Cochlear implant-related speech processing may diminish the advantage of exposure to infant-directed speech a)

Meisam K. Arjmandi 1,b), Derek Houston 2,c), Yuanyuan Wang 2, Laura C. Dilley 1

1 Department of Communicative Sciences and Disorders, Michigan State University, 1026 Red Cedar Road, East Lansing, Michigan 48824, USA

2 Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, 915 Olentangy River Road, Columbus, Ohio, 43212, USA

Date of manuscript submission: May 14, 2020

a) Portions of this work were presented at the 177th and 178th Meeting of the Acoustical Society of America.

b) Current affiliation: Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA. Email: meisam_khalilarjmandi@meei.harvard.edu

c) Also at: Nationwide Children’s Hospital, Columbus, OH, USA
ABSTRACT

Caregivers modify their speech when talking to infants, a specific type of speech known as infant-directed speech (IDS). This speaking style facilitates language learning compared to adult-directed speech (ADS) in infants with normal hearing (NH). While infants with NH and those with cochlear implants (CIs) prefer listening to IDS over ADS, it is yet unknown how CI speech processing may affect the acoustic distinctiveness between ADS and IDS, as well as the degree of intelligibility of these. This study analyzed speech of seven female adult talkers to investigate the effects of simulated CI speech processing on (1) acoustic distinctiveness between ADS and IDS, (2) estimates of intelligibility of caregivers’ speech in ADS and IDS, and (3) individual differences in caregivers’ ADS-to-IDS modification and speech intelligibility. Results suggest that CI speech processing is substantially detrimental to the acoustic distinctiveness between ADS and IDS, as well as to the intelligibility benefit derived from ADS-to-IDS modifications. Moreover, the observed considerable variability across individual talkers in acoustic implementation of ADS-to-IDS modification and speech intelligibility was significantly reduced due to CI speech processing. The findings are discussed in the context of the link between IDS and language learning in infants with CIs.

Keywords: Infant-directed speech, cochlear implant, acoustic distance, speech intelligibility
I. INTRODUCTION

A. Infant-directed speech and language learning

Caregivers around the world modify their speaking style from adult-directed speech (ADS) to infant-directed speech (IDS) when talking to infants (Fernald & Kuhl, 1987; Snow, 1977). Greater exposure to IDS and some aspects of its acoustic and linguistic properties facilitates language learning in children with normal hearing (NH) (Cristia & Seidl, 2014; Liu, Kuhl, & Tsao, 2003; Song, Demuth, & Morgan, 2010; Trainor, Austin, & Desjardins, 2000; Weisleder & Fernald, 2013). The supportive role of IDS in infants’ language learning occurs through several pathways, such as directing and holding infants’ attention to speech (Fernald, 1985, 1989; Kitamura, Thanavishuth, Burnham, & Luksaneeyanawin, 2001; Kuhl et al., 1997; Schachner & Hannon, 2011; Wang, Bergeson, & Houston, 2017, 2018; Werker, Pegg, & McLeod, 1994), while making speech more clear by providing more salient cues for speech discrimination (Karzon, 1985), word segmentation (Singh & Nestor, 2009), speech segmentation (Thiessen, Hill, & Saffran, 2005), and word learning (Ma, Golinkoff, Houston, & Hirsh-Pasek, 2011). Taken together, these studies demonstrate the supportive role of IDS in infants’ early language learning. The purpose of the present study was to investigate how signal processing associated with cochlear implants (CIs) impacts acoustic cues pertaining to distinguishing and recognizing words in IDS versus ADS.

B. Infants’ attention to IDS

In listening to speech, infants with NH and those with CIs demonstrate increased attention to IDS compared to ADS (The ManyBabies Consortium, 2020; Cooper, Abraham, Berman, & Staska, 1997; Fernald, 1985; Wang et al., 2017; Wang, Bergeson, et al., 2018; Werker & McLeod, 1989; Werker et al., 1994). This effect of IDS on attention begins very early as observed in newborns and infants as young as 4 months old (Cooper & Aslin, 1990; Fernald, 1985; Werker & McLeod,
1989), demonstrating the capability of infants in using subtle acoustic information to distinguish IDS from ADS while having acquired only minimal linguistic knowledge. Multiple acoustic-phonetic cues have been identified as potentially supporting infants’ robust preference for IDS over ADS, such as higher pitch (Cooper & Aslin, 1990; Fernald, 1989), greater pitch fluctuation (Fernald & Simon, 1984), slower speaking rate (Leong, Kalashnikova, Burnham, & Goswami, 2014; Narayan & McDermott, 2016; Song et al., 2010), and an expanded vowel space (Burnham et al., 2015) in IDS compared to ADS. These distinctive acoustic-phonetic cues are manifested in spectro-temporal representations of caregivers’ speech, which are actively incorporated through infants’ highly sensitive auditory systems to recognize IDS as distinct from ADS (Kuhl, 2004; Maye, Werker, & Gerken, 2002; McMurray & Aslin, 2005; Telkemeyer et al., 2009). Although IDS over ADS preference was observed in infants with CIs (Wang et al., 2017), it is still not clear how they are different from their peers with NH in terms of access to spectral information involved in distinguishing IDS from ADS. Infants with CIs may face difficulties in resolving distinctive acoustic information toward performing this task, leading potentially to a disruption in the developmental time course of CI infants’ attention to IDS and delayed language development, as compared to that of NH infants. These considerations suggest a benefit of examining how CI-related speech processing may affect acoustic distinctiveness and intelligibility of IDS compared with ADS, and how this acoustic distinctiveness and intelligibility may differ as a function of individual talkers’ speech patterns.

C. CI vocoding and acoustic distinction between IDS and ADS

Infants with CIs have access to a spectro-temporally degraded version of speech, due to limitations of electric stimulation to faithfully transmit this information to the auditory nerve. Friesen et al. (2001) showed that speech recognition in listeners with NH improved by increasing the number
of spectral channels in the vocoded speech, confirming that spectral resolutions are limited by the number of channels in the CI vocoder (Friesen et al., 2001; Fu, Chinchilla, Nogaki, & Galvin, 2005; Fu & Nogaki, 2005; Luo & Poeppel, 2007; Shannon, Zeng, Kamath, Wygonski, & Ekelid, 1995; Svirsky, 2017). Temporal resolution is also negatively affected by low-pass filtering of amplitude envelope, which disrupts faithful transmission of temporal fine-structure in speech to auditory nerves (Rubinstein, 2004; Svirsky, 2017). Therefore, the CI vocoding process may negatively affect infants’ perception of segmental and suprasegmental features of IDS.

Transmission of multiple speech cues are affected by the CI vocoding process, including fundamental frequency (F0) (Mehta & Oxenham, 2017; Qin & Oxenham, 2005; Svirsky, 2017), timbre (Galvin, Mok, Dowell, & Briggs, 2008), and melody (Mehta & Oxenham, 2017; Zeng, Tang, & Lu, 2014), which are recognized as major attributes that distinguish IDS from ADS (Fernald, 1989; Fernald & Simon, 1984; Wang et al., 2017). For example, pitch is an important perceptual cue for children’s robust attention in listening to IDS (Fernald, 1985; Piazza, Iordan, & Lew-Williams, 2017) and was recognized as the most prominent acoustic determinant in distinguishing IDS from ADS (Fernald & Kuhl, 1987). It also contributes to lexical segmentation of speech in listeners with CIs (Spitzer, Liss, Spahr, Dorman, & Lansford, 2009), a task critical for word learning. Recognition of emotion from speech is another important aspect in processing IDS (Trainor et al., 2000), which relies heavily on perceiving pitch height and fluctuation. Listeners with CIs performed worse in emotion recognition as the number of spectral channels in vocoded speech was decreased (Luo, Fu, & Galvin, 2007). Kong et al. (2004) further found that melodic pitch perception is negatively affected by reducing the number of spectral channels. Taken together, these studies demonstrate that children with CIs have partial access to spectro-temporal cues in speech, particularly ones that significantly contribute to the distinctiveness of IDS and
ADS, which may interfere with the connection between listening to IDS and developing better language skills. Therefore, it is important to understand how the CI vocoding process may acoustically impact the distinction between IDS and ADS - a major knowledge gap that the present study aimed to address.

