TITLE: APOE4 Copy Number-Dependent Proteomic changes in the Cerebrospinal Fluid

RUNNING TITLE: Cerebrospinal Fluid Proteomic Signature of APOE4

AUTHORS: Miles Berger, MD, PhDa,b,c, Mary Cooter, MSa, Alexander S. Roesler, BSa, Stacey Chung, PharmDa, John Park, BSa, Jennifer L. Modliszeski, PhDd, Keith W. VanDusen, MD, MSa, J. Will Thompson, PhDd, Arthur Moseley, PhDd, Michael J. Devinney, MD, PhDa, Shayan Smaria,e, Ashley Hall, BSa, Victor Caiaa,e, Jeffrey N. Browndyke, PhDb,c,f, Michael W. Lutz, PhDg, David L. Corcoran, PhD, MSd, Alzheimer’s Disease Neuroimaging Initiativeh

AUTHOR AFFILIATIONS:

aDepartment of Anesthesiology, Duke University Medical Center, Durham, North Carolina

bCenter for Cognitive Neuroscience, Duke Institute for Brain Sciences, Durham, North Carolina

cCenter for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina

dDuke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina

eTrinity College of Arts and Sciences, Duke University, Durham, North Carolina

fDepartment of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, North Carolina

gDepartment of Neurology, Duke University Medical Center, Durham, North Carolina

hA complete listing of ADNI investigators can be found at:

CORRESPONDING AUTHOR:

Dr. Miles Berger

Room 4317, Duke South Orange Zone,

DUMC Box 3094, Durham, NC 27710

Email: miles.berger@duke.edu

Phone: (919) 684-8679

Twitter: @RealMilesBerger

Keywords: Alzheimer Disease, Apolipoprotein E4, Biomarker, Mass Spectrometry,
Cerebrospinal Fluid, Neurogenic Inflammation, C-reactive Protein, Complement Activation

Declarations:

Ethics approval and consent to participate:

Consent for publication:

Availability of data and materials: Available per ADNI group at http://adni.loni.usc.edu/data-samples/access-data/

Competing Interests: Dr. Berger acknowledges consulting income from two legal cases regarding postoperative cognitive change.

Funding: Dr. Berger acknowledges support from K76-AG057022, and additional support from NIH grants P30AG028716 and UH2AG056925; a program to advance clinical trials (PACT) grant from the Alzheimer's Drug Discovery Foundation, the inaugural Ann Bussel award from the Ruth K. Broad Foundation at Duke University, and the Duke Anesthesiology Department.
Dr. Devinney acknowledges support from a research fellowship grant from the Foundation for Anesthesia Education and Research.

Authors’ contributions: MB conceived of this project and obtained data from ADNI. M.C., J.M., and D.C. performed statistical analysis. All authors contributed to analyzing and interpreting the data. M.B., A.R., S.C, J.P., K.W.V., V.C. and S.S. wrote the manuscript. All authors reviewed and approved the final manuscript.

Acknowledgements:

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company...
Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.
Abstract

Background: *APOE4* has been hypothesized to increase Alzheimer’s disease risk by increasing neuroinflammation, though the specific neuroinflammatory pathways involved are unclear.

Objectives: To characterize CSF proteomic changes as a function of *APOE4* copy number.

Methods: We analyzed targeted proteomic data obtained on ADNI CSF samples using a linear regression model adjusting for age, sex, and *APOE4* copy number, and a second linear model also adjusting for AD clinical status. False Discovery Rate (FDR) was used to correct for multiple comparisons.

Results: In the first model, increasing *APOE4* copy number was associated with significant expression decreases in a CRP peptide (*q*=0.006), and significant expression increases in peptides from ALDOA, CH3L1 (YKL-40), and FABPH (*q*<0.05 for each). In the second model (controlling for age, sex, and AD clinical status), increasing *APOE4* copy number was associated with significant expression decreases in a CRP peptide (*q*=0.009). In both models, increased *APOE4* copy number was associated with trends towards lower expression of all 24 peptides from all 8 different complement proteins measured here, although none of these differences were statistically significant. The odds of this happening by chance for 24 unrelated peptides would be less than 1 in 16 million.
Conclusions: Increasing APOE4 copy number was associated with decreased CSF CRP levels and increased CSF ALDOA, CH3L1 and FABH levels; the CRP decrease remained significant after controlling for AD clinical status. Increased APOE4 copy number may also be associated with decreased CSF complement pathway protein levels, a hypothesis for investigation in future studies.
Introduction

The best described genetic contributor to late onset Alzheimer’s disease (LOAD) is the e4 polymorphism of the apolipoprotein E gene [1]. Individuals carrying a single \(APOE4 \) allele copy have a ~3-fold increased risk of developing Alzheimer’s disease (AD), and those who carry two \(APOE4 \) alleles have a greater than 10-fold risk of developing AD [2-5]. Additionally, the presence of an \(APOE4 \) allele is associated with worse neurologic outcomes including a higher index of disability in multiple sclerosis patients, worse cognitive outcomes following mild traumatic brain injury, and increased risk of death following subarachnoid hemorrhage [6-8], as well as increased atherosclerotic cardiovascular disease risk [9]. Likely due to these pleiotropic effects, \(APOE4 \) carriers live ~4.2 years less than non-\(APOE4 \) carriers [10, 11]. Despite our knowledge of these multiple negative effects of \(APOE4 \), it remains unclear what the mechanisms are that explain how \(APOE4 \) contributes to AD risk and worse outcomes across these other disease states.

The APOE protein has multiple biological roles, including cholesterol transport in the central nervous system (CNS), signaling through cell surface receptors, and modulating synaptic function by regulating the expression of syntaxin-1, PSD95, and NMDA and AMPA receptors [12]. Given this multitude of functions, it is unclear which mechanisms explain the increased AD risk in \(APOE4 \) carriers. Patients with an \(APOE4 \) allele are typically diagnosed with AD in their 7th or 8th decade of life, even though the APOE protein is expressed within the CNS throughout life [13]. This suggests that \(APOE4 \) likely contributes to AD risk before cognitive deficits first appear [14, 15]. This idea is supported by fMRI studies demonstrating that young adult \(APOE4 \) carriers without AD have significant alterations in the default mode network when compared to non-carrier controls [16]. Additionally, young adult \(APOE4 \) carriers show increased activation of
the bilateral medial temporal lobe during an encoding task [17], which may be a compensatory mechanism to achieve normal cognitive function in APOE4 carriers.

One mechanism hypothesized to underlie the link between APOE4 and AD is neuroinflammation. Indeed, neuroinflammation is a key contributor to AD pathogenesis in humans [18]. Recent evidence in murine models has shown that human APOE4 knock-in mice have increased glial activation in response to intra-cerebroventricular LPS injection and increased IL-1β, IL-6 and TNFα levels when compared to APOE2 or APOE3 allele knock-in mice [19]. Furthermore, microglia isolated from APOE4/4 targeted replacement mice, as compared to those from APOE3/3 mice, have increased pro-inflammatory cytokines such as IL-6, TNFα and IL12p40 [20, 21]. Although these studies have linked APOE4 to increases in multiple inflammatory cytokines and pathways, it is unclear which of these inflammatory mechanisms are responsible for increased AD risk in APOE4 carriers.

