Phenotyping genetic differences in aldehyde dehydrogenase 2 after an alcohol challenge in humans

Joseph R. White, BS1+, Freeborn Rwere, PhD1+, Xiaocong Zeng, MD, PhD1, Leslie McNeil, MPH1, Kevin Zhou, BS1, Martin S. Angst, MD1, Che-Hong Chen, PhD2, Daria Mochly-Rosen, PhD2, Eric R. Gross, MD, PhD1*

1Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
2Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA

+Contributed equally

*Correspondence: Eric R. Gross, MD, PhD, Stanford University, School of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Telephone: 650-723-7442, Fax: 650-725-5840, E-mail: ergross@stanford.edu.

Present Affiliations:

Joseph R. White, Georgetown University Medical School, Washington, DC
Xiaocong Zeng, Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China

Abbreviated Title: Phenotyping genetic differences in ALDH2

Brief Summary (25 words): We developed a method to phenotype genetic differences in ALDH2 and we discovered novel ALDH2 mutations that result in inefficient acetaldehyde metabolism after alcohol consumption.
Abstract:

Inefficient aldehyde metabolism by an aldehyde dehydrogenase 2 (ALDH2) genetic variant, ALDH2*2 (rs671), increases the risk of esophageal cancer with alcohol consumption. Here we tested the hypothesis that additional genetic differences in ALDH2 besides ALDH2*2 exist resulting in inefficient acetaldehyde metabolism after alcohol consumption.

Human volunteers were recruited who self-reported flushing after alcohol. The first stage recruited East Asians and the second stage non-East Asians. After phone screening and ALDH2 sequencing, volunteers were subjected to an alcohol challenge (0.25g/kg). Physiological parameters and breath acetaldehyde levels were assessed.

Twenty-six participants were given an alcohol challenge. In the first stage, when comparing the ALDH2*1/*2 genotype to ALDH2*1/*1 genotype, tachycardia (104±3* versus 73±4 beats per minute), increases in facial skin temperature (99.6±0.4* versus 95.9±0.5°F), and increases in breath acetaldehyde (peak: 2.1±0.4* versus 0.2±0.3ppm, n=8/group, *p<0.01) occurred after alcohol consumption. In the second stage, heterozygotes for an ALDH2 intron variant (rs4646777, G>A) caused increases in facial skin temperature (98±1* versus 94±1°F, n=4, *p<0.01) without tachycardia or acetaldehyde accumulation after alcohol consumption. Subjects self-identifying as non-East Asian genotyped with an ALDH2*1/*2 variant also displayed a characteristic ALDH2*1/*2 phenotype after alcohol consumption. Further, ALDH2 point mutations rs747096195 (R101G) and rs190764869 (R114W) showed reduced acetaldehyde metabolism and increases in facial skin temperature after an alcohol challenge relative to wild type ALDH2 subjects.

Taken together, we developed a method to non-invasively phenotype genetic differences for ALDH2 in humans including quantifying aldehyde metabolism in single subjects. We also discovered genetic differences besides ALDH2*2 that cause inefficient aldehyde metabolism.
Introduction:

Alcohol is consumed by at least 2 billion people worldwide (1-3). Recently, the implementation of shelter-in-place and social distancing due to COVID-19 has seen a ~27% increase in off-premise alcohol sales for April 2020 in the United States relative to the previous year (4). A recent survey also suggests that nearly 1 in 3 Americans are consuming alcohol during work hours when sheltered at home (5). Therefore, it is important to consider the health risks associated with alcohol consumption, particularly since the numbers of people with alcohol use disorder may also increase during the COVID-19 pandemic (6).

Alcohol and its breakdown product acetaldehyde are known carcinogens and consumption of alcohol is linked to upper and lower digestive tract cancers (7, 8). Although much is known about risks of excessive alcohol consumption, less is understood on how differences in genetics may impact acetaldehyde metabolism and, in turn, human pathophysiology. Notably, a genetic variant exists in aldehyde dehydrogenase 2 (ALDH2) resulting in inefficient acetaldehyde metabolism, in addition to facial flushing and tachycardia. The ALDH2 genetic variant, known as ALDH2*2, is predominantly found in those of East Asian descent (rs671, E504K) and is carried by ~540 million people worldwide. Those heterozygous for the ALDH2*2 genetic variant have a ~40-60% decrease in the capability to metabolize acetaldehyde (9). When consuming alcohol, this deficiency in acetaldehyde metabolism increases the risk of developing cancers of the aerodigestive track and esophageal cancer several-fold (7, 8, 10).