D. CI vocoding and intelligibility of IDS

Another possible way IDS may foster language learning is by making speech more intelligible. Prior studies showed evidence that IDS may provide acoustic cues that assist infants for parsing linguistic units in speech. Karzon (1985) showed that the exaggerated suprasegmental features of IDS may provide supportive perceptual cues for syllabification of multisyllabic sequences. In another study, infants performed better long-term word recognition when the words presented in IDS compared to ADS (Singh & Nestor, 2009). It was further shown that IDS facilitates word segmentation (Thiessen et al., 2005). Although evidence on intelligibility benefits of IDS over ADS have somehow been contradictory at the level of segmental speech cues (e.g., Kuhl et al., 1997; McMurray, Kovack-Lesh, Goodwin, & McEchron, 2013), there might be an intelligibility benefit associated with other properties of IDS (e.g., prosodic cues), similar to the effects observed in close analogues of a “clear speech” register (Bradlow, Kraus, & Hayes, 2003; Ferguson & Kewley-Port, 2007). Caregivers’ modification of speaking style from ADS to IDS impacts suprasegmental aspects of speech such as pitch contour and speech rate, which have been shown to be strong predictors of speech clarity and intelligibility (Bradlow et al., 2003; Cutler, Dahan, & van Donselaar, 1997; Ferguson & Poore, 2010; Ferguson & Quené, 2014; Spitzer, Liss, & Mattys, 2007; Watson & Schlauch, 2008). Different choices of speaking style often impact speech rate, where slower rate is thought to contribute to enhanced intelligibility of clear speech compared to...
conversational speech both in typical listeners (Ferguson et al., 2010) and recipients of CIs (Li et al., 2011; Zanto, Hennigan, Östberg, Clapp, & Gazzaley, 2013).

Limited spectral resolution of the cochlear implant device affects the quality by which listeners with CIs receive speech cues (Croghan, Duran, & Smith, 2017; Jain & Vipin Ghosh, 2018; Peng, Hess, Saffran, Edwards, & Litovsky, 2019; Qin & Oxenham, 2005), which may negatively impact CI users’ ability to recognize words and phonemes, especially children (Griecocalub, Saffran, & Litovsky, 2010; Peng et al., 2019). Therefore, any likely beneficial role of IDS in improvement of speech intelligibility is prone to change when caregivers’ speech is perceived through a CI device. Prior studies have shown that performance of listeners with CIs is considerably poorer than listeners with NH in understanding sentences spoken with relatively higher rate (Zanto et al., 2013), which is an acoustic dimension signaling distinction of IDS from ADS (i.e., slower speaking rate in IDS compared to ADS). Variation of fundamental frequency (F_0) is another acoustic dimension of the IDS-vs-ADS distinction that contributes to speech recognition (Spitzer, Liss, Spahr, Dorman, & Lansford, 2009; Spitzer et al., 2007). Findings on the effect of these acoustic properties on intelligibility of caregivers’ speech is still controversial, and little is known about the effects of CI speech processing on intelligibility of caregivers’ speech in ADS and IDS conditions. The present study aimed to address whether IDS is beneficial for intelligibility improvement and how this effect may be compromised depending on listeners’ hearing status (NH vs. CI).

E. Individual differences in acoustic implementation of IDS and speech intelligibility

Listeners’ familiarity with the range of variability in voice timbres of individual talkers is important for robust identification and recognition of individuals’ voices (Lavan, Burton, Scott, & McGettigan, 2019; Souza, Gehani, Wright, & McCloy, 2013). Caregiver-specific acoustic
modification is important for effective caregiver-infant interaction and significantly contributes to infants’ recognition of caregivers’ voices both before and after birth (Beauchemin et al., 2011; Kisilevsky et al., 2003), as well as for neural development of infants’ auditory cortices (Webb, Heller, Benson, & Lahav, 2015). Singh (2008) showed that exposure to IDS with relatively higher variability facilitates word recognition in infants by forming a relatively wider and more generalizable lexical category, highlighting the supportive role of exposure to a wide range of ADS-to-IDS acoustic variation in effective processing of caregivers’ speech. The degree of acoustic variability that caregivers introduce to their infants may vary across individuals. The acoustic characteristics of IDS reveal finer details about the unique voice timbre of individual caregivers, which potentially contributes to infant’ identification of individual caregivers (Piazza et al., 2017). It is, however, unclear how CI vocoding impacts the range of acoustic variability within and across caregivers due to shifts in caregivers’ speaking style (i.e., ADS to IDS), a change which likely eliminates acoustic details and potentially negatively impacts the supportive role of IDS in recognizing caregivers’ voices. CI vocoding is also detrimental to the acoustic distance of voices across caregivers, which potentially makes distinguishing talkers from each other more challenging for infants with CIs, compared to those with NH. The present study aimed to investigate these questions.

F. Benefits of investigations of acoustic properties of CI-related speech processing

Studies aimed at understanding speech perception in individuals with CIs can be characterized as involving one of three general approaches. The first approach examines performance of listeners with NH in response to vocoded speech to simulate hearing in listeners with CIs (Dorman, Loizou, & Rainey, 1997a; Jahn, DiNino, & Arenberg, 2019; Mehta & Oxenham, 2017; Qin & Oxenham, 2003, 2005). The second method involves directly study of how listeners with CIs perform in
various speech recognition tasks (Brown & Bacon, 2010; Kong, Stickney, & Zeng, 2005; Peng, Tomblin, & Turner, 2008; Peng, Hess, Saffran, Edwards, & Litovsky, 2019). In a third method – the one which we focus on in the present paper – acoustic properties of simulated CI speech and unprocessed analogs are analyzed comparatively. This comparative analysis can be facilitated through the use of various quantitative metrics that emulate speech recognition in CI users as proxies to analyze properties of CI speech and its perception in listeners with CIs (Jain & Vipin Ghosh, 2018; Qin & Oxenham, 2003; Santos, Cosentino, Hazrati, Loizou, & Falk, 2013). Analysis of simulated CI speech and quantitative measures of speech quality and intelligibility tailored to listeners with CIs provide repeatable, automated, inexpensive, and fast tools for gaining preliminary evidence about speech perception in individuals with CIs. As such, a comparative analysis method offers benefits for undertaking efficient investigations for further study, and as such provides benefits over various major challenges that accompany the first two categories of studies, such as participant recruitment, time, and cost.

G. Current study

In the present study, we analyzed unprocessed and simulated CI speech of seven female talkers who spoke utterances both in ADS and IDS. This permitted examining how CI speech processing may affect acoustic distinctiveness between ADS and IDS, as well as intelligibility of caregivers’ speech under modifications of speaking style. A signal processing-based approach was taken here to analyze ADS and IDS stimuli of the female talkers using noise-excited envelope vocoder processing, which is one type of CI-simulated speech which has been used in a number of prior studies (Dorman, Loizou, Fitzke, & Tu, 1998; Dorman, Loizou, & Rainey, 1997b; Friesen et al., 2001; Fu, Shannon, & Wang, 1998; Loizou, Dorman, & Tu, 1999; Mehta, Lu, & Oxenham, 2020;
Our approach involved calculating three main types of acoustic or statistical measures. First, we calculated mel-frequency cepstral coefficients (MFCCs), which have been shown in multiple studies to be effective for characterizing the distinctive qualities of IDS vs. ADS (Inoue, Nakagawa, Kondou, Koga, & Shinohara, 2011; Piazza et al., 2017; Sulpizio et al., 2018). Modeling the frequency response of human auditory system via MFCCs captures various acoustic-phonetic features, that distinguish IDS and ADS, such as shifts in timbre (Piazza et al., 2017) and acoustic-phonetic distinctiveness between IDS and ADS (Inoue et al., 2011), including in other languages (e.g., Italian and German) (Sulpizio et al., 2018). MFCCs are also able to effectively reflect caregivers’ emotional state and vocal affect (e.g., happiness vs. sadness, Sato & Obuchi, 2007; Slaney & McRoberts, 1998), attributes that help explain infants’ preference for IDS over ADS (Fernald, 2018; Horowitz, 1983; Mastropieri & Turkewitz, 1999; Moore, Spence, & Katz, 1997; Papoušek, Bornstein, Nuzzo, Papoušek, & Symmes, 1990; Singh, Morgan, & Best, 2002; Walker-Andrews & Grolnick, 1983; Walker-Andrews & Lennon, 1991). Furthermore, MFCCs allowed us to analyze spectral properties of vocoded speech, which was not feasible to do based on calculation of common acoustic properties such as fundamental frequency (F₀), as these cues are not present in CI-simulated speech. Second, to quantify the acoustic distinctiveness between IDS and ADS, we calculated a Mahalanobis distance (MD) measure over MFCCs features. MD is a multivariate distance metric that has been widely used to measure the distances between vectors in a variety of multidimensional feature spaces (Arjmandi, Dilley, & Wagner, 2018; Masnan et al., 2015; Xiang, Nie, & Zhang, 2008). Third, to understand how the vocoding process may influence intelligibility of caregivers’ speech, we calculated the speech-to-reverberation-modulation energy ratio (SRMR)
to model the signal-based intelligibility of signals delivered to listeners with NH, as well as its CI-tailored version (SRMR-CI) to model intelligibility of signals delivered to listeners with CIs (Santos et al., 2013). These measures were examined both within and across speakers to model the impacts of speaking styles (IDS vs. ADS) and listener group (NH vs. CI) on signals’ distinctiveness and (estimated) intelligibility. All these analyses were implemented in Matlab 2019a (The Mathworks Web-Site [http://www.mathworks.com]).