Because neurodegeneration in AD itself is associated with inflammation, it is important to study the effect of APOE4 on the CNS of older adults who don’t yet have dementia and neurodegeneration due to AD. Such studies provide an opportunity to discover how APOE4 affects the CNS and how it increases AD risk, before frank AD-related neuro-degeneration begins. Thus, here we analyzed targeted CSF proteomic data from Alzheimer’s Disease Neuroimaging Institute (ADNI) research subjects, while controlling for AD clinical status, in order to find CSF protein level variation associated with APOE4 allele copy number.

Methods

ADNI study and participants
The patient data and clinical annotations used in this study were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI is a longitudinal multicenter study that tracks and evaluates changes in cognition, brain structure and function, and biomarkers associated with the progression of mild cognitive impairment (MCI) and Alzheimer’s disease [22]. Further detail on ADNI is found in the Acknowledgments section. Each ADNI site received written informed consent from all participants and institutional review board approval.

Inclusion and exclusion criteria for the normal control (NC), MCI, and AD cohorts is available at adni.loni.usc.edu. Briefly, NC subjects were defined as having a mini-mental state examination (MMSE) [23] score ≥ 24 and Clinical Dementia Rating (CDR) [24] score of 0 and having no confounding neurological or psychological disorders. MCI subjects had MMSE scores of 23-30, a CDR score of 0.5, objective memory loss as measured by Wechsler Memory Scale Revised—Logical Memory II [25], and preserved activities of daily living. AD patients met the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) [26] criteria for probable AD and had MMSE scores of 20-26 and CDR scores of 0.5-1.0. The current study includes CSF samples from 289 unique ADNI-1 subjects (85 normal control, 134 MCI, and 66 AD patients). Publicly available metadata such as age, gender, diagnosis at baseline, MMSE score, and APOE4 genotype were collected from the ADNI database. Cohort demographics are summarized in Table 1.

ADNI-1 CSF Collection and Processing
CSF samples (0.5 mL) were obtained at ADNI visits, stored, transported, and processed according to published procedures [27, 28]. Technical details on the mass spectrometry platform data acquisition, quality control metrics, and validation protocols used in this study are described in the ADNI “Use of Targeted Multiplex Proteomic Strategies to Identify Novel CSF Biomarkers in AD” data primer and in [29]. Briefly, CSF samples were depleted of high abundance proteins using MARS-14 immunoaffinity resin, trypsin digested (1:10 protease:protein ratio), lyophilized, and desalted prior to LC/MRM-MS proteomic analysis on a QTRAP 5500 LC-MS/MS system. CSF multiplex multiple reaction monitoring (MRM) is a standardized peptide panel developed as a QC metric to verify the reproducibility of sample processing and mass spectrometry analysis [30]. A total of 320 peptides produced by tryptic digestion of 143 proteins were identified and met the QC criteria of the ADNI working group for inclusion in the original dataset [29]. These peptides were selected to measure the levels of proteins previously implicated in AD neuropathology and/or neuro-inflammation [29].

Patients in the ADNI proteomics study were classified by AT (i.e. amyloid and p-tau) status, using previously reported CSF Aβ and p-tau measurements made with the Roche Elecsys platform, and previously described Aβ, and p-tau thresholds [31, 32]. We used the AT schema rather than the full ATN classification, because CSF tau and p-tau levels are highly co-linear, such that every patient who would be T+ would also be N+ and vice versa (Shaw LM, personal communication, 6/16/2020).

Statistical analysis

Mass spectrometry data from the ADNI study was re-analyzed to compare peptide data by APOE4 allele count. Peptides with an expression value below zero were set to missing values.
The intraclass correlation (ICC) across technical replicates was calculated for each peptide. Subsequent analysis included 294 peptides that had an ICC ≥ 0.6. The technical replicate for each individual with the smallest number of missing peptides was used in the analysis. We analyzed CSF targeted proteomic data from 289 research participants in the ADNI-1 study, 85 of whom were healthy controls, 134 of whom had MCI, and 66 of whom had dementia due to AD. Association between each of the variables of interest with each peptide was tested in a linear model framework with an empirical Bayes method for parameter estimation from the limma [33] Bioconductor [34] package. Age and gender were included as cofactors in both models; AD clinical status (i.e. normal, MCI or dementia due to AD) was also included in model 2. False discovery rate was used to correct for multiple hypothesis testing.
Results

ADNI Patient Cohort Characteristics

Baseline characteristics of the ADNI-1 patients whose samples were used for targeted proteomics measurements [29] are presented in Table 1. Subjects with 0, 1 or 2 copies of the APOE4 allele were similar in terms of gender, race and years of education. Consistent with prior work showing that the APOE4 allele is associated with reduced longevity [11], individuals with two APOE4 allele copies were ~4 years younger than those with zero or one copy of the APOE4 allele. As expected, the percentage of patients with MCI and AD increased among patients with either 1 or 2 APOE4 alleles. Consistent with prior work [35, 36], increasing APOE4 copy number was associated with lower CSF Aβ levels. Increasing APOE4 copy number was also associated with increases in CSF tau and p-tau levels (Table 1). Lastly, increasing APOE4 copy number was associated with decreases in the proportion of patients who were A⁻T⁻ and increases in the proportion who were A⁺T⁺ (Table 1).

Model 1: CSF proteomic changes and APOE4 gene dosage

To identify protein-derived peptides whose level(s) differ as a function of APOE4 copy number, a linear model correcting for age and gender was used to test the relationship between APOE4 copy number and CSF peptide levels. Initial analysis evaluated 294 peptides with sufficient replicability (ICC >= 0.6) for measuring CSF expression variance by APOE4 copy number (Table 2). In this model, 12 of 294 peptides had significant expression changes (q <= 0.05) associated with increasing APOE4 copy number (Table 3 and Figure 1A). CSF levels of an APOE4-specific peptide (APOE_LGADMEDVR) were substantially higher in APOE4 carriers vs. non-carriers (q = 6.53 x 10⁻¹), which is consistent with prior studies [37, 38]. Two peptides
found in all APOE isotypes had elevated CSF expression with increasing APOE4 copy number (APOE_LAVYQAGAR, \(q = 0.027 \); APOE_LGPLVEQGR, \(q = 0.027 \)), whereas CSF expression of an APOE2-specific peptide was found to decrease with higher APOE4 gene dosage (APOE_CLAVYQAGAR, \(q = 0.027 \)). Increasing APOE4 allele copy number was associated with reduced expression of a peptide from the acute inflammatory marker C-reactive protein (CRP) (\(q = 0.006 \)). Increasing APOE4 copy number was associated with increasing expression of peptides derived from the glycoprotein Chitinase 3-like protein 1 (CH3L1; also known as YKL-40) (\(q < 0.05 \)), the cardiac injury biomarker heart-type fatty acid binding protein (FABPH) (\(q < 0.05 \)) and the glycolytic enzyme fructose-bisphosphate aldolase A (ALDOA; \(q < 0.05 \)).

