, ICU admission, and intubation (p<0.001). Mortality was higher for cases with NRS (HR 3.13, 95%CI 1.80-5.45) or RS (HR 7.58, 95%CI 4.56-12.58) compared to asymptomatic cases, adjusted for age, sex and comorbidities. Predictors for mortality in cases without RS included older age, previous exposure to suspected viral infection cases, comorbidities, presence of NRS and vomiting. For asymptomatic SARS-CoV-2 infections, chronic kidney disease, previous exposure with suspected infection cases and older age were predictors for lethality.
CONCLUSIONS AND RELEVANCE: Definition of pre-symptomatic/asymptomatic cases has relevant implications for SARS-CoV-2 infection outcomes. Older age and comorbidity impact on the probability of developing severe complications for cases who were asymptomatic or had only NRS at evaluation and were sent for domiciliary treatment. Extending testing for detection of asymptomatic cases must be considered in Mexico to better understand the impact of the pandemic.

Keywords: SARS-CoV-2; Asymptomatic; Pre-symptomatic; Mexico; COVID-19 outcomes

KEY POINTS

Question: What are the profiles and outcomes of pre-symptomatic/asymptomatic cases of SARS-CoV-2 infection in Mexico City?

Findings: In this prospective observational study, we identified that cases with SARS-CoV-2 infection who were asymptomatic/pre-symptomatic at initial evaluation were younger with low rates of comorbidities, had higher rates of previous viral exposure or were healthcare workers. Compared to asymptomatic cases at first evaluation, cases with non-respiratory symptoms had higher risk of severe COVID-19 outcomes. Predictors for mortality in non-respiratory or asymptomatic cases included non-respiratory symptoms, comorbidity and older age.

Meaning: Definition of pre-symptomatic/asymptomatic cases has relevant implications for outcomes related to SARS-CoV-2 infections.
BACKGROUND

Asymptomatic infections are a potential source of rapid SARS-CoV-2 spread [1]. Prevalence of pre-symptomatic/asymptomatic cases varies widely but might represent a larger proportion of cases than previously anticipated [2]. Controversies surrounding asymptomatic SARS-CoV-2 infections have focused on the distinction between pre-symptomatic and asymptomatic infection and its definitions, which have focused on respiratory symptoms (RS), primarily cough, dyspnea and fever. Nevertheless, longitudinal data shows that only a fraction of initially asymptomatic infections develop subsequent symptoms [3–5]. In Mexico, SARS-CoV-2 testing focuses on sampling high-risk cases, which allowed characterization of increased susceptibility for severe COVID-19 attributable to cardio-metabolic comorbidities [6]; however, no data has been reported on asymptomatic SARS-CoV-2 infections. Lack of information regarding pre-symptomatic/asymptomatic cases in Mexico is concerning, particularly since many studies suggest that contact tracing of asymptomatic infections will be pivotal to contain further SARS-CoV-2 spread [7]. Here, we profile pre-symptomatic/asymptomatic cases of SARS-CoV-2 infections to assess outcomes depending on its definitions using cases detected in Mexico City.

METHODS

We analyzed data from the National Epidemiological Surveillance System in Mexico City, an open-source dataset comprising daily updated cases tested using real-time RT-PCR to confirm SARS-CoV-2 using nasopharyngeal swabs according to the Berlin Protocol [8]. RS included fever, dyspnea, cough, polypnea or cyanosis at initial evaluation, whilst non-RS (NRS) included headache, myalgias, arthralgias, general malaise, abdominal pain, chest pain, conjunctivitis, irritability or vomiting. We defined cases with RS+NRS with ≥1 RS and any or none NRS. Cases with NRS had ≥1 NRS without RS, whilst asymptomatic cases had no symptoms. Pre-symptomatic cases were asymptomatic at admission but developed symptoms or required hospital admission after follow-up. To contrast definitions of pre-
symptomatic/asymptomatic cases based on RS, we combined asymptomatic and NRS cases and referred to them as cases without RS (WoRS). We confirmed these definitions using corresponding analyses; these results and available variables are detailed in Supplementary Material. Follow-up was conducted for all non-hospitalized cases up to 14 days; outcomes for all patients included hospital discharge due to clinical improvement or voluntary, ambulatory/treatment follow-up or death. NRS and asymptomatic cases were assessed outside the established framework for suspected COVID-19 cases in Mexico by convenience sampling and contact tracing. To evaluate predictors of RS+NRS and NRS we fitted a mixed effects logistic regression model, including facility of treatment as a random effect to account for the variability in case distribution and treatment across healthcare facilities. We calculated time-to-event for hospital admission and lethality for each group and modeled these outcomes using mixed-effects Cox Proportional Risk regression, including as a frailty penalty treatment facility. All statistical analyses were performed using R version 3.6.4.