The following four specific questions were addressed in this study. First, we asked how simulated CI speech processing affects the acoustic distinctiveness of IDS compared with ADS stimuli, particularly as a function of degree of spectral degradation (i.e., number of spectral channels) in CI-simulated speech. We hypothesized that (a) CI-related speech processing significantly degrades the acoustic-phonetic distinctiveness of IDS compared with ADS, and further that (b) increasing the number of channels would not compensate for degradation imposed by CI-related processing. Second, we asked whether there is signal-based evidence that IDS may be more intelligible than ADS, as gauged by the SRMR metric (to simulate a NH listening condition) or the SRMR-CI metric (to simulate a CI listening condition). We hypothesized that IDS is more intelligible than ADS, but that (estimated) intelligibility would vary as a function of (simulated) listening status (NH vs. CI). Third, we asked to what extent the acoustic distinctiveness between IDS and ADS varies across individual caregivers, as well as how such individual differences might be impacted by CI speech processing. We predicted individual differences across caregivers in acoustic implementation of the differences between ADS and IDS; we further predicted that CI-related speech processing would decrease the extent of acoustic distinctiveness as a function of speech style, leading to loss of intra- and inter-subject acoustic variability in terms of IDS vs. ADS distinctiveness. Fourth, and finally, we asked how (estimated) intelligibility
Running Title: Speech style through cochlear implant

differences for IDS compared with ADS vary across individual caregivers, and how such intelligibility differ as a function of hearing status (as gauged by SRMR vs. SRMR-CI differences to simulate effects of NH vs. CI listening conditions, respectively). We hypothesized that intelligibility differences for IDS vs. ADS would vary across caregivers, and that these intelligibility differences would be more similar as estimated for CI listeners, compared with NH listeners.

II. METHODS

A. Speech stimuli

Seven female adult native talkers of American English ranging in age from 21 to 24 years old spoke fifteen utterances in IDS and ADS (See Appendix in Supplementary Material for the list of stimuli). The utterances were elicited for use in separate infant word-learning experiments in which infants were exposed to a novel target word (i.e., “modi”) in the context of behavioral measures of infant word recognition to assess whether infants learned the novel word from IDS better than ADS. To elicit stimuli, the talkers were instructed to speak utterances as if talking to an infant (IDS condition) or an adult (ADS condition); this procedure was similar to that used in Wang et al., (2017; 2018).

Speech stimuli were recorded using an AKG D 542 ST-S microphone in a sound booth and digitized at a sampling rate of 44.1 kHz with 16-bit resolution. The distance between talkers’ mouths and the microphone was controlled to assure the quality of the recorded stimuli. Prior to processing as discussed below, the start and end points of recorded utterances were manually identified in Praat software (Boersma & Weenink, 2001) to remove preceding and following silent portions. All participants were fully informed about the purpose and procedure of this study, and
they had given informed consent to participate. This study was approved by the Institutional
Review Boards of the Ohio State University and Michigan State University.

B. Creation of noise-vocoded speech stimuli

CI-simulated versions of the unprocessed (natural) stimuli were created using noise-excited
envelope vocoder processing at six levels of spectral degradation, corresponding to 4-, 8-, 12-, 16-
, 22- and 32-channel noise-vocoded stimuli. The choice of number of channels was made to cover
both the actual number of channels in FDA-approved devices (12, 16, 22) and to query ranges of
variation ranging from minimal cues used in prior studies (4, 8) out to 32 channels to examine CI
vocoder scenarios with higher spectral resolution. The natural stimuli consisting of spoken IDS or
ADS were processed in AngelSim™ Cochlear Implant and Hearing Loss Simulator (Fu, 2019;
Emily Shannon Fu Foundation, www.tigerspeech.com) using 4-, 8-, 12-, 16-, 22-, and 32-channel
noise-vocoding CI-simulated stimuli; the noise vocoding method followed the procedure in
Shannon et al. (1995). The original stimuli were first band-passed filtered using the Greenwood
function (emulating the Greenwood frequency-place map) into \(N \) (\(N = \{4, 8, 12, 16, 22, 32\} \)
adjacent frequency channels ranging from 200 Hz to 8000 Hz. This was implemented in
AngelSim™ by setting the absolute lower- and higher-frequency threshold for analysis and carrier
filters to 200 Hz and 8000 Hz with a filter slope of 24 dB/Oct (Fu, 2019). These frequency ranges
are fairly close to the corner frequencies of the Cochlear Nucleus speech processors in CI listeners
cochlear implant devices (Crew & Galvin, 2012; Winn & Litovsky, 2015), which emulate the
performance of average CI listeners in speech envelope discrimination (Chatterjee & Oberzut,
2011; Chatterjee & Peng, 2008). The same analysis filter and carrier filter of the Greenwood
function was used to analyze white noise as a carrier signal (Greenwood, 1990). The AngelSim
software used this setup to extract a time-varying amplitude envelope of speech stimuli under each
frequency band using half-wave rectification and then modulated independent white-noise carriers. There were 210 stimuli per speech style condition (7 talkers x 15 stimuli x 2 speaking styles). Including the noise-vocoded versions of these utterances (at 4, 8, 12, 16, 22, and 32-channels), we analyzed 1470 (210 x 7 levels of speech degradation) utterances in the present study.

C. Using MFCC features to characterize acoustic properties of IDS and ADS

We calculated 12 MFCCs for each speech stimulus to characterize its acoustic information (Hunt, Lennig, & Mermeletein, 1980; Imai, 1983; Shaneh & Taheri, 2009). Figure 1 illustrates this step for a sample pair of IDS-ADS stimuli in the process for measuring the acoustic distinctiveness between each ADS-IDS stimulus pair. To calculate MFCCs, each stimulus was re-sampled at 16 kHz using a Hamming window of 25 ms applied to each frame, with a frame shift of 10 ms, following the procedure used in Inoue et al. (2011). For each pair of IDS and ADS stimuli (S_{IDS}^{ij} and S_{ADS}^{ij} in Figure 1), MFCCs were calculated for all frames of these stimuli ($MFCCs_{IDS}^{ij}$ and $MFCCs_{ADS}^{ij}$). Here, i indicates the index of the speech stimulus, $i = \{1,2,3,\ldots,15\}$, and j is the index for the talker, $j = \{1,2,3,\ldots,7\}$. Unlike previous studies in which a single, time-averaged MFCC vector was calculated to represent acoustic information in IDS and ADS (e.g., Piazza et al., 2017), our approach took advantage of all MFCCs derived from all frames of a speech stimuli to calculate the acoustic distinctiveness between ADS-IDS pairs of stimuli within a multidimensional feature space, thereby preserving the details about spectro-temporal information in speech at the level of frame. Since each analyzed pair of IDS and ADS stimuli contained identical word strings, our analysis was expected to mainly model the acoustic-phonetic effect of caregivers’ speaking styles (IDS vs. ADS).