Besides the ALDH2*2 variant, little is known how genetic differences, identified from whole genome sequencing within the ALDH2 gene, impact aldehyde metabolism. A number of missense mutations in ALDH2, including an intron mutation (rs4646777, G>A, 0.18 frequency), have been identified and reported in humans within whole genome sequencing genetic databases (11). However, it is unknown whether facial flushing, tachycardia, and inefficient acetaldehyde metabolism occurs for additional ALDH2 genetic differences similar to those individuals carrying an ALDH2*2 variant. To better understand the potential pathophysiological consequences, we developed a non-invasive method to phenotype ALDH2 genetic differences based on real-time breath mass spectrometry and physiologic metrics including heart rate and skin temperature. We tested the hypothesis that genetic differences besides the ALDH2*2 genetic variant cause inefficient acetaldehyde metabolism in human volunteers subjected to an alcohol challenge.
Methods:
Prior to recruitment and testing, IRB approval was obtained from Stanford University (IRB 46095). During IRB review, this study was identified as a basic experimental study involving humans with the manipulation or task used (consuming alcohol) expressly used for measurement and was not considered an intervention. Written informed consent was received from participants prior to inclusion in the study.

Participant recruitment: Participants were recruited from December 2018 through March 2020 using two separate flyers posted on the Stanford University campus in succession. The initial flyer recruited those of Asian descent to consume alcohol for an alcohol flushing study. After recruitment was filled, a second flyer recruited people of non-Asian descent.

Participants were initially screened for exclusion using a questionnaire (see Supplemental Material which describes exclusion criteria). Participants were also instructed to complete a CAGE questionnaire to screen out participants with potential alcoholism. Those participants eligible then provided a saliva sample for DNA extraction and purification (Quick-DNA Miniprep Kit, Zymo Research). DNA was amplified using 12 primers designed to cover ALDH2 exome sequencing in addition to a common ALDH2 intron (rs4646777) as described (Supplemental Table 1). After amplification, samples were sent for Sanger sequencing (Eton Bioscience). Participants were selected for the alcohol challenge portion of the study based on genotyping results. At this stage, participants were also excluded if homozygous for E504K (secondary to the expected severity of the alcohol response).

Participants of Asian descent heterozygous for E504K (ALDH2*1/*2) were called back for participation in the alcohol challenge. In addition, selection of East-Asian descent participants that were ALDH2*1/*1 were selected to closely match the age, sex and weight of the ALDH2*1/*2 participants. Participants that identified as non-Asian were selected for the alcohol challenge study based upon genotyping results.

Alcohol Challenge: Participants were instructed prior to the alcohol challenge to not eat or drink for 2 hours prior to testing. Testing was performed between 12pm and 4pm on a weekday. Upon arrival, patients were consented and weighed. To assess physiologic measurements, a five lead EKG was placed and EKG measurements were continuously recorded (ADInstruments). Blood
pressure and heart rate was measured using a standard blood pressure cuff and pulse oximeter (DynaMap). Skin temperature was measured under the left cheek bone using liquid crystal technology (Crystaline II Temperature Indicators, Sharn Anesthesia). Baseline hemodynamic data including blood pressure, heart rate, and skin temperature were collected twice over 10 minutes. Prior to testing, a hand-held alcohol breath test meter confirmed no alcohol was consumed before testing (BACtrack Element Pro). Breath samples were collected by a 3L Tedlar bag (Zefon International).

After establishing a baseline, participants were given a 415 mL (14oz) drink consisting of 0.25g/kg Ketel One vodka, water, and Minute Maid lemonade. For reference in the United States, a standard drink is 14 grams of alcohol which is equal to one 12 oz glass of 5% beer or one 5oz glass of 12% wine. As an example, a 70kg person in this study drank 17.5g of alcohol. Participants were encouraged to consume the first 7oz of the 14oz drink during the first 5 minutes of the study and the second 7oz during the second 5 minutes. After baseline measurements taken 3 minutes before alcohol consumption, physiologic measurements of heart rate, oxygen saturation, blood pressure, skin temperature, and breath metabolites were taken at 5, 10, 15, 30, 60, 90, 120, and 150 minutes after alcohol consumption (Figure 1A). After completion of the study, a breath alcohol test and a standard field sobriety test was administered.