All 24 peptides from 8 complement pathway proteins measured in this dataset showed a trend towards lower CSF expression of as a function of increasing APOE4 gene dose (Table 4, Figure 1A). Although these effects were not significant for any individual complement protein derived peptide (\(p > 0.05 \) for each, prior to multiple correction comparison), the odds of this happening for 24 unrelated peptides by chance would be 1 over \(2^{24} \), or less than 1 in 16 million. Alternatively, since these 24 peptides were derived from 8 complement pathway proteins, the odds of 8 proteins at random all showing lower expression trends as a function of APOE4 allele copy number would be \(1/2^8 \), or a 1 out of 256 chance.

Model 2: APOE4-dependent CSF peptide changes and clinical status

Because APOE4 is found in AD patients at disproportionately high frequencies compared to the general population, it is possible that the above findings reflect confounding by AD clinical status (and neurodegeneration) rather than changes directly related to increased APOE4 copy number itself. Therefore, a second linear model was used that corrected for clinical status.
(normal control, MCI, or dementia due to AD) in addition to the items in model 1, to test for associations between *APOE4* copy number and CSF peptide expression levels. In this second model, only 3 of 294 peptides had statistically significant *APOE4* copy number-related changes in CSF expression levels (Table 3 and Figure 1B). Increasing APOE4-copy number was associated with increased expression of the *APOE4*-specific peptide (LGADMEDVR) ($q < 0.01$) and decreased expression the CRP-derived peptide (ESDTSYVSLK) ($q < 0.01$). A pan-APOE peptide (LGPLVEQGR) had increased expression associated with increased *APOE4* copy number in this model ($q = 0.038$). CH3L1 (YKL-40)-, FABPH-, and ALDOA-derived peptides that showed significant *APOE4*- copy number-related changes in expression in model 1 (above) no longer remained statistically significant after correcting for disease status and multiple comparisons, although there was still a trend toward increased CSF protein expression for each ($q = 0.077$, $q = 0.077$, and $q = 0.079$, respectively). As in the first model (not controlling for AD clinical status), none of the 24 complement protein-derived peptides demonstrated statistically significant differences as a function of *APOE4* copy number. Yet, as in the first model, in this model each of the 24 peptides from the 8 complement pathway-related proteins in this dataset showed trends towards decreasing CSF expression with increasing *APOE4* gene dosage (Table 4). Although none of these trends were statistically significant on their own ($p>0.05$ for each, prior to multiple comparison) the odds of 24 unrelated peptides all showing this pattern of decreased expression by chance would be less than 1 over 2^{24}, or less than 1 in 16 million. Alternatively, since these 24 peptides were derived from 8 complement pathway proteins, the odds of 8 proteins all showing lower expression trends as a function of *APOE4* allele copy number would be $1/2^8$, or a 1 out of 256 chance.
Discussion

Here, we found that increasing APOE4 copy number is associated with increased CSF ALDOA, CH3L1 and FABH levels and decreased CSF CRP levels. Further, the CRP decrease remained significant even after controlling for AD clinical status. We also found significant associations between APOE4 copy number and several peptides from the APOE protein itself. As expected, we found a strong positive correlation between APOE4 copy number and CSF expression of the APOE4 allele specific peptide LGADMEDVR [37, 38]. Both of our statistical models (controlling for age and sex, or for age, sex and AD clinical status) showed that increased APOE4 copy number was associated with increased expression of peptides common to all APOE isoforms, such as LGPLVEQGR, which is often used as a measure of total APOE protein level.

There is conflicting evidence in the literature on whether the APOE4 carriers have altered CSF APOE protein levels. One study used ELISA assays and found that APOE4 carriers had higher CSF APOE levels vs non-carriers [39]. Two different studies using mass spectrometry found no change in CSF APOE levels in APOE4 carriers [40, 41], though one of them found that APOE4 carriers had lower plasma APOE levels [40]. Similarly, another study using ELISA assays found reduced peripheral plasma APOE levels in APOE4 carriers versus non-carriers [42]. Yet, both models in this study showed that increasing APOE4 copy number was associated with increased CSF pan-APOE peptide levels. It is unclear whether these APOE4 copy number related increases in APOE protein levels are responsible for increased AD risk, versus whether the increased AD risk is due to functional changes in the APOE protein due to the two amino acid changes encoded by the APOE4 allele. Indeed, it remains debated in the field to what extent
APOE4-related increased AD risk is due to a toxic gain of function(s) or a loss of protective function(s) (reviewed in [43]).

We also found that increasing APOE4 copy number was associated with reduced CSF levels of the CRP-derived peptide (ESDTSYVSLK). CRP is often thought of as a serum biomarker used to follow the acute progression of inflammation and infection [44]. CRP is also increasingly recognized as an active mediator of inflammatory and apoptotic processes, including the activation of the classical complement pathway [45] and the opsonization of atherosclerotic plaques [46] and infarcted myocardial tissues [47]. While elevated CRP levels are typically viewed as an acute marker of active inflammation, low and low-normal CRP levels have been found in chronic inflammatory diseases such as lupus [48], rheumatoid arthritis [49], and inflammatory bowel disease [50, 51]. Thus, the reduced CSF CRP levels observed here may similarly reflect chronically increased inflammation within the CNS of APOE4 carriers.

Indeed, several studies have consistently found that reduced CRP levels in peripheral blood [52-55] and in CSF [56, 57] correlate with increased cognitive dysfunction and further AD progression in an APOE4-dependent manner. Notably, CRP has been implicated in the early development of amyloid plaque formation, neuronal damage, and AD risk [58-61]. The decreased CSF CRP levels observed here may reflect CRP deposition in beta-amyloid plaques and its consumption as a pro-inflammatory mediator in AD pathology, as has been suggested previously [62]. Future studies should examine the role of APOE4-dependent modulation of CRP expression and function in AD progression.

We also found that increasing APOE4 copy was also associated with increased expression of peptides derived from glycoprotein Chitinase 3-like protein 1 (CH3L1; also known as YKL-40) (q < 0.05), the cardiac injury biomarker heart-type fatty acid binding protein.
(FABPH) (q< 0.05) and the enzyme fructose-bisphosphate aldolase A (ALDOA; q< 0.05) as seen in a prior studies [63]. CH3L1 is a glycoprotein hypothesized to modulate tissue remodeling, and is highly expressed in reactive astrocytes after both acute and chronic neuroinflammation [64-66]. Another recent study using ELISA assays also found increased CSF CH3L1 (YKL-40) levels in APOE4 carriers [67], further corroborating the findings presented here. Taken together, these findings strongly suggest that APOE4 carriers have increased neuroinflammation and astroglial activation [68-70] independent of their AD clinical status.