>FIG. 1 about here <<<<<<<<
D. Acoustic distinctiveness quantification using Mahalanobis Distance (MD) measure

After representing acoustic features of pairs of IDS and ADS stimuli by calculating their MFCCs, the acoustic distinctiveness between each pair was measured by calculating MD on the corresponding MFCC matrices (i.e., $MFCC_{IDS_{ij}}$ and $MFCC_{ADS_{ij}}$) using a 12-dimensional feature space (i.e., 12 MFCCs) (Maesschalck & Massart, 2000; Masnan et al., 2015; Xiang et al., 2008).

MD is a multivariate statistical approach that evaluates distances between two multidimensional feature vectors or matrices that belong to two classes (here IDS vs. ADS) (Arjmandi et al., 2018; Heijden, Ferdinand, Ridder, & Tax., 2005; Maesschalck & Massart, 2000; Masnan et al., 2015).

The MD calculation returns the distance between means of two classes (here IDS and ADS) relative to the average per-class covariance matrix (Maesschalck & Massart, 2000). Here, acoustic properties of each class were represented by two feature matrices (here, MFCCs). The larger the distance between pairs of $MFCC_{IDS_{ij}}$ and $MFCC_{ADS_{ij}}$ feature vectors, the lower the overlap between two classes of IDS and ADS; this corresponds in turn to greater acoustic distance (or distinctiveness) between IDS and ADS stimuli.

Each row of the calculated MFCCs matrix for utterance i from talker j (e.g., $MFCC_{IDS_{ij}}$ or $MFCC_{ADS_{ij}}$) corresponds to a frame of that utterance, and 12 MFCCs were presented on the columns of this matrix. Therefore, the dimension of each MFCC matrix was $N_F \times 12$, where N_F refers to the number of frames in that speech stimulus. The acoustic distinctiveness between IDS and ADS stimuli for each female talker j was computed by averaging the fifteen MD values obtained from that talker’s fifteen IDS-ADS pairs ($MD_j = \frac{1}{15} \sum_{i=1}^{15} MD_{ij}$, $i=1,2,...,15$). This process was separately performed on pairs of IDS and ADS stimuli for seven levels of spectral degradation – unprocessed, 32-, 22-, 16-, 12-, 8-, and/or 4-channel noise-vocoded CI-simulated...
Running Title: Speech style through cochlear implant

stimuli – to give average MDs used to examine (1) how the acoustic distinctiveness between IDS and ADS stimuli changes as a function of CI processing (and number of spectral channels), (2) how individual caregivers vary in acoustic distinctiveness between IDS and ADS stimuli, and (3) how CI noise-vocoding affects this pattern of individual differences across talker.

E. Estimation of speech intelligibility using quantitative metrics of speech-to-reverberation-modulation energy ratio (SRMR)

As shown in Figure 1, we estimated the degree of intelligibility of each speech stimulus as it might be experienced by listeners with NH or with CIs. To approximate stimulus intelligibility as associated with NH, we calculated the quantitative metric of speech-to-reverberation-modulation energy ratio (SRMR) for IDS and ADS (unprocessed) stimuli, respectively (Santos et al., 2013). This metric has previously been validated as an approximation of intelligibility of speech to listeners with NH in behavioral tasks (Falk et al., 2015; Santos et al., 2013). Further, to approximate intelligibility as might be experienced by listeners with CIs, we calculated an adapted version of the SRMR metric, which was also developed by Falk et al. (2013) to tailor the SRMR metric for CI users; this adapted metric is known as SRMR-CI (Santos et al., 2013).

To calculate SRMR, an (unprocessed) speech stimulus was first filtered by a 23-channel gammatone filterbank in order to emulate cochlear function. Next, a Hilbert transform was applied to output signals from each of the 23 filters in the filterbank to obtain their temporal envelopes. Next, modulation spectral energy for each critical band was calculated by windowing stimulus temporal envelope and computing the discrete Fourier transform. To emulate frequency selectivity in the modulation domain, the modulation frequency bins were grouped into eight overlapping modulation bands with logarithmically-spaced center frequencies between 4 and 128 Hz. Finally, the SRMR value was obtained by calculating the ratio of the average modulation energy in the
first four modulation bands (~ 3–20 Hz) to the average modulation energy in the last four modulation bands (~ 20-160 Hz), as explained in Santos et al., (2013).

To calculate SRMR-CI, a 22-channel filterbank was used instead of a 23-channel filterbank in order to emulate the structure of filterbanks in Nucleus CI devices. In addition, the 4-128 Hz range of modulation for filterbank center frequencies was replaced by a 4–64 Hz range to better emulate CI users’ performance (Santos et al., 2013). Although these measures have not primarily been developed to estimate the effect of talkers’ speaking style on speech intelligibility, the signal processing algorithms used in these metrics estimate the distribution of energy in various frequency bands, as well as other spectral properties that are expected to emulate fairly well performance of NH and CI users in speech recognition. Note that both SRMR and SRMR-CI intelligibility metrics were calculated from unprocessed speech stimulus inputs, rather than noise-vocoded, CI-simulated analog signals. In fact, intelligibility of signals as estimated for different hearing statuses (NH or CI) is inherently modeled through the difference in algorithmic implementation of these metrics (SRMR vs. SRMR-CI, respectively) (Santos et al., 2013).

As shown in Figure 1, SRMR and SRMR-CI values were separately calculated (SRMR$_{IDS,j}$, SRMR$_{ADS,j}$, SRMR-CI$_{IDS,j}$ and SRMR-CI$_{ADS,j}$) for each pair of stimuli in IDS and ADS conditions (S$_{IDS,j}$ and S$_{ADS,j}$). Intelligibility of speech stimuli produced by talker j in the two conditions (ADS and IDS) was summarized by averaging the relevant SRMR-related values over the 15 stimuli spoken by this talker at each of these two conditions. Therefore, for talker j, four values were calculated: (i) $SRMR_{IDS,j} = \frac{1}{15} \sum_{i=1}^{15} SRMR_{IDS,ij}$, (ii) $SRMR_{ADS,j} = \frac{1}{15} \sum_{i=1}^{15} SRMR_{ADS,ij}$, (iii) $SRMR-CI_{IDS,j} = \frac{1}{15} \sum_{i=1}^{15} SRMR-CI_{IDS,ij}$, (iv) $SRMR-CI_{ADS,j} = \frac{1}{15} \sum_{i=1}^{15} SRMR-CI_{ADS,ij}$. These four values for each talker j provided an approximation of the intelligibility of IDS and ADS stimuli spoken...
by this talker, as heard by listeners with NH (SRMR\textsubscript{IDS\textsubscript{j}} and SRMR\textsubscript{ADS\textsubscript{j}}) and by those with CIs (SRMR\textsubscript{CI\textsubscript{j}}IDS and SRMR\textsubscript{CI\textsubscript{j}}ADS). These values were then used to address (1) how the intelligibility of speech is affected by the two separate factors of caregivers’ speaking styles (ADS vs. IDS), as well as by (simulated) group hearing status (NH vs. CI), (2) the extent to which the degree of impact of ADS-to-IDS speaking style modifications on intelligibility varies across individual caregivers, and (3) how this variation is affected by (simulated) hearing status (NH vs. CI).

F. Statistical analysis

We constructed two Generalized Linear Mixed Models (GLMMs) in Matlab (using the `fitglme` function) (Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2017; Quené & van den Bergh, 2008) in order to (1) identify whether changes in acoustic distinctiveness (i.e., MD) between IDS and ADS due to CI noise vocoding were statistically significant, and (2) to examine the effect of speaking style (IDS vs. ADS) and simulated hearing status (NH vs. CI), and any potential interaction, on intelligibility of speech (as measured by SRMR and SRMR-CI to simulate NH and CI hearing statuses, respectively). For the first GLMM, the speech degradation level (i.e., 4, 8, 12, 16, 22, and 32-channel, and unprocessed) was entered into the model as a fixed predictor, and MDs were defined as the response variable. The individual female talkers and speech stimuli were defined as random effects (intercepts) in the model to account for quality differences that might exist due to talker- and stimulus-specific variation. A post hoc test using Tukey’s multiple comparison approach (`multcompare`, MATLAB, Mathworks) was conducted to examine statistically significant mean differences for all possible pairwise comparisons across seven levels of spectral degradation (4, 8, 12, 16, 22, 32-channels, and unprocessed). In the second GLMM, factors of speaking style (IDS or ADS) and simulated hearing status (NH or CI) were entered into
Running Title: Speech style through cochlear implant

the model as independent fixed variables; the estimated speech intelligibility (cf. SRMR or SRMR-
CI values) corresponded to the response variable in the model. Talkers and speech stimuli were
entered as random-effect intercepts in the model to account for quality and/or information
differences that might exist due to talker- and stimulus-specific variation.