Breath metabolite analysis: Breath metabolites including alcohol, acetaldehyde, and acetic acid were measured from Tedlar bags using selective ion flow mass spectrometry in real-time after collection (Syft Voice Ultra, New Zealand). Soft ionization was carried out using H$_3$O$^+$ and NO$^+$ with the mass and reaction ratios described for measuring ethanol, acetaldehyde, and acetic acid metabolites (Supplemental Table 2). Helium was used as a carrier gas.

ALDH2 Site-Directed Mutant Construction, Protein Expression and Purification: Site-directed mutagenesis of human ALDH2 was performed using a QuikChange site-directed mutagenesis kit (Agilent Technologies) using the kanamycin resistance template plasmid, pET-28a-c (+). Oligonucleotides used to generate ALDH2 mutants (R101G, R114W and E504K) and additional details regarding protein expression and purification are provided in the Supplemental Material (Supplemental Methods and Supplemental Table 3).
ALDH2 Enzymatic Activity Assay: NAD⁺ conversion to NADH in the presence of acetaldehyde was used to determine ALDH2 enzyme activity as previously described (12). A blank control was run without acetaldehyde. Results were collected in triplicates on two separate days.

Statistical Analysis: All data was presented as mean ± SEM. The number needed to recruit for this study was based upon a prior study examining differences in acetaldehyde metabolism in the blood. Based upon the dose of alcohol (0.25g/kg) producing a 5-fold difference in blood acetaldehyde levels, we predicted that at a minimum we would have to recruit 4 people per group for statistical differences between those ALDH2*1/*1 relative to ALDH2*1/*2 (13). For analysis of differences in metabolites or physiological data, a two-way ANOVA followed by Bonferroni correction for multiplicity was used in order to compare each group to the control group or to compare measurements performed within a group over time. For differences between only two groups, a two tailed unpaired Students t-test was performed. Statistical analysis was performed using GraphPad Prism 6. p < 0.01 was considered statistically significant.
Results:

With the initial flyer that recruited those of Asian descent, 58 people contacted the laboratory regarding participation. Of those, 51 people participated in the initial phone screen with 29 people providing a saliva sample for genotyping. A total of 16 people were given an alcohol challenge (Figure 1B). For the second flyer that recruited those of non-Asian descent, 96 people that self-reported a non-Asian descent contacted the laboratory with 68 people undergoing a phone screen. Of those, 37 people provided saliva samples and based on genotyping results, 10 people were given an alcohol challenge (Figure 1C). For participants given an alcohol challenge, no differences in general demographics were identified including age, weight, and sex (Supplemental Table 4).

Distinct differences in breath analysis for those carrying the ALDH2*1/*2 genotype relative to the ALDH2*1/*1 genotype was identified (Figure 2A, 2B and 2C). In particular, acetaldehyde levels in the breath peaked 9-fold 5 minutes after alcohol consumption when comparing ALDH2*1/*2 genotype with respect to the ALDH2*1/*1 genotype (Figure 2B peak: 2.1±0.4* versus 0.2±0.3 ppm, n=8/group). Acetaldehyde levels remained significantly elevated for 90 minutes after initial alcohol consumption (Figure 2B, 0.8±0.1* versus .09±.01 ppm, n=8/group). The total area under the acetaldehyde curve was 7-fold greater for the ALDH2*1/*2 genotype versus the ALDH2*1/*1 genotype (156±19* versus 22±3 ppm-minutes, n=8/group, Supplemental Figure 1A).