Our finding of APOE4-copy number related increases in CSF FABPH levels fits with prior work showing that APOE4 knock-in mice have elevated hepatic FABPH levels compared to APOE2 knock-in mice [71]. FABPH is thought to be a potential marker of dyslipidemia that affects membrane stability and contributes to neuronal degeneration as well as atherosclerosis [72], and has been used as a cardiac injury biomarker [73]. While there is strong evidence to link FABPH expression to neuronal loss and AD [74], it is unclear how APOE4 modulates FABPH expression. It is also unclear whether the APOE4 copy number related increases in CSF FABPH levels reflect increases in FABPH transcription/translation (or reductions in its breakdown) specifically within the brain, versus within the liver [71] or other peripheral organs.

Another protein that was present at higher levels in the CSF as a function of APOE4 copy number in this study was ALDOA, a glycolytic enzyme that catalyzes the breakdown of fructose 1-6-diphosphate. Some studies have suggested brain glucose dysregulation plays a key role in Alzheimer’s disease [75], and a recent study has proposed that CSF ALDOA levels are a sensitive and specific biomarker of cognitive impairment due to Alzheimer’s disease [76]. Thus, our finding of an APOE4 copy number-dependent increase in CSF ALDOA levels may reflect glycolytic dysregulation within the CNS of APOE4 carriers, which may contribute to AD risk.
The elevations in ALDOA-, FABPH-, and CH3L1 (YKL-40)-derived peptides observed here in model 1 did not remain statistically significant after correcting for AD clinical status, although there remained a trend toward increased CSF protein expression for each even after multiple comparison correction (q = 0.079, q = 0.077, and q = 0.077, respectively). Thus, both APOE4 copy number and AD clinical status may be associated with increased CSF levels of these three proteins, and the lack of statistical significance in model 2 (accounting for AD clinical status) may be a type statistical 2 error (i.e. insufficient sample size). Future studies with a larger sample size will be necessary to determine the relationship between APOE4 copy number and CSF levels of these proteins after correcting for AD clinical status.

Further, while not statistically significant, increasing APOE4 copy number was associated with a trend towards lower expression for all peptides (N=24 total) derived from the 8 complement pathway proteins in this dataset (Fig 1A, B). These trends toward lower complement protein-derived peptide expression in APOE4 carriers are supported by two other recent studies that also found lower CSF complement protein levels in APOE4 carriers [77, 78]. Further, these APOE4 copy number-related trends toward lower CSF complement protein levels were present even after controlling for AD clinical status in model 2. This suggests that APOE4 copy number may be directly associated with decreased CSF complement protein levels, i.e. that this relationship is not simply due to confounding related to an increased frequency of dementia due to AD in APOE4 carriers. As discussed above, the chance that the level of 24 peptides (or 8 proteins) would all decrease due to chance alone is extremely low, suggesting that this likely represents a true biological finding. Nonetheless, the average APOE4 copy number dependent log expression changes for each individual complement protein-derived peptide were small, and would correspond to an absolute reductions of ~13% and ~26% in each complement pathway.
protein in APOE4 heterozygotes and APOE4 homozygotes (vs non-carriers), respectively. These lower complement protein levels could represent either decreased transcription/translation or increased degradation in APOE4 carriers. The former possibility is unlikely, though, because prior work has shown that APOE4 is not associated with alterations in the transcription or translation of complement pathway proteins [79]. Thus, the findings reported here are most likely consistent with a trend towards increased complement pathway protein degradation in association with increased APOE4 copy number.

Complement protein degradation can be caused by complement cascade activation, which involves cleavage and degradation of complement proteins [80]. Thus, the trend towards APOE4-copy number related reductions in CSF complement protein levels may be a sign of increased complement pathway activation causing increased complement protein degradation in the CNS of APOE4 carriers. Recent work has suggested that the APOE protein is a negative regulator of complement pathway activation [81]. Taken together with our results, this raises the possibility that the APOE4 allele results in reduced inhibition (i.e. disinhibition) of the complement pathway, thus resulting in APOE4 copy number-dependent trends towards lower CSF levels of complement pathway proteins.

Complement-dependent synaptic phagocytosis is thought to represent a neurodegeneration mechanism in AD [82, 83]; thus, our results raise the possibility that APOE4 may contribute to AD risk by increasing complement pathway activation and resultant synaptic phagocytosis and neurodegeneration. Overall, even though the APOE4-related reduction trends in CSF complement protein levels seen here were not statistically significant, the convergence of our human findings with data from cellular [79] and mouse models [84] suggest that further
studies are warranted on the relationship between APOE4 copy number and CSF complement protein levels.

This work has several limitations. First, the data analyzed here were originally obtained to study CSF proteomic correlates of dementia due to AD or MCI [29], rather than to study the effects of APOE4 copy number on the CSF proteome. Although we controlled for clinical status in model 2, the relatively smaller number of study patients within each clinical status cohort (i.e. normal, MCI, or dementia due to AD) likely limited statistical power to detect effects of APOE4 on the CSF proteome itself. Thus, future studies on this topic should focus on larger clinically homogenous study populations (i.e. all cognitively normal individuals, or all individuals with dementia due to AD) to reduce variance within each genotype group, and to improve statistical power. Second, the data reported here were from a targeted proteomic platform that only measured 8 of the over 30 proteins in the full complement pathway [85]. Future studies should focus on quantitating the CSF levels of each complement pathway protein to develop a more complete understanding of the relationship between APOE4 allele copy number and the classical, lectin and alternative complement cascades.

Nonetheless, the data presented here provide strong support for studying the hypothesis that the increased AD risk in APOE4 carriers is related to early molecular/cellular changes within CRP-related biological processes, and those involving ALDOA-, FABPH- and YKL-40 and the complement pathway.
References

Table 1: Baseline characteristics of ADNI Patients, grouped by number of APOE4 alleles. Values represent means (SD), or percentages in the case of gender (for females), or count per group (for AT classification).