Measures of central tendency and variability (i.e., mean, standard deviation, and range)
were calculated as descriptive statistics to evaluate the degree of variability across caregivers in
acoustic implementation of IDS and ADS. We further calculated coefficients of variance (CVs)
for MD differences between ADS and IDS conditions for both unprocessed and simulated CI
speech within a 22-channel noise-vocoder to examine whether variability across individual
caregivers in ADS-IDS acoustic distinctiveness decreased as a function of speech degradation
(unprocessed vs. 22-channel simulated CI speech). The same analysis was performed to examine
whether changes in speech intelligibility – due to an ADS-to-IDS style shift – were variable across
talkers and/or how variability changed as (simulated) listener hearing status changed (from NH to
CI). We further calculated Pearson correlation coefficients to examine whether changes in acoustic
distinctiveness and speech intelligibility due to changes in speaking style (ADS to IDS) across
degradation levels (unprocessed vs. 22-channel vocoded) and hearing status (NH vs. CI) involved
a linear transformation.

III. RESULTS

A. Effects of CI-related spectral degradation on ADS-vs-IDS acoustic distinctiveness

Fig. 2 shows the mean and distribution of MDs obtained as a function of signal degradation that
ranged from a no-degradation (i.e., unprocessed) condition to CI-simulated speech for which the
number of spectral channels in the noise-vocoder was gradually reduced from 32 to 4. Overall,
MDs between IDS and ADS monotonically decreased with decreasing numbers of spectral
channels in the noise-vocoder, thereby highlighting the detrimental effects of noise vocoding in CI devices for signal fidelity. As illustrated in Fig. 2, the acoustic distinctiveness between IDS and ADS is reduced by CI speech processing systems and further reduced through decreasing the number of spectral channels. Even the highest-fidelity CI-simulated condition (32-channel noise-vocoded speech) showed a substantial drop in acoustic distinctiveness between IDS and ADS, relative to the unprocessed condition. The average MD across the six noise-vocoded conditions showed a decline of approximately 67% relative to MD at the unprocessed condition, indicating that a large portion of acoustic information involved in conveying the distinction between IDS and ADS was lost due to CI-related speech processing.

Table I represents the results of the GLMM analysis to test statistical significance of the effect of CI-related speech processing on MD. As this table suggests, the detrimental effect of CI-related processing, as captured in the decrease in the number of spectral channels on the distinctiveness between IDS and ADS was statistically significant ($\beta = -0.886$, $t = -16.54$, $p < 0.0001$). Post hoc testing using a Tukey’s multiple comparison approach revealed that the effect of noise vocoding on the decrease in MDs was statistically significant for comparisons of all pairs of speech degradation conditions except three (32 vs. 22 channels, 22 vs. 16 channels, and 16 vs. 12 channels).

B. Effects of CI-related speech processing on intelligibility of ADS and IDS

Fig. 3 shows average SRMR or SRMR-CI values estimating intelligibility of ADS and IDS stimuli for NH and CI listeners. The bar graphs show the group data, corresponding to the means averaged...
across talkers. The figure suggests that speech spoken in IDS is more intelligible than matched
utterances in ADS, regardless of whether intelligibility is estimated for listeners with NH or those
with CIs. On average, the stimuli spoken in IDS were ~15% more intelligible than those spoken
in ADS for listeners with normal hearing, as measured by the SRMR metric. This average
improvement in intelligibility of IDS stimuli over ADS stimuli was ~5.7% for listeners with CIs,
as estimated by SRMR-CI, suggesting that filtering speech through a CI speech processor
decreases the supportive effects of IDS for speech intelligibility improvement.

The results from the GLMM analysis for examining the effect of talkers’ speaking style
(IDS vs. ADS), listeners’ group (NH vs. CI), and their interaction on intelligibility of speech (Table
II) revealed a significant effect of speaking style ($\beta = 3.05$, $SE = 0.74$, $t = 4.14$, $p < 0.0001$). This
analysis provides new evidence that IDS may likely improve intelligibility of caregivers’ speech
to both listeners with NH and those with CIs. These results further showed a significant, negative
effect of CI-related processing on intelligibility of caregivers’ speech ($\beta = -2.23$, $SE = 0.74$, $t = -$
3.02, $p < 0.0001$). In addition, a significant interactive effect between speaking style and listeners
group was revealed by the GLMM model ($\beta = -1.337$, $SE = 0.466$, $t = -2.865$, $p < 0.001$), reflecting
the fact that hearing speech through CIs resulted in a smaller intelligibility gain from IDS relative
to ADS than was observed in the NH condition.

>>IMAGE FIG. 3 about here <<<<<<<
C. Individual differences across caregivers in ADS-vs-IDS acoustic distinctiveness and the effect of CI noise vocoding

To examine individual differences across talkers in acoustic distinctiveness of IDS from ADS, we focused on MD data from the individual talkers in two conditions (unprocessed and 22-channel CI-simulated noise-vocoded speech), as shown in Fig. 4A (left vs. right bars, respectively). Two general observations are noticeable in this data. First, caregivers vary considerably in terms of the amount of acoustic variability created by their ADS-to-IDS modification (mean = 7.47, SD = 1.70, range = 5.23). For example, the ADS-to-IDS shift in MD for talker 2 exposes a child with NH (cf. natural, unprocessed condition) to a much wider range of acoustic information compared to that for talker 3. This, in turn, suggests that a child of talker 2 would be more advantaged in learning acoustic patterns of her caregivers’ speech compared to a child of talker 3.

The second observation is that the magnitude of this acoustic variability significantly reduced for CI-simulated signals, due to the noise vocoding process (mean = 3.22, SD = 0.43, range = 1.4). An analysis of coefficient of variation (CV) revealed that the standard deviation of MD for unprocessed (natural) speech stimuli was 22.7% of its mean, whereas this value was 13.3% for CI-simulated speech stimuli for the 22-channel noise-vocoder. Comparing these two CV values shows that the magnitude of variation in ADS-IDS acoustic distinctiveness (i.e., MD) reduces approximately by half due to CI-related speech processing, highlighting a major loss of acoustic information useful for recognition of caregivers themselves and for distinguishing them from other caregivers.

If CI-simulated processing involves a linear transformation of acoustic distinctiveness across speech styles for each talker, then we should observe MD differences to be significantly
correlated across natural (i.e., unprocessed) and 22-channel noise-vocoded conditions. The
Pearson’s correlation coefficient was $r(5) = 0.07$ ($p = 0.87$), suggesting that CI-simulated noise
vocoding did not impact talkers’ speech proportionately in terms of the acoustic distinctiveness
between their IDS and ADS. Instead, CI-related speech processing reduced the IDS-ADS acoustic
distance for some talkers (e.g., talker 6) more than others (e.g., talker 4).

D. Individual differences across caregivers in IDS and ADS intelligibility and the effect of
hearing status

To examine how individual talkers vary in the effects of their ADS-to-IDS modifications
on intelligibility of speech to listeners with NH and those with CIs, we focused on patterns of
SRMR and SRMR-CI metrics from the individual talkers. For (simulated) listeners with NH,
SRMRs of pairs of IDS and ADS stimuli were subtracted for each talker and averaged over 15
pairs of ADS-IDS stimuli in order to measure the amount of change in her speech intelligibility
due to ADS-to-IDS modification (for talker j, $\Delta SRMR_{(IDS-ADS)} = \frac{1}{15} \sum_{i=1}^{15} (SRMR_{IDS_{ij}} - SRMR_{ADS_{ij}})$).
Likewise, for (simulated) listeners with CI, SRMR-CIs of pairs of IDS and ADS stimuli were
subtracted for each talker and averaged over 15 pairs of ADS-IDS stimuli in order to quantify the
amount of change in her speech intelligibility due to ADS-to-IDS modification (for talker j, $\Delta SRMR-CI_{(IDS-ADS)} = \frac{1}{15} \sum_{i=1}^{15} (SRMR-CI_{IDS_{ij}} - SRMR-CI_{ADS_{ij}})$). Thus, a positive value of this
difference measure represents IDS being, on average, more intelligible than ADS for a talker,
showing an intelligibility benefit for IDS over ADS for that talker.