RESULTS

Profiling pre-symptomatic/asymptomatic cases with SARS-CoV-2 infection

As of July 1st, 2020, 155722 subjects were tested for SARS-CoV-2. From 60121 cases with confirmed SARS-CoV-2 infection, 5982 cases were WoRS (9.9%). Amongst them, 3530 only had NRS (5.9%) and 2452 were pre-symptomatic/asymptomatic (4.1%). Cases WoRS and pre-symptomatic/asymptomatic were younger and had lower prevalence of NRS compared to cases with RS+NRS (Figure 1). Amongst cases WoRS (n=5982), 322 subjects were hospitalized (5.4%), 21 required mechanical ventilatory support (MVS) (0.4%), 36 required intensive care unit (ICU) admission (0.6%). Overall, 91 patients died (1.5%), of whom 25 were ambulatory and 66 hospitalized. Predictors for hospital admission included vomiting, abdominal pain, conjunctivitis, rhinorrhea, cardiovascular disease, immunosuppression, diabetes, hypertension, previous exposure to suspected viral cases and healthcare workers. Independent predictors of mortality in WoRS included older age, diabetes, chronic obstructive
pulmonary disease (COPD), chronic kidney disease (CKD), previous exposure to suspected viral cases, any NRS and, particularly, vomiting (Supplementary Material). As of July 1st, 4361 patients were still under domiciliary surveillance, 177 remained hospitalized, 78 were discharged after recovery, 1 had voluntary discharge and 1274 had completed domiciliary surveillance without developing RS.

Amongst asymptomatic patients at first assessment (n=2431), 99 were hospitalized (4.0%), three required MVS (0.1%) and 19 required ICU admission (0.8%). We recorded 15 deaths (0.5%) amongst whom six were ambulatory and nine were hospitalized (Table 1). Predictors for hospital admission included younger age, cardiovascular disease, immunosuppression and previous exposure to suspected viral cases, whilst predictors of lethality included age >60 years, previous exposure to suspected viral cases, and immunosuppression. Currently, 1794 patients were still under domiciliary surveillance, 68 remained hospitalized, 22 were discharged after recovery, and 553 had completed follow-up without developing symptoms.

Predictors and outcomes for RS+NRS, NRS and asymptomatic cases

Presence of NRS was associated with younger age, healthcare workers, previous viral exposure, diabetes, obesity, female sex, hypertension and smoking, whilst RS+NRS were additionally associated with asthma and COPD, older age and male sex. Compared to pre-symptomatic/asymptomatic cases, risk of hospital admission was not significantly higher for NRS, but it was for RS+NRS (HR 2.71, 95%CI 2.23-3.31), adjusted for age, sex and comorbidities. NRS and RS+NRS had higher mortality compared to asymptomatic cases (log-rank p<0.001, Figure 2); adjusting for age, sex and comorbidities, NRS (HR 3.13, 95%CI 1.80-5.45) or RS+NRS cases (HR 7.58, 95%CI 4.56-12.58) retained higher mortality compared to asymptomatic cases.