<table>
<thead>
<tr>
<th></th>
<th>0 APOE4 alleles (N=148)</th>
<th>1 APOE4 allele (N=104)</th>
<th>2 APOE4 alleles (N=35)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>75.94 (6.88)</td>
<td>75.43 (6.77)</td>
<td>71.86 (6.88)</td>
<td>0.007^1</td>
</tr>
<tr>
<td>Gender (Male)</td>
<td>89 (60.1%)</td>
<td>63 (60.6%)</td>
<td>20 (57.1%)</td>
<td>0.935^2</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td>0.473^3</td>
</tr>
<tr>
<td>Asian</td>
<td>3 (2.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td></td>
</tr>
<tr>
<td>Black/African American</td>
<td>5 (3.4%)</td>
<td>5 (4.8%)</td>
<td>0 (0.0%)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>140 (94.6%)</td>
<td>99 (95.2%)</td>
<td>35 (100.0%)</td>
<td></td>
</tr>
<tr>
<td>Years of Education</td>
<td>16 [14, 18]</td>
<td>16 [14, 18]</td>
<td>16 [14, 16]</td>
<td>0.227^4</td>
</tr>
<tr>
<td>CSF Aβ*</td>
<td>988.47 (397.74)</td>
<td>643.16 (208.95)</td>
<td>482.48 (160.98)</td>
<td><0.001^1</td>
</tr>
<tr>
<td>CSF Tau**</td>
<td>273.08 (115.89)</td>
<td>335.57 (109.98)</td>
<td>348.32 (120.79)</td>
<td><0.001^1</td>
</tr>
<tr>
<td>CSF p-tau**</td>
<td>25.72 (12.59)</td>
<td>33.81 (12.73)</td>
<td>35.64 (15.21)</td>
<td><0.001^1</td>
</tr>
<tr>
<td>Clinical Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>65 (43.9%)</td>
<td>19 (18.3%)</td>
<td>2 (5.7%)</td>
<td></td>
</tr>
<tr>
<td>MCI</td>
<td>64 (43.2%)</td>
<td>53 (51.0%)</td>
<td>18 (51.4%)</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>19 (12.8%)</td>
<td>32 (30.8%)</td>
<td>15 (42.9%)</td>
<td></td>
</tr>
<tr>
<td>ATN Classification**+</td>
<td></td>
<td></td>
<td></td>
<td><0.001^5</td>
</tr>
<tr>
<td>A-T-</td>
<td>59 (40.4%)</td>
<td>8 (7.8%)</td>
<td>0 (0.0%)</td>
<td></td>
</tr>
<tr>
<td>A+T-</td>
<td>37 (25.3%)</td>
<td>26 (25.5%)</td>
<td>9 (25.7%)</td>
<td></td>
</tr>
<tr>
<td>A-T+</td>
<td>13 (8.9%)</td>
<td>3 (2.9%)</td>
<td>0 (0.0%)</td>
<td></td>
</tr>
<tr>
<td>A+T+</td>
<td>37 (25.3%)</td>
<td>65 (63.7%)</td>
<td>26 (74.3%)</td>
<td></td>
</tr>
</tbody>
</table>

P-value key: 1= ANOVA, 2= Chi-square, 3=Fisher’s Exact, 4=Kruskal Wallis

*28 patients not included who returned values >1700; 4 patients with no BL CSF measures.

** 4 patients with no BL CSF measures

^ A+ defined as Aβ values below 1065 pg/ml, T+ defined as p-tau values over 27 pg/ml
<table>
<thead>
<tr>
<th>Protein 1</th>
<th>Protein 2</th>
<th>Protein 3</th>
<th>Protein 4</th>
<th>Protein 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1433Z</td>
<td>CMGA</td>
<td>IFNB</td>
<td>NELL2</td>
<td>SCG3</td>
</tr>
<tr>
<td>A1AT</td>
<td>CNDP1</td>
<td>IGSF8</td>
<td>NEO1</td>
<td>SDCB1</td>
</tr>
<tr>
<td>A1AT</td>
<td>CNTF</td>
<td>IL10</td>
<td>NEUS</td>
<td>SE6L1</td>
</tr>
<tr>
<td>A1BG</td>
<td>CNTN1</td>
<td>IL12B</td>
<td>NFH</td>
<td>SHSA7</td>
</tr>
<tr>
<td>A2GL</td>
<td>CNTN2</td>
<td>IL17</td>
<td>NFL</td>
<td>SIAE</td>
</tr>
<tr>
<td>A2MG</td>
<td>CO2</td>
<td>IL1A</td>
<td>NFM</td>
<td>SLIK1</td>
</tr>
<tr>
<td>A4</td>
<td>CO3</td>
<td>IL27A</td>
<td>NGF</td>
<td>SMOC1</td>
</tr>
<tr>
<td>AACT</td>
<td>CO4A</td>
<td>IL6</td>
<td>NICA</td>
<td>SODC</td>
</tr>
<tr>
<td>AATM</td>
<td>CO5</td>
<td>IL6RA</td>
<td>NLGN3</td>
<td>SODE</td>
</tr>
<tr>
<td>AFAM</td>
<td>CO6</td>
<td>ITIH1</td>
<td>NPTX1</td>
<td>SORC1</td>
</tr>
<tr>
<td>ALDOA</td>
<td>CO8B</td>
<td>ITIH5</td>
<td>NPTX2</td>
<td>SORC2</td>
</tr>
<tr>
<td>AMBP</td>
<td>COCH</td>
<td>ITM2B</td>
<td>NPTXR</td>
<td>SORC3</td>
</tr>
<tr>
<td>AMD</td>
<td>CRP</td>
<td>JAK1</td>
<td>NPY</td>
<td>SPON1</td>
</tr>
<tr>
<td>APLP2</td>
<td>CSTN1</td>
<td>KAIN</td>
<td>NRCAM</td>
<td>SPRL1</td>
</tr>
<tr>
<td>APOA</td>
<td>CSTN3</td>
<td>KCC2B</td>
<td>NRX1A</td>
<td>STX12</td>
</tr>
<tr>
<td>APOA1</td>
<td>CUTA</td>
<td>K167</td>
<td>NRX2A</td>
<td>SV2A</td>
</tr>
<tr>
<td>APOB</td>
<td>CYTC</td>
<td>KLK10</td>
<td>NRX3A</td>
<td>SYNJ1</td>
</tr>
<tr>
<td>APOC1</td>
<td>DAG1</td>
<td>KLK11</td>
<td>NSG1</td>
<td>SYT11</td>
</tr>
<tr>
<td>APOD</td>
<td>DIAC</td>
<td>KLK12</td>
<td>OSTP</td>
<td>TADB1</td>
</tr>
<tr>
<td>APOE</td>
<td>ENOG</td>
<td>KLK3</td>
<td>PCD17</td>
<td>TAU</td>
</tr>
<tr>
<td>B2MG</td>
<td>ENPP2</td>
<td>KLK6</td>
<td>PCMD1</td>
<td>TCRG1</td>
</tr>
<tr>
<td>B3GN1</td>
<td>EXTL2</td>
<td>KLK9</td>
<td>PCSK1</td>
<td>TEN3</td>
</tr>
<tr>
<td>BACE1</td>
<td>FABP5</td>
<td>KLKB1</td>
<td>Pdia3</td>
<td>TGFB1</td>
</tr>
<tr>
<td>BASP1</td>
<td>FABP6</td>
<td>KNG1</td>
<td>PDYN</td>
<td>TGFB2</td>
</tr>
<tr>
<td>BDNF</td>
<td>FABP7</td>
<td>KPCZ</td>
<td>PEDF</td>
<td>TGFB3</td>
</tr>
<tr>
<td>BTD</td>
<td>FABPH</td>
<td>KPYM</td>
<td>PGRP2</td>
<td>TGN2</td>
</tr>
<tr>
<td>C1QA</td>
<td>FABPI</td>
<td>L1CAM</td>
<td>PIMT</td>
<td>THR8</td>
</tr>
<tr>
<td>C1QB</td>
<td>FAM3C</td>
<td>LAMB2</td>
<td>PLDX1</td>
<td>TIMP1</td>
</tr>
<tr>
<td>C3AR</td>
<td>FBLN1</td>
<td>LFTY2</td>
<td>PLMN</td>
<td>TNF14</td>
</tr>
<tr>
<td>CA2D1</td>
<td>FBLN3</td>
<td>LPHN1</td>
<td>PPN</td>
<td>TNFA</td>
</tr>
<tr>
<td>CAD13</td>
<td>FETUA</td>
<td>LRC4B</td>
<td>PRDX1</td>
<td>TNR1B</td>
</tr>
<tr>
<td>CADM3</td>
<td>FMOD</td>
<td>LTBP2</td>
<td>PRDX2</td>
<td>TNR21</td>
</tr>
<tr>
<td>CAH1</td>
<td>GFAP</td>
<td>MIME</td>
<td>PRDX3</td>
<td>TNR6</td>
</tr>
<tr>
<td>CATA</td>
<td>GLNA</td>
<td>MMP2</td>
<td>PRDX4</td>
<td>TRBM</td>
</tr>
<tr>
<td>CATD</td>
<td>GOGB1</td>
<td>MMP9</td>
<td>PRDX5</td>
<td>TRFE</td>
</tr>
<tr>
<td>CATL1</td>
<td>GOLM1</td>
<td>MMRN2</td>
<td>PRDX6</td>
<td>TRFM</td>
</tr>
<tr>
<td>CCKN</td>
<td>GRIA4</td>
<td>MOG</td>
<td>PTGDS</td>
<td>TTHY</td>
</tr>
<tr>
<td>CCL25</td>
<td>HBA</td>
<td>MTHR</td>
<td>PTPRD</td>
<td>UBB</td>
</tr>
<tr>
<td>CD14</td>
<td>HBB</td>
<td>MUC18</td>
<td>PTPRN</td>
<td>UCHL1</td>
</tr>
<tr>
<td>CD59</td>
<td>HEMO</td>
<td>NBL1</td>
<td>PVRL1</td>
<td>VSN</td>
</tr>
<tr>
<td>CERU</td>
<td>HERC4</td>
<td>NCAM1</td>
<td>RIMS3</td>
<td>VGF</td>
</tr>
<tr>
<td>CFAB</td>
<td>I18BP</td>
<td>NCAM2</td>
<td>SAP</td>
<td>VTDB</td>
</tr>
<tr>
<td>CH3L1</td>
<td>IBP2</td>
<td>NCAN</td>
<td>SCG1</td>
<td>X3CL1</td>
</tr>
<tr>
<td>CLUS</td>
<td>IBP6</td>
<td>NEGR1</td>
<td>SCG2</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
</tbody>
</table>