Concomitantly, heart rate markedly increased in ALDH2*1/*2 participants relative to ALDH2*1/*1 participants peaking at 30 minutes (Figure 2D, 104±3* versus 73±4 beats per minute, n=8/group). This heart rate increase resulted in tachycardia that lasted on average for a duration of 44±24 minutes for the ALDH2*1/*2 genotype versus 1±1 minutes for the ALDH2*1/*1 genotype (Supplemental Figure 1B). The change in heart rate versus change in breath acetaldehyde concentration also correlated during peak acetaldehyde concentrations ($r^2=0.76$, Supplemental Figure 1C). Additionally, skin temperature significantly increased at 30 and 60 minutes after the start of alcohol consumption for ALDH2*1/*2 genotype versus ALDH2*1/*1 genotype (30 minutes: 99.6±0.4* versus 95.9±0.5, 60 minutes: 100.0±0.0* versus 96.6±0.3, n=8/group). Mean arterial pressure also trended downward 30-90 minutes after start of alcohol consumption and was significantly less for the ALDH2*1/*2 genotype at 60 minutes when compared to baseline (Figure 2F, 70±3+ versus 83±3, n=8/group).
After establishing the feasibility of assessing alcohol-induced flushing by breath metabolites and physiological measures, we identified 10 people for an alcohol challenge that self-reported being non-Asian. Of those non-Asians recruited, 4 people were heterozygotes for rs4646777 (G>A intron region), 4 people heterozygotes for rs671, and 2 additional people had heterozygote point mutations within the exome of the ALDH2 enzyme rs747096195 (R101G) and rs190764869 (R114W).

Identified individuals carrying rs4646777 were heterozygous and female. Metabolite profile for those carrying rs4646777 reflected those of individuals with a wild type ALDH2 enzyme (Figure 3A-C). In particular, acetaldehyde accumulation as seen for those carrying rs671 did not occur for rs4646777 (Figure 3B). In addition, no change in heart rate occurred for the participants after challenged with alcohol (Figure 3D). Interestingly, skin temperature increased 90-150 minutes after alcohol consumption for those carrying rs4646777 versus baseline measurements (Figure 3E, 98±1° versus 94±1 degrees Fahrenheit, n=4). Notable facial flushing occurred for 3 of 4 participants. No changes in mean arterial pressure occurred (Figure 3F).

Additionally, 5 individuals carried rs671 (E504K) that self-identified as non-East Asian. Of those 5 people, 4 individuals did not claim knowledge of East Asian ancestry. The person claiming knowledge of East Asian ancestry identified a grandmother was East Asian, however, did not self-identify as East Asian. One subject was excluded after genotyping for exceeding the weight limit proposed for the study. The 4 remaining participants were tested by alcohol challenge. Self-reported lineage is described (Supplemental Figure 2). Similar to participants of East Asian descent which carry rs671 (E504K), after alcohol consumption these participants accumulated acetaldehyde, increased heart rate, and increased skin temperature (Supplemental Figure 3).

We also identified 2 female participants that contained novel point mutations within the ALDH2 enzyme, rs747096195 (R101G) and rs190764869 (R114W). The other allele for both these subjects genotyped for a wild type ALDH2 enzyme. After alcohol challenge, the participant carrying rs747096195 (R101G) displayed elevated levels of acetaldehyde with a longer duration relative to the wild type females (Figure 4A). This effect was not as prominent as compared to heterozygotes for rs671 (E504K). No relative changes in heart rate occurred (Figure 4B), however, this participant still had noticeable facial flushing and increases in skin temperature after an alcohol challenge (Figure 4C). Further, the participant carrying rs190764869 (R114W) also displayed...
elevated levels of acetaldehyde with a longer duration relative to the wild type females (Figure 4D). This effect was not as prominent as compared to heterozygotes for rs671 (E504K). No relative changes in heart rate also occurred (Figure 4E), however, this participant had noticeable facial flushing and increases in skin temperature after an alcohol challenge (Figure 4F). The additional metabolic and physiological parameters recorded for rs747096195 (R101G) and rs190764869 (R114W) displayed no distinguishable differences relative to those participants that were wild type ALDH2 (Supplemental Figure 4).