DISCUSSION

Here, we present a comprehensive report of pre-symptomatic/asymptomatic COVID-19 cases in Mexico City. We show that the definition of asymptomatic SARS-CoV-2 infection should be
extended beyond RS to identify subjects at lowest risk of subsequent complications for domiciliary treatment who might contribute to further SARS-CoV-2 spread. We also report a low prevalence of pre-symptomatic cases amongst those who were initially classified as asymptomatic but eventually were hospitalized or had outcomes related to severe COVID-19 [9]. This data confirms observations from other populations and highlights the relevance of identifying pre-symptomatic/asymptomatic cases, given conflicting evidence on viral shedding for pre-symptomatic/asymptomatic cases, and data suggesting evidence of subclinical lung abnormalities which must be assessed longitudinally to rule out long-term impacts of SARS-CoV-2 infection [10]. Notably, a consistent predictor of outcomes for NRS cases and pre-symptomatic/asymptomatic cases are previous exposure to suspected viral cases, highlighting the relevance of contact tracing.

Studies assessing natural history of asymptomatic SARS-CoV-2 infections highlighted the role of age and comorbidity in the subsequent development of symptoms, which is consistent with our observations [11]. Domiciliary surveillance in Mexico City focused on outcomes but not individual symptom onset, which might limit our ability to identify all pre-symptomatic cases. Regardless, only a small fraction of pre-symptomatic cases developed severe COVID-19 after being initially determined as asymptomatic, most of whom had underlying cardiometabolic comorbidities or were susceptible for complications of COVID-19 attributable to unmasked cardiometabolic comorbidities. Asymptomatic SARS-CoV-2 infections have been postulated to elicit lower immune responses and diminished antibody production compared to symptomatic cases. Severe COVID-19 in pre-symptomatic cases might be attributable to a combination of decreased early immune response to SARS-CoV-2 infection and late enhanced pro-inflammatory responses in subjects with comorbidities [10,12].

Here, we assessed a thorough constellation of symptoms in one of the largest studies of pre-symptomatic/asymptomatic SARS-CoV-2 infections. Limitations include non-assessment of atypical SARS-CoV-2 symptoms which might occur amongst otherwise asymptomatic cases,
particularly in older adults [13], and the lack of systematized sampling, which does not allow for an accurate estimation of asymptomatic cases in Mexico City. Our results highlight the need to systematize definition of asymptomatic cases and extend testing by contact tracing to detect asymptomatic SARS-CoV-2 infections as one of the mitigations strategies to reduce transmission of SARS-CoV-2 in Mexico City [14].

ACKNOWLEDGMENTS

NEAV, JPBL, and AVV are enrolled at the PECEM program of the Faculty of Medicine at UNAM. JPBL and AVV are supported by CONACyT. The authors would like to acknowledge the invaluable work of all of Mexico’s healthcare community in managing the COVID-19 epidemic. Its participation in the COVID-19 surveillance program has made this work a reality, we are thankful for your effort.

DATA AVAILABILITY

All data sources and R code are available for reproducibility of results at

https://github.com/oyaxbell/covid_asymptomatic_cdmx.

AUTHOR CONTRIBUTIONS

Research idea and study design OYBC, NEAV, AVV, JPBL, CAFM, AMS; data acquisition: OYBC; data analysis/interpretation: OYBC, JPBL, NEAV, AVV, CAFM, AMS; statistical analysis: OYBC; manuscript drafting: OYBC, NEAV, AVV, JPBL, CAFM, AMS; supervision or mentorship: OYBC. Each author contributed important intellectual content during manuscript drafting or revision and accepts accountability for the overall work by ensuring that questions about the accuracy or integrity of any portion of the work are appropriately investigated and resolved.

FUNDING: No funding was received.

CONFLICT OF INTEREST/FINANCIAL DISCLOSURE: Nothing to disclose.
196 REFERENCES

The role of asymptomatic SARS-CoV-2 infections: rapid living systematic review and

2. Oran DP, Topol EJ. Prevalence of Asymptomatic SARS-CoV-2 Infection: A Narrative

Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility.