This is a table with columns labeled CLUS, IBP6, NEGR1, and SCG2.
Table 3: Summary of Expression for the Indicated Peptides/proteins by APOE4 copy number in multivariate models accounting for age and gender (model 1) or age, gender and clinical status (Model 2).

<table>
<thead>
<tr>
<th>Protein_Peptide amino acid sequence</th>
<th>Log Fold Change</th>
<th>Average Expression</th>
<th>t</th>
<th>P Value</th>
<th>FDR Corrected P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: Top 20 Protein Peptides whose Expression differed as function of APOE4 copy number, controlling for age and gender.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APOE_LGADMEDVR</td>
<td>3.597</td>
<td>9.193</td>
<td>28.182</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>CRP_ESDTSYVSLK</td>
<td>-0.624</td>
<td>15.228</td>
<td>-4.177</td>
<td>0.000</td>
<td>0.006</td>
</tr>
<tr>
<td>CH3L1_ILGQQVPYATK</td>
<td>0.136</td>
<td>23.114</td>
<td>3.926</td>
<td>0.000</td>
<td>0.008</td>
</tr>
<tr>
<td>FABPH_SIVTLDGGK</td>
<td>0.157</td>
<td>14.664</td>
<td>3.968</td>
<td>0.000</td>
<td>0.008</td>
</tr>
<tr>
<td>CH3L1_SFTLASSETGVGAPISGP GIPGR</td>
<td>0.133</td>
<td>18.225</td>
<td>3.800</td>
<td>0.000</td>
<td>0.010</td>
</tr>
<tr>
<td>FABPH_SLGVGFATR</td>
<td>0.133</td>
<td>15.706</td>
<td>3.775</td>
<td>0.000</td>
<td>0.010</td>
</tr>
<tr>
<td>CH3L1_VTIDSSYDIAK</td>
<td>0.130</td>
<td>21.303</td>
<td>3.580</td>
<td>0.000</td>
<td>0.017</td>
</tr>
<tr>
<td>ALDOA_ALQASALK</td>
<td>0.129</td>
<td>19.168</td>
<td>3.439</td>
<td>0.001</td>
<td>0.025</td>
</tr>
<tr>
<td>APOE_CLAVYQAGAR</td>
<td>-0.691</td>
<td>8.715</td>
<td>-3.321</td>
<td>0.000</td>
<td>0.027</td>
</tr>
<tr>
<td>APOE_LAVYQAGAR</td>
<td>0.275</td>
<td>25.410</td>
<td>3.351</td>
<td>0.001</td>
<td>0.027</td>
</tr>
<tr>
<td>APOE_LGPLVEQGR</td>
<td>0.256</td>
<td>22.419</td>
<td>3.317</td>
<td>0.001</td>
<td>0.027</td>
</tr>
<tr>
<td>ALDOA_QLLLTADDR</td>
<td>0.113</td>
<td>16.246</td>
<td>3.124</td>
<td>0.002</td>
<td>0.048</td>
</tr>
<tr>
<td>APOE_AATVGSLAGQPLQER</td>
<td>0.222</td>
<td>20.145</td>
<td>2.835</td>
<td>0.005</td>
<td>0.111</td>
</tr>
<tr>
<td>ENOG_GNPTEVDLYTAK</td>
<td>0.083</td>
<td>11.624</td>
<td>2.723</td>
<td>0.007</td>
<td>0.144</td>
</tr>
<tr>
<td>AMBP_FLYHK</td>
<td>-0.142</td>
<td>11.800</td>
<td>-2.604</td>
<td>0.010</td>
<td>0.190</td>
</tr>
<tr>
<td>KNG1_TVGSDFYFSFK</td>
<td>-0.156</td>
<td>15.118</td>
<td>-2.533</td>
<td>0.012</td>
<td>0.204</td>
</tr>
<tr>
<td>PRDX1_DISLSDYK</td>
<td>0.088</td>
<td>14.604</td>
<td>2.533</td>
<td>0.012</td>
<td>0.204</td>
</tr>
<tr>
<td>PRDX2_IGKPAPDFK</td>
<td>0.208</td>
<td>12.992</td>
<td>2.514</td>
<td>0.012</td>
<td>0.204</td>
</tr>
<tr>
<td>CFAB_VSEADSSNADWVTK</td>
<td>-0.105</td>
<td>16.220</td>
<td>-2.440</td>
<td>0.015</td>
<td>0.229</td>
</tr>
<tr>
<td>KPYM_LDIDSPITAR</td>
<td>0.100</td>
<td>18.520</td>
<td>2.433</td>
<td>0.016</td>
<td>0.229</td>
</tr>
</tbody>
</table>