When examining the crystal structure of ALDH2, both novel mutations, ALDH2 R101G and ALDH2 R114W, are located in distinct regions of the α-helix, separate from ALDH2 E504K (Figure 4G). Protein expression and purification found that R101G was unstable, rapidly degraded, and did not produce protein for analysis even when expressed with an ALDH2 chaperone. Expression and purification of ALDH2 R114W resulted in a purified protein with a ~50% decrease in enzymatic activity relative to wild type ALDH2 (Supplemental Figure 5). Mixing wild-type ALDH2 protein with ALDH2 R114W or mixing wild-type ALDH2 protein with ALDH2 E504K to recapitulate a heterozygote resulted in a similar metabolism profile compared to the human subject. R114W had a 31% decrease and E504K had a 44% decrease relative to wild type ALDH2 (Figure 4H, 838±16*+, 683±6* versus 1209±15 nmol/min/mg protein, n=6/group, *p<0.01 versus wild type ALDH2, +p<0.01 versus ALDH2*2).
Discussion:

Here we describe a means to non-invasively phenotype genetic differences in ALDH2, including measuring real-time acetaldehyde measurements in the breath after an alcohol challenge. The non-invasive real-time metabolite measurements allow for individualized insight into the pharmacogenetics and pharmacodynamics of acetaldehyde metabolism after alcohol consumption. Using this technique, we uncovered that ALDH2 missense mutations rs747096195 (R101G) and rs190764869 (R114W) in human volunteers cause inefficient acetaldehyde metabolism after alcohol consumption. As we discovered additional ALDH2 missense mutations cause inefficient aldehyde metabolism and also those self-identifying as non-Asian may also carry the ALDH2*2 genetic variant, the health risks associated with inefficient acetaldehyde metabolism may have a broader scope and impact than just within East Asian populations.

We also identified that the ALDH2*2 variant, since highly prevalent within the world population, is also present in people that self-identify as non-Asian. In particular, individuals that are self-reporting being non-Asian may not be aware of the health risks associated with carrying the ALDH2*2 variant. Just as importantly, we uncovered that rs4646777 (G>A), frequent in humans, results in facial flushing but does not cause acetaldehyde accumulation after an alcohol challenge. Ultimately, our phenotyping assay can be used to provide better individualized recommendations for those who may flush after they consume alcohol and differentiate people who also cannot efficiently metabolize acetaldehyde (which has associated risk for cancer and cardiovascular disease) versus those that do not.

This phenotyping assay also provides a means to further characterize genetic variants within the ALDH2 gene. Based upon recruiting subjects who self-reported alcohol-induced flushing, we also characterized rs4646777. Although these subjects had noticeable increases in facial skin temperature, the ability to metabolize acetaldehyde was not hindered. Changes in heart rate did not occur after alcohol consumption. These findings provide evidence that not all subjects who experience facial flushing after consuming alcohol will accumulate acetaldehyde similar to the rs671 ALDH2*2 genetic variant. According to the gnomeAD database, rs4646777 has a 0.18 frequency and is highly prevalent in non-East Asians. A case-control study with 335 cases and 415 controls examining 105 SNPs for lung cancer in a Norwegian population identified a possibly association of rs4646777 with lung cancer. However, this association could not be validated and
was considered a false-positive (14). As GWAS studies have not identified rs4646777 as a potential cause of any human pathophysiology, rs4646777, although causing facial flushing after alcohol consumption, may potentially be benign. Several other missense mutations exist within the ALDH2 enzyme (11) and more will have to be studied to understand the health implications for each of these missense mutations in humans.

We also identified two non-East Asian ALDH2 point mutations R101G and R114W. The structure of mitochondrial aldehyde dehydrogenase (ALDH2) show that R101 and R114 residues are in distinct positions of a long α-helix in ALDH2 (15). R101 is downstream of the α-helix, while R114 is at the turn of the helix. The R101 residue forms a hydrogen bond via a water molecule with a C-terminal S517 of another ALDH2 subunit, thereby forming an important contact responsible for enzyme stability in its tetrameric form. The missense mutation, R114W is at the turn of an α-helix and a closer look at the crystal structure of wild-type ALDH2 show that R114 forms two strong hydrogen bonds with E227 of a neighboring α-helix (Figure 4G). Upon R114W mutation, the two hydrogen bonds are lost leading to conformational changes resulting in an enzymatic activity that is ~50% relative to wild-type. These structural changes which occur for both of these point mutations likely attribute to the inactivation of ALDH2 leading to the inefficient removal of acetaldehyde seen during the alcohol challenge.