Figure 4B (right panel) shows the results for changes in intelligibility of speech of talkers
due to modifications to speaking style. The bar plot on the left in Figure 4B (labeled as NH on the
x-axis) presents the difference across seven talkers in IDS-ADS intelligibility as estimated for listeners with NH. The data in this scatter plot shows how much speech of a talker (e.g., talker 6) would be heard as more or less intelligible as the talker speaks the utterances or words in IDS compared to ADS.

Two patterns are observable in Figure 4B. First, the change in intelligibility of talkers’ speech due to the speaking style modification (ADS to IDS) was fairly variable across talkers for simulated listeners with NH (mean = 1.71, SD = 1.73, range = 4.97), such that this change was associated with relatively more intelligible speech for some talkers compared to others. As this plot suggests, when talkers change their speaking style from ADS to IDS, not only does this not lead to an equal amount of change in intelligibility of speech across talkers, but for one talker the direction of this effect is even slightly negative (talker 5). For the majority of talkers (6 out of 7 talkers), IDS was more intelligible than ADS (as shown by a positive difference value).

Second, relative to the size of the ADS-to-IDS shift for simulated NH listeners, the size of this ADS-to-IDS shift was overall considerably reduced for simulated listeners with CIs (mean = 0.38, SD = 0.43, range = 1.10). The bar plot on the right panel of figure 4B (labeled as CI on the x-axis) presents the dispersion of change in speech intelligibility for each talker due to changing speaking style from ADS to IDS, as estimated for listeners with CIs. Notably, CI-related processing decreases the degree of variability in speech intelligibility, compared with that for NH, as expected. An analysis of CV showed that although the mean of change in speech intelligibility due to ADS-to-IDS modifications was overall smaller for the simulated CI condition compared to the simulated NH condition, while the magnitude of variability was almost the same for two groups of listeners (CV ≈ 11%). Highlighting non-linearity of effects of CI processing on speech across
different talkers, there was no significant correlation across the seven talkers for ADS-to-IDS intelligibility differences in simulated CI vs. NH listening conditions ($r(5) = 0.74, p = 0.58$).

IV. DISCUSSIONS

The present study investigated effects of CI-related signal processing on acoustic distinctiveness and intelligibility of speech signals as a function of IDS and ADS speaking styles. Results from the present study supported the hypothesis that CI-related speech processing significantly degrades acoustic information involved in distinguishing IDS from ADS. This significant loss of acoustic information related to the distinction between IDS and ADS may negatively impact infants’ recognizing IDS as distinct from ADS, leading possibly to less attention to caregivers’ speech, with potential consequences for children with CIs developing relatively poorer language skills compared to those with NH.

These results are in line with prior findings demonstrating difficulties by listeners with CIs in distinguishing among various speaking styles (Tamati, Janse, & Başkent, 2019). Distinguishing caregivers’ speaking styles is tied to advances in language development (Karzon, 1985; Singh & Nestor, 2009; Thiessen et al., 2005; Wang et al., 2017), but is made challenging when speech is degraded by CI-related speech processing and/or other undesirable sources, e.g., noise and reverberation (Fetterman & Domico, 2002; Hazrati & Loizou, 2012; Zheng, Koehnke, & Besing, 2011). The substantial elimination of IDS-related acoustic information suggested by the present study indicates that infants with CIs likely do not have access to as wide a range of spectro-temporal information in caregivers’ speech to foster recognizing when speech is directed to them. As a result, these children may experience considerable difficulties in recognizing IDS as distinct from ADS, particularly in complex linguistic environments.
Although Wang et al., (2017) showed that IDS enhanced attention to speech in infants with CIs compared to ADS, results from the present study suggest that infants’ capability to recognize IDS from ADS and to prefer attending to IDS over ADS is not probably comparable to that of children with NH and is expected to be largely reduced. Furthermore, the fact that infants with CIs showed this preference after 12 months of CI experience in Wang et al.’s (2017) study highlights the possibility that the time course of developing certain capabilities for differentiating IDS and ADS would be longer than peers with NH and would depend on the amount of experience with CIs.

Our results also suggest that infants with CIs must develop a different cue-weighting system for recognition of IDS from ADS compared to infants with NH, where the type and magnitude of the relevant acoustic cues would be different from what infants with NH develop. For example, in the absence of prominent acoustic cues of IDS such as F_0 (Fernald & Mazzie, 1991; Kuhl & Meltzoff, 1999; Mehler, 1981), which is poorly perceived through CI devices (Mehta et al., 2020; Mehta & Oxenham, 2017; Qin & Oxenham, 2003), infants with CIs may rely more on suprasegmental cues such as speech rate (Peng et al., 2017) and/or periodicity in the temporal envelope (Fu, Chinchilla, & Galvin, 2004; Kong et al., 2004). However, perception of pitch through periodicity in the temporal envelope is mostly limited to F_0s below around 300 Hz (Carlyon, Deeks, & McKay, 2010; Kong & Carlyon, 2010), which is generally below the range of F_0 variation in IDS. This lack of access to the entire spectro-temporal cue range in IDS puts infants with CIs at high risk for missing IDS-related communicative events and thus for developing sub-optimal language skills.

Our results corroborated our hypothesis that caregivers likely expose infants to more intelligible speech when speaking in IDS compared to ADS, which is a novel contribution of the
present study. This was shown using a novel application of a recently-developed metric of intelligibility, which models intelligibility of speech for listeners with NH (i.e., SRMR) and those with CIs (i.e., SRMR-CI) (Falk et al., 2015; Santos et al., 2013). This positive effect of IDS on speech intelligibility might be because caregivers provide more clear speech by speaking louder, slower, and/or in a hyperarticulated fashion when using IDS (Hazan et al., 2018; Krause & Braida, 2002; Li et al., 2011; Liu, Del Rio, Bradlow, & Zeng, 2004), likely leading to an intelligibility benefit compared to ADS (Janse, Nooteboom, & Quené, 2007; Liu et al., 2004). Greater intelligibility for IDS over ADS suggests that use of IDS during caregiver-infant spoken communication assists infants in better understanding speech, conceivably supporting infants’ word learning process through a direct link between exposure to IDS and improved speech intelligibility. However, our results also revealed an interactive effect, showing that the size of this positive effect of IDS on caregivers’ speech intelligibility is smaller for infants with CIs compared to their peers with NH. This, in turn, suggests that the CI noise vocoding process not only disrupts the communication of IDS-ADS-specific acoustic information, but also decreases the intelligibility of caregivers’ IDS, indicating that infants with CIs are not expected to benefit from exposure to IDS as much as their NH peers. These results are consistent with prior findings demonstrating greater difficulties that adult listeners with CIs in processing speech and accomplishing lexical access, compared to listeners with NH (McMurray, Farris-Trimble, & Rigler, 2017; Nagels, Bastiaanse, Baškent, & Wagner, 2020). Although prior studies demonstrated a supportive role of IDS on infants’ language outcomes, to our knowledge, this is the first study that provides evidence supporting detrimental effects of the noise vocoding process entailed in CI signal processing on the supportive role of IDS in speech understanding.
Prior studies on speech recognition in listeners with CIs have highlighted the importance of further examining patterns of individual differences, in addition to group differences (Dilley et al., 2020; Nagels et al., 2020; Peng et al., 2019; Spencer, 2004; Szagun & Schramm, 2016). Our investigation of patterns of individual differences across caregivers in acoustic distinctiveness between IDS and ADS and the simulated effect of CI noise vocoding highlighted multiple important observations. The first observation relates to the amount of acoustic variability produced by each talker due to changing speaking style from ADS to IDS. The amount of resultant acoustic variability varied across talkers, indicating that infants would experience different language environments in terms of qualities of their caregivers’ speech. This is expected to result in some caregivers’ exposing infants to relatively larger ranges of acoustic information, as compared to others, which would foster their infants’ speech processing and language acquisition by assisting infants in more robust recognition of their caregivers’ voices (Beauchemin et al., 2011; Kisilevsky et al., 2003), as well as better development of auditory cortical processing for language development (Webb et al., 2015). Similar to the recent findings by Dilley et al. (2020), these results also suggest that IDS is not always readily distinguishable from ADS, due to the fact that caregivers vary in implementation of IDS. As such, these results confirm that conditions for recognition of IDS by infants is not always optimal (Piazza et al., 2017) and might differentially affect language outcomes for infants with CIs (Dilley et al., 2020).