<p>| Model 2: Proteins/peptides whose expression differed as a function of APOE4 copy number, controlling for age, gender, and clinical status (normal, MCI or AD) |
|-------------------------------------|-----------------|--------------------|----|---------|-----------------------|
| APOE_LGADMEDVR | 3.594 | 9.193 | 27.105 | 0.000 | 0.000 |
| CRP_ESDTSYVSLK | -0.633 | 15.228 | -4.074 | 0.000 | 0.009 |
| APOE_LGPLVEQGR | 0.287 | 22.419 | 3.588 | 0.000 | 0.038 |
| APOE_LAVYQAGAR | 0.292 | 25.410 | 3.421 | 0.001 | 0.053 |
| ALDOA_ALQASALK | 0.121 | 19.168 | 3.105 | 0.002 | 0.077 |
| CH3L1_ILGQQVPYATK | 0.112 | 23.114 | 3.133 | 0.002 | 0.077 |
| CH3L1_SFTLASSETGVGAPISGP GIPGR | 0.112 | 18.225 | 3.107 | 0.002 | 0.077 |
| FABPH_SIVTLDGGK | 0.131 | 14.664 | 3.208 | 0.001 | 0.077 |
| ALDOA_QLLLTADDR | 0.111 | 16.246 | 2.963 | 0.003 | 0.079 |
| AMBP_FLYHK | -0.167 | 11.800 | -2.953 | 0.003 | 0.079 |
| APOE_AATVGSLAGQPLQER | 0.247 | 20.145 | 3.039 | 0.003 | 0.079 |
| APOE_CLAVYQAGAR | -0.630 | 8.715 | -2.919 | 0.004 | 0.079 |</p>
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Value1</th>
<th>Value2</th>
<th>Value3</th>
<th>Value4</th>
<th>Value5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH3L1_VTIDSSYDIAK</td>
<td>0.109</td>
<td>21.303</td>
<td>2.915</td>
<td>0.004</td>
<td>0.079</td>
</tr>
<tr>
<td>FABPH_SLGVGFATR</td>
<td>0.108</td>
<td>15.706</td>
<td>2.998</td>
<td>0.003</td>
<td>0.079</td>
</tr>
<tr>
<td>KNG1_TVGSDTFYSFK</td>
<td>-0.185</td>
<td>15.118</td>
<td>-2.898</td>
<td>0.004</td>
<td>0.079</td>
</tr>
<tr>
<td>AMBP_ETLLQDFR</td>
<td>-0.171</td>
<td>18.977</td>
<td>-2.777</td>
<td>0.006</td>
<td>0.107</td>
</tr>
<tr>
<td>A2GL_DLLLPQPDLR</td>
<td>-0.148</td>
<td>25.898</td>
<td>-2.701</td>
<td>0.007</td>
<td>0.127</td>
</tr>
<tr>
<td>A2GL_VAAGAFQGLR</td>
<td>-0.139</td>
<td>23.017</td>
<td>-2.458</td>
<td>0.015</td>
<td>0.152</td>
</tr>
<tr>
<td>AATC_IVASTLSNPTELFEETGNVK</td>
<td>0.086</td>
<td>12.727</td>
<td>2.517</td>
<td>0.012</td>
<td>0.152</td>
</tr>
<tr>
<td>AATM_FVTQVTISGTGALR</td>
<td>0.097</td>
<td>10.314</td>
<td>2.496</td>
<td>0.013</td>
<td>0.152</td>
</tr>
</tbody>
</table>
Table 4: CSF Complement Cascade Peptides/protein Expression by APOE4 copy number in multivariate models accounting for age and gender (model 1) or age, gender and clinical status (Model 2).

<table>
<thead>
<tr>
<th>Protein_Peptide amino acid sequence</th>
<th>Log Fold Change</th>
<th>Average Expression</th>
<th>t</th>
<th>P Value</th>
<th>FDR Corrected P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: CSF Complement Protein/Peptides Expression as a function of APOE4 copy number, controlling for age and gender.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1QB_LEQGENVFLQATDK</td>
<td>-0.035</td>
<td>17.128</td>
<td>-1.071</td>
<td>0.285</td>
<td>0.690</td>
</tr>
<tr>
<td>C1QB_VPGLYYFTYHASSR</td>
<td>-0.055</td>
<td>17.604</td>
<td>-1.215</td>
<td>0.225</td>
<td>0.643</td>
</tr>
<tr>
<td>CFAB_DAQYAPGYDK</td>
<td>-0.117</td>
<td>16.401</td>
<td>-2.207</td>
<td>0.028</td>
<td>0.290</td>
</tr>
<tr>
<td>CFAB_VSEADSSNADVTK</td>
<td>-0.105</td>
<td>16.220</td>
<td>-2.440</td>
<td>0.015</td>
<td>0.229</td>
</tr>
<tr>
<td>CFAB_YGLVVTATYPK</td>
<td>-0.122</td>
<td>22.532</td>
<td>-2.335</td>
<td>0.020</td>
<td>0.259</td>
</tr>
<tr>
<td>CO2_DFHINLFR</td>
<td>-0.055</td>
<td>18.691</td>
<td>-1.086</td>
<td>0.279</td>
<td>0.690</td>
</tr>
<tr>
<td>CO2_HAIILLTDGK</td>
<td>-0.064</td>
<td>15.695</td>
<td>-1.540</td>
<td>0.125</td>
<td>0.542</td>
</tr>
<tr>
<td>CO2_SSGQWQTPGATR</td>
<td>-0.069</td>
<td>15.922</td>
<td>-1.556</td>
<td>0.121</td>
<td>0.542</td>
</tr>
<tr>
<td>CO3_IHWESASLLR</td>
<td>-0.206</td>
<td>14.006</td>
<td>-1.707</td>
<td>0.089</td>
<td>0.454</td>
</tr>
<tr>
<td>CO3_TELRPGETLNVNFLR</td>
<td>-0.057</td>
<td>10.150</td>
<td>-1.448</td>
<td>0.149</td>
<td>0.590</td>
</tr>
<tr>
<td>CO4A_DHAVDLIQK</td>
<td>-0.029</td>
<td>22.142</td>
<td>-0.591</td>
<td>0.555</td>
<td>0.891</td>
</tr>
<tr>
<td>CO4A_GSFEFPVGDAVSK</td>
<td>-0.024</td>
<td>25.297</td>
<td>-0.446</td>
<td>0.656</td>
<td>0.931</td>
</tr>
<tr>
<td>CO4A_LGQYASPTAK</td>
<td>-0.031</td>
<td>21.701</td>
<td>-0.599</td>
<td>0.549</td>
<td>0.891</td>
</tr>
<tr>
<td>CO4A_NVNFQK</td>
<td>-0.013</td>
<td>18.387</td>
<td>-0.281</td>
<td>0.779</td>
<td>0.948</td>
</tr>
<tr>
<td>CO4A_VLSLAQEQQVGGPSPEK</td>
<td>-0.037</td>
<td>19.989</td>
<td>-0.813</td>
<td>0.417</td>
<td>0.793</td>
</tr>
<tr>
<td>CO4A_VTASDPLDTLSEGALSPGGVASLLR</td>
<td>-0.026</td>
<td>18.008</td>
<td>-0.650</td>
<td>0.516</td>
<td>0.868</td>
</tr>
<tr>
<td>CO5_DINYVNPVIK</td>
<td>-0.035</td>
<td>16.181</td>
<td>-0.512</td>
<td>0.609</td>
<td>0.908</td>
</tr>
<tr>
<td>CO5_TLLPVSKPEIR</td>
<td>-0.037</td>
<td>17.209</td>
<td>-0.575</td>
<td>0.566</td>
<td>0.891</td>
</tr>
<tr>
<td>CO5_VFQFLEK</td>
<td>-0.031</td>
<td>18.210</td>
<td>-0.481</td>
<td>0.631</td>
<td>0.917</td>
</tr>
<tr>
<td>CO6_ALNLPLEYNSALYSR</td>
<td>-0.093</td>
<td>16.297</td>
<td>-1.515</td>
<td>0.131</td>
<td>0.550</td>
</tr>
<tr>
<td>CO6_SEYGAALWEK</td>
<td>-0.098</td>
<td>15.760</td>
<td>-1.793</td>
<td>0.074</td>
<td>0.449</td>
</tr>
<tr>
<td>CO8B_IPGIFELGISSQSDR</td>
<td>-0.029</td>
<td>14.760</td>
<td>-0.399</td>
<td>0.690</td>
<td>0.948</td>
</tr>
<tr>
<td>CO8B SDLEV AHYK</td>
<td>-0.063</td>
<td>13.090</td>
<td>-1.071</td>
<td>0.285</td>
<td>0.690</td>
</tr>
<tr>
<td>CO8B_YEFILK</td>
<td>-0.052</td>
<td>18.893</td>
<td>-0.876</td>
<td>0.382</td>
<td>0.758</td>
</tr>
</tbody>
</table>