5. Imperial College COVID-19 Response Team, Lavezzo E, Franchin E, Ciavarella C,
Cuomo-Dannenburg G, Barzon L, et al. Suppression of a SARS-CoV-2 outbreak in the
Italian municipality of Vo. Nature. 2020; doi:10.1038/s41586-020-2488-1

6. Bello-Chavolla OY, Bahena-López JP, Antonio-Villa NE, Vargas-Vázquez A, González-
Díaz A, Márquez-Salinas A, et al. Predicting mortality due to SARS-CoV-2: A
mechanistic score relating obesity and diabetes to COVID-19 outcomes in Mexico. J
Clin Endocrinol Metab. 2020; doi:10.1210/clinem/dgaa346

7. Huff HV, Singh A. Asymptomatic transmission during the COVID-19 pandemic and

asymptomatic cases with COVID-19 pneumonia at admission in Wuhan, China. J Infect.

Table 1. Descriptive characteristics of symptomatic and asymptomatic SARS-CoV-2 cases in Mexico City. Abbreviations: COPD: Chronic obstructive pulmonary disease; HIV/AIDS: Human immunodeficiency virus and/or acquired immunodeficiency syndrome; CKD: Chronic kidney disease, CDV: Cardiovascular disease; HCW: Healthcare worker.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RS+NRS (n=54139)</th>
<th>NRS (n=3530)</th>
<th>Pre-asymptomatic (n=2452)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex (%)</td>
<td>29483 (53.3)</td>
<td>1527 (53.3)</td>
<td>1306 (43.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (years)</td>
<td>46.29±16.21</td>
<td>41.62±15.77</td>
<td>41.93±18.13</td>
<td><0.001</td>
</tr>
<tr>
<td>Mortality (%)</td>
<td>6736 (12.4)</td>
<td>76 (2.2)</td>
<td>15 (0.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hospitalizacion (%)</td>
<td>15896 (29.4)</td>
<td>223 (6.3)</td>
<td>99 (4.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>ICU admission (%)</td>
<td>1368 (2.5)</td>
<td>17 (0.5)</td>
<td>19 (0.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mechanical-Ventilation (%)</td>
<td>2132 (3.9)</td>
<td>18 (0.5)</td>
<td>3 (0.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Previous viral exposure (%)</td>
<td>20591 (38.0)</td>
<td>1936 (54.8)</td>
<td>1435 (58.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes (%)</td>
<td>8467 (15.6)</td>
<td>331 (9.4)</td>
<td>138 (5.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>COPD (%)</td>
<td>898 (1.7)</td>
<td>23 (0.7)</td>
<td>15 (0.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Condition</td>
<td>Healthcare worker (%)</td>
<td>CKD (%)</td>
<td>Immunosuppression (%)</td>
<td>Hypertension (%)</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------</td>
<td>---------</td>
<td>-----------------------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
FIGURE 1. Histogram comparing case distribution according to age groups comparing cases with RS+NRS, NRS and asymptomatic SARS-CoV-2 infection, demonstrating the role of age in determining asymptomatic SARS-CoV-2 infections (A). We also show a comparison of the distribution of NRS related to SARS-CoV-2 infections in subjects with RS+NRS and NRS only.

Abbreviations: RS: Respiratory symptoms; NRS: Non-respiratory Symptoms; Sudden onset: Patient report of sudden onset of symptomatology.
FIGURE 2. Factors associated with presence of RS+NRS compared to WoRS (NRS + Asymptomatic), and NRS compared to asymptomatic cases (NRS) with SARS-CoV-2 infection (A). We also show the and comparison of 30-day mortality rates between RS+NRS cases, NRS and asymptomatic SARS-CoV-2 infections in Mexico City.

Abbreviations: RS: Respiratory symptoms; NRS: Non-respiratory Symptoms; COPD: Chronic obstructive pulmonary disease; CKD: Chronic kidney disease; HCW: Health-care workers; Previous viral exposure: Prior contact with a patient with suspected viral infection.