More importantly, the amount of ADS-IDS acoustic difference was considerably reduced for each caregiver as her speech passed through a CI simulator, indicating that infants with CIs probably have access to a much narrower range of acoustic variability in the voices of their caregivers, as compared to their peers with NH. This large decline in the degree of acoustic variability in caregivers’ voices may negatively impact infants’ robust identification of their
Running Title: Speech style through cochlear implant
caregivers’ voices, thereby preventing their gaining the maximal benefit from language input that may be available in their linguistic environments. In fact, encoding and learning these cues is crucial as they both significantly contribute to infants’ familiarity with ranges of acoustic variation in talkers’ speech and their robust performance in understanding speech, despite of multiple sources of variability, such as talker variation (Allen, Miller, & DeSteno, 2009; Eskenazi, 1993), language context (Mattys, 2000; McMurray & Aslin, 2005; Miller, 1994), speech rate (Sommers, Nygaard, & Pisoni, 1992), and background noise and/or reverberation (Hawkins, 2004). Thus, infants with CIs are probably at risk for partial learning of subtle voice cues specific to their caregivers, as reflected in their fine-structure spectro-temporal information.

Acoustic implementation of ADS-to-IDS modification varies across individual caregivers, which may differentially impact infants’ understanding of speech and thus their language outcomes (Dilley et al., 2020; Hoff, 2006; Weisleder & Fernald, 2013). Results from the present study showed that individual talkers varied in the effect of their speaking style modification on speech intelligibility, suggesting that modification of speaking style from ADS to IDS does not always cause an equal degree of improvement in intelligibility of caregivers’ speech. Notably, our results showed that this variability across caregivers in impact of their speaking style modification on speech intelligibility was reduced due to cochlear implant-related speech processing. In the present study, we only studied variability across caregivers in acoustic information and intelligibility of their IDS compared to ADS, whereas caregivers of infants with CIs may vary in other aspects of spoken communication such as gestural and proprioceptive behaviors, which very likely change the degree of intelligibility by which infants eventually perceive caregivers’ speech (Kirk et al., 2007; Kirk & Pisoni, 2002; Lachs, Pisoni, & Kirk, 2001).
These findings can be further interpreted in the context of spectro-temporal information available to infants’ auditory systems, which is very sensitive to subtle changes in speech acoustics (Jusczyk, Hohne, & Bauman, 1999; Kuhl, 2004). When infants’ accessibility to fine-grained spectro-temporal structures in speech is largely compromised because of a limited number of vocoder channels in CIs, they may not be able to readily recognize and attend to rich IDS. In the absence of this fine-structure spectral information at the output of CI electrodes, infants must rely on course-grained cues in the speech envelope, such as temporal envelope periodicity (Green, Faulkner, & Rosen, 2002; Moore, 2003) or cues from other sensory modalities (e.g., visual and tactile, Green, Nip, Wilson, Mefferd, & Yunusova, 2010; Rohlfing, Fritsch, Wrede, & Jungmann, 2006) in order to recognize IDS from ADS. This increases the cognitive load in processing speech particularly in complex auditory environments and negatively contributes to the observed poor language outcomes in some children (Davidson, Geers, & Nicholas, 2014; Dunn et al., 2014; Geers, Strube, Tobey, & Moog, 2011; Geers, Nicholas, Tobey, & Davidsonb, 2015; Houston, Pisoni, Kirk, Ying, & Miyamoto, 2003; Houston, Stewart, Moberly, Hollich, & Miyamoto, 2012; Miyamoto, Houston, Kirk, Perdew, & Svirsky, 2003; Niparko et al., 2010; Pisoni et al., 2007; Pisoni, Kronenberger, Harris, & Moberly, 2018).

The present study used a within-talker manipulation of speech style to investigate how CI-related speech processing may affect processing of speech style shifts which are tied to language development, namely IDS vs. ADS signals. While the study involved a sizeable number of individual utterances with control of phonetic properties within talkers, the amount of speech collected from each of the seven talkers was relatively small. Further work will be needed to test how these results extend to a larger sample of talkers with utterances with more varied segmental and lexical composition. Furthermore, studying natural IDS and ADS would be ideal; however, it
is difficult to control the content and quality of the speech collected from naturalistic environments. Importantly, studies based on simulated CI speech and computational models of human hearing provide valuable evidence for understanding speech perception in listeners with normal and impaired hearing (Litvak, Delgutte, & Eddington, 2001; Mehta et al., 2020; Rubinstein, Wilson, Finley, & Abbas, 1999; Throckmorton & Collins, 2002). Findings from these studies should be viewed as evidence for general trends, rather than the actual performance of listeners with CIs, subject to further investigation. Although we simulated limitation of CIs in spectral resolution by changing the number of channels in noise-vocoded speech, the effect of other aspects of CI processing on spectral resolution, such as channel interactions (i.e., steepness of spectral slope) (Crew & Galvin, 2012; Mehta et al., 2020), were not simulated in this study. Additionally, metrics of speech intelligibility of SRMR and SRMR-CI have been validated for adult listeners with CIs and are not direct estimates of speech intelligibility, which is very likely different from what infants with CIs experience in terms of recognition of utterances. Considering these limitations, the results should not be taken as the final determination of how children with CIs perform in recognition between IDS and ADS and how ADS-to-IDS modification impacts the degree of intelligibility of caregivers’ speech to children with CIs.

Despite these limitations, results from the present study suggest that, compared to infants with NH, infants with CIs are disadvantaged in acquiring spoken language due to multiple factors. First, partial transmission of spectro-temporal cues via CI speech processing decreases the supportive role of IDS in infants’ language learning by disrupting the link between attending to IDS and speech comprehension. In fact, degraded representation of attention-related acoustic cues in IDS (e.g., F0-related acoustic information, Mehta et al., 2020; Mehta & Oxenham, 2017) through CIs may have detrimental effects on infants’ ability to pay attention to caregivers’ speech,
something that is a fundamental cognitive skill for spoken language acquisition (Bergeson, 2014; Glenn, Cunningham, & Joyce, 1981; Houston et al., 2003; Rottmann & Zobrist, 2004; Wang, Shafto, & Houston, 2018). It is worth mentioning that infants’ language learning involves incorporating information from multiple interwind communication dimensions (i.e., visual, social, tactile, and emotional), which creates a very rich channel for learning language through infant-directed speech (Gogate, Bahrick, & Watson, 2000; Nomikou & Rohlfing, 2011), even in the absence of major spectro-temporal cues such as talker’s F0 in the output of CI electrodes. Our findings further suggested that CI speech processing diminishes the benefit of exposure to more intelligible IDS, as compared to ADS, which may negatively impact infants’ abilities to process caregivers’ speech, possibly with further significant downstream consequences for later language skills. Last but not least, our results showed that, compared to infants with NH, infants with CIs have access to a relatively narrower range of acoustic information (corresponding to smaller acoustic variability) in their caregivers’ speech, which probably leads to experiencing greater difficulties in robust identification and recognition of their caregivers’ voices (Beauchemin et al., 2011; Kisilevsky et al., 2003; Lavan et al., 2019), as well as developing poorer word recognition skills (Singh, 2008) and an impaired auditory system for language processing (Webb et al., 2015). Despite the reduced ADS-vs-IDS distinctiveness, intelligibility, and variability of vocoded IDS, it is possible that children with CIs may have developed certain coping/adapting strategies to mitigate the degraded speech input. For example, it is possible that children with CIs may have higher sensitivity (lower threshold) to the acoustic cues than children with NH.