Model 2: CSF Complement proteins/peptides expression as a function of APOE4 copy number, controlling for age, gender, and clinical status (normal, MCI or AD)

<table>
<thead>
<tr>
<th>Protein_Peptide amino acid sequence</th>
<th>Log Fold Change</th>
<th>Average Expression</th>
<th>t</th>
<th>P Value</th>
<th>FDR Corrected P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1QB_LEQGENVFLQATDK</td>
<td>-0.042</td>
<td>17.128</td>
<td>-1.241</td>
<td>0.216</td>
<td>0.622</td>
</tr>
<tr>
<td>C1QB_VPGLYYFTYHASSR</td>
<td>-0.053</td>
<td>17.604</td>
<td>-1.135</td>
<td>0.257</td>
<td>0.669</td>
</tr>
<tr>
<td>CFAB_DAQYAPGYDK</td>
<td>-0.134</td>
<td>16.401</td>
<td>-2.435</td>
<td>0.016</td>
<td>0.152</td>
</tr>
<tr>
<td>CFAB_VSEADSSNADVVTK</td>
<td>-0.111</td>
<td>16.220</td>
<td>-2.471</td>
<td>0.014</td>
<td>0.152</td>
</tr>
<tr>
<td>CFAB_YGLVVTATYPK</td>
<td>-0.134</td>
<td>22.532</td>
<td>-2.474</td>
<td>0.014</td>
<td>0.152</td>
</tr>
<tr>
<td>CO2_DFHINLFR</td>
<td>-0.065</td>
<td>18.691</td>
<td>-1.232</td>
<td>0.219</td>
<td>0.623</td>
</tr>
<tr>
<td>CO2_HAIILLTDGK</td>
<td>-0.070</td>
<td>15.695</td>
<td>-1.625</td>
<td>0.105</td>
<td>0.412</td>
</tr>
<tr>
<td>CO2_SSGQWQTPGATR</td>
<td>-0.077</td>
<td>15.922</td>
<td>-1.689</td>
<td>0.092</td>
<td>0.377</td>
</tr>
<tr>
<td>CO3_IHWESASLLR</td>
<td>-0.267</td>
<td>14.006</td>
<td>-2.136</td>
<td>0.034</td>
<td>0.235</td>
</tr>
<tr>
<td></td>
<td>Sequence</td>
<td>Score</td>
<td>E-value</td>
<td>ID50</td>
<td>ID75</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>CO3</td>
<td>TELRPGETLNVNFLVR</td>
<td>-0.081</td>
<td>10.150</td>
<td>-1.997</td>
<td>0.047</td>
</tr>
<tr>
<td>CO4A</td>
<td>DHAVDLIIQK</td>
<td>-0.038</td>
<td>22.142</td>
<td>-0.745</td>
<td>0.457</td>
</tr>
<tr>
<td>CO4A</td>
<td>GSFEFPGDAVSK</td>
<td>-0.035</td>
<td>25.297</td>
<td>-0.611</td>
<td>0.541</td>
</tr>
<tr>
<td>CO4A</td>
<td>LGQYASPTAK</td>
<td>-0.041</td>
<td>21.701</td>
<td>-0.760</td>
<td>0.448</td>
</tr>
<tr>
<td>CO4A</td>
<td>NVNFQK</td>
<td>-0.019</td>
<td>18.387</td>
<td>-0.392</td>
<td>0.695</td>
</tr>
<tr>
<td>CO4A</td>
<td>VLSLAQEQVGGSGPTEK</td>
<td>-0.049</td>
<td>19.989</td>
<td>-1.039</td>
<td>0.300</td>
</tr>
<tr>
<td>CO5</td>
<td>DINEVNPVIK</td>
<td>-0.045</td>
<td>16.181</td>
<td>-0.630</td>
<td>0.529</td>
</tr>
<tr>
<td>CO5</td>
<td>TLQPVSNKEIR</td>
<td>-0.050</td>
<td>17.209</td>
<td>-0.757</td>
<td>0.449</td>
</tr>
<tr>
<td>CO5</td>
<td>VFQFLEK</td>
<td>-0.043</td>
<td>18.210</td>
<td>-0.644</td>
<td>0.520</td>
</tr>
<tr>
<td>CO6</td>
<td>ALNHLPLEYNLYSR</td>
<td>-0.113</td>
<td>16.297</td>
<td>-1.772</td>
<td>0.077</td>
</tr>
<tr>
<td>CO6</td>
<td>SEYGALAWEK</td>
<td>-0.118</td>
<td>15.760</td>
<td>-2.072</td>
<td>0.039</td>
</tr>
<tr>
<td>CO8B</td>
<td>IPGIFELGIISSQSR</td>
<td>-0.057</td>
<td>14.476</td>
<td>-0.761</td>
<td>0.447</td>
</tr>
<tr>
<td>CO8B</td>
<td>SDLEVAHYK</td>
<td>-0.082</td>
<td>13.090</td>
<td>-1.342</td>
<td>0.181</td>
</tr>
<tr>
<td>CO8B</td>
<td>YEFLIK</td>
<td>-0.077</td>
<td>18.883</td>
<td>-1.263</td>
<td>0.208</td>
</tr>
</tbody>
</table>
Fig 1 Volcano Plot of CSF Protein/Peptide Expression by APOE genotype, for the top 20 proteins and the complement cascade proteins in model 1 (A), and for the top 20 proteins and the complement cascade proteins in model 2 (B).

(A)

(B)