In summary, the current study used computational approaches to signal processing in order to provide new evidence for how CI-related speech processing may impact recognition of IDS from ADS in children with CIs, as well as how these style differences may affect intelligibility
benefits derived by style shifts from ADS to IDS. These findings provide solid grounding for developing new perceptual studies to test abilities of infants with CIs to recognize their caregivers’ speaking style (ADS vs. IDS) and to recognize intelligible words in caregivers’ speech. Focusing on computational metrics as undertaken here provides an important complement to costly, complex, labor-intensive perceptual studies. The results provided preliminary evidence for how CI-related speech processing may alter the pathway from exposure to IDS to processing speech and, by extension, the acquisition of language by children with CIs compared to that of their NH peers. The most direct and immediate implication of these findings is the imperative need to improve signal processing in CI devices to assure the faithful transmission of acoustic cues relevant to identification and recognition of IDS from ADS. Until then, the major clinical implication of these findings is that the maximum benefit from exposure to IDS for language learning in infants with CIs requires caregivers’ active use of multimodal (i.e., gesture, tactile, visual, social, and emotional) communicative behaviors in order to compensate for the degraded representation of acoustic information relevant to IDS and to support its robust perception.

ACKNOWLEDGMENTS

Research reported in this publication was supported by the National Institute on Deafness and other Communicative Disorders of the National Institutes of Health under award number R01DC008581 to D. Houston and L. Dilley.

REFERENCES

Running Title: Speech style through cochlear implant

Running Title: Speech style through cochlear implant

Running Title: Speech style through cochlear implant

Running Title: Speech style through cochlear implant

before four years of age. *International Journal of Audiology, 47*(10), 636–646.

Running Title: Speech style through cochlear implant

Running Title: Speech style through cochlear implant

Running Title: Speech style through cochlear implant

Mastropieri, D., & Turkewitz, G. (1999). Prenatal experience and neonatal responsiveness to vocal

Running Title: Speech style through cochlear implant

Running Title: Speech style through cochlear implant

Running Title: Speech style through cochlear implant

Running Title: Speech style through cochlear implant

Infancy, 14(6), 654–666.

Running Title: Speech style through cochlear implant

frequency for lexical segmentation in listeners with cochlear implants. The Journal of the
Acoustical Society of America, 125(6), EL236–EL241.

Sulpizio, S., Kuroda, K., Dalsasso, M., Asakawa, T., Bornstein, M. H., Doi, H., … Shinohara, K.
(2018). Discriminating between Mothers’ Infant- and Adult-Directed Speech: Cross-

Szagun, G., & Schramm, S. A. (2016). Sources of variability in language development of children
with cochlear implants: Age at implantation, parental language, and early features of

Cochlear Implant Simulation. Ear and Hearing, 40(1), 63–76.

Telkemeyer, S., Rossi, S., Koch, S. P., Nierhaus, T., Steinbrink, J., Poeppel, D., … Wartenburger,
Journal of Neuroscience, 29(47), 14726–14733.

The ManyBabies Consortium (2020). Quantifying sources of variability in infancy research using
the infant-directed speech preference. Advances in Methods and Practices in Psychological
Science, 3(1), 24–52.

segmentation. Infancy, 7(1), 53–71.

recognition in cochlear implant subjects: Predictions from an acoustic model. The Journal of
Running Title: Speech style through cochlear implant

Running Title: Speech style through cochlear implant

Strengthens Processing and Builds Vocabulary. Psychological Science, 24(11), 2143–2152.

TABLE I. Statistical GLMM for modeling the effect of level of speech degradation on acoustic distinctiveness between IDS and ADS as quantified by MD.

| | β Estimate | St. Error | t | Pr(>|t|) |
|--------------------------|------------|-----------|----|----------|
| (intercept) | 6.694 | 0.58 | 11.45 | 0.000^a |
| Level of degradation | -0.886 | 0.053 | -16.54 | 0.000^a |

^aThe p-value was statistically significant.
TABLE II. Statistical GLMM for the effects of speaking style, level of speech degradation, and their interaction on intelligibility of speech, as measured by SRMR or SRMR-CI.

| | β Estimate | St. Error | t | Pr(>|t|) |
|--------------------------------|------------|-----------|-------|----------|
| (intercept) | 10.365 | 1.339 | 7.74 | <0.00001 |
| Speaking Style | 3.054 | 0.737 | 4.14 | <0.00001 |
| Level of degradation | -2.23 | 0.737 | -3.024| <0.0001 |
| Speaking Style:Level of degradation | -1.336 | 0.466 | -2.865| <0.0001 |

*a The p-value was statistically significant.
FIG. 1. (Color online) Schematic diagram of the approach used in the present study for measuring
(1) MD between pairs of MFCCs derived from pairs of IDS-ADS stimuli, and (2) intelligibility of
IDS and ADS stimuli as estimated by SRMR value for listeners with NH and SRMR-CI for those
with CIs. Note that the dashed line denotes the process for creating and analyzing the noise-
vocoded versions of the same pairs of stimuli, while N stands for the number of spectral channels
in the noise-excited envelope vocoder. Blocks and lines with blue (dark gray) color indicate paths
for processing ADS, while those with orange (light gray) color indicate paths for processing IDS.
Note that SRMR and SRMR-CI were calculated only for unprocessed stimuli in order to estimate
intelligibility for NH and CI listeners, respectively. In this figure, the waveforms and their
corresponding MFCCs are from the utterance “See the modi?” spoken by one of the seven talkers
both in IDS and ADS speaking styles. $S_{IDS_{ij}}$ and $S_{ADS_{ij}}$ are the i^{th} pair of IDS and ADS stimuli (i
= \{1,2,3,...,15\}) for talker j (j = \{1,2,3,...,7\}). MFCCs$_{IDS_{ij}}$ and MFCCs$_{ADS_{ij}}$ are MFCC features
derived from $S_{IDS_{ij}}$ and $S_{ADS_{ij}}$ speech stimuli, respectively. The middle two panels show MFCCs
obtained from the frames of these IDS and ADS stimuli. MD_{ij} is the MD calculated to measure the
acoustic distance between the two matrices for MFCCs$_{IDS_{ij}}$ and MFCCs$_{ADS_{ij}}$. SRMR$_{IDS_{ij}}$ and
SRMR$_{ADS_{ij}}$ are the estimated intelligibility for $S_{IDS_{ij}}$ and $S_{ADS_{ij}}$ speech stimuli, respectively, as
heard by listeners with NH. SRMR-CI$_{IDS_{ij}}$ and SRMR-CI$_{ADS_{ij}}$ are the estimated speech
intelligibility for the same $S_{IDS_{ij}}$ and $S_{ADS_{ij}}$ speech stimuli, respectively, as heard by a listener with
CIs.

FIG. 2. (Color online) The mean (bar) and ± 1 standard error (vertical error bar in black) of
Mahalanobis distance (MD) across groups of IDS and ADS stimuli at seven levels of spectro-
temporal degradation, ranging from no-degradation (natural/unprocessed) to 4-channel noise-
vocoded stimuli. Green (dark gray) circles show the mean MDs for each talker derived by averaging MDs over 15 pairs of IDS-ADS stimuli for that talker.

FIG. 3. (Color online) Estimated intelligibility of speech stimuli spoken in IDS (orange; light gray) and in ADS (blue; dark gray) styles (simulated) groups of listeners with different hearing statuses: NH (estimated by SRMR) and those with CIs (estimated by SRMR-CI). The bar graphs represent average values of SRMR or SRMR-CI over the seven talkers.

FIG. 4. (Color online) Variability across seven female talkers in (A) acoustic distinctiveness between their IDS and ADS for unprocessed stimuli (Natural) and simulated CI speech within a 22-channel noise vocoder (22CH), and (B) the change in talkers’ speech intelligibility (SI) due to a change in their speaking style (ADS to IDS), as heard for two (simulated) listener groups with either NH (estimated by SRMR) or CIs (estimated by SRMR-CI). The data points (gray circles) are laid over a 1.96 standard error of the mean (95% confidence interval) in red (rectangle area with light gray) and 1 standard deviation shown by blue lines (vertical dark gray lines). The solid and dotted red lines (horizontal solid and dotted dark gray lines) show the mean and median, respectively.