Our results need to be interpreted within the realm of potential limitations. Our recruitment flyers were designed to identify people that flush after they consume alcohol. As seen from the participants we tested, the facial flushing could occur without accumulation of acetaldehyde. Therefore, the selection method for participants could have missed people within our population that accumulate acetaldehyde without facial flushing. Furthermore, point mutations other than rs671 and rs4646777 are relatively rare in the general population, which prevented the collection of a large sample size for rs747096195 (R101G) and rs190764869 (R114W) that we identified. Regardless, the non-invasive assay we developed can provide individualized assessments of acetaldehyde metabolism in order to lead to more personalized medicine strategies by identifying those that have impaired acetaldehyde metabolism.

In summary, we developed a non-invasive method to phenotype genetic differences in ALDH2 after an alcohol challenge. We uncovered two novel missense mutations, rs747096195 (R101G)
and rs190764869 (R114W), which cause inefficient acetaldehyde metabolism and facial flushing relative to the wild type ALDH2 subjects. Further we identified that rs4646777 causes facial flushing without an accumulation of acetaldehyde or an increase in heart rate. Together, this study and methodology developed to phenotype genetic differences in ALDH2 can present a novel means to integrate the genetics of aldehyde metabolism into precision medicine pathways for cancer and cardiovascular disease.
Figure Legends:

Figure 1. Flowchart and experimental protocol for alcohol challenge. A. Alcohol challenge protocol. After 10 minutes baseline, subjects were given an alcohol challenge (0.25g/kg); consumed over 10 minutes. Subjects were then monitored while measuring physiologic parameters. B. Recruitment of 16 subjects of East Asian descent for an alcohol challenge after genotyping. 8 subjects (4 male and 4 female) were selected for alcohol challenge with an ALDH2*1/*2 genotype. Additionally, 8 subjects with an ALDH2*1/*1 genotype were age and sex matched to those with an ALDH2*1/*2 genotype. C. Recruitment of subjects self-identified as non-East Asian descent. We identified 10 subjects with genetic mutations in ALDH2 that were subjected to an alcohol challenge.

Figure 2. Breath metabolite and physiologic characteristics after alcohol challenge in Asian subjects. Breath concentrations (in parts per million) of A. ethanol B. acetaldehyde and C. acetic acid. Physiologic characteristics of subjects including D. heart rate E. skin temperature and F. mean arterial pressure. After collecting a baseline measurement, the next 2 measurements were during alcohol consumption. Subjects were monitored for an additional 140 minutes after alcohol consumption. Blue lines are wild type ALDH2*1/*1 subjects and red lines ALDH2*1/*2 subjects. *P<0.01 versus ALDH2*1/*1 subjects, n=8/group (4 male and 4 female).

Figure 3. Variation in rs4646777 intron region does not affect acetaldehyde metabolism. Breath metabolite and physiologic characteristics after alcohol challenge in subjects with rs4646777 (G>A). Breath concentrations (in parts per million) of A. ethanol B. acetaldehyde and C. acetic acid. Physiologic characteristics of subjects including D. heart rate E. skin temperature and F. mean arterial pressure. After collecting a baseline measurement, the next 2 measurements were collected during alcohol consumption. Subjects were monitored for an additional 140 minutes after alcohol consumption. n=4

Figure 4. R114W (rs190764869) and R101G (rs747096195) ALDH2 missense mutations impair acetaldehyde metabolism. Breath concentrations (in parts per million) of A. ethanol B. acetaldehyde, and C. acetic acid metabolites. Physiologic characteristics after alcohol challenge in female subjects identified with ALDH2 missense mutations including D. heart rate E. skin temperature and F. mean arterial pressure. For A-F, blue lines are ALDH2*1/*1 female subjects (n=4) and red lines ALDH2*1/*2 female subjects (n=4) for comparison to the R114W and R101G missense mutations identified in female subjects which are the black line. G. Crystal structure of ALDH2 and location of R101G and R114W relative to the E504K variant. H. Enzymatic activity of purified protein (mixed 1:1 with wild type ALDH2 to represent a heterozygote) for ALDH2 R114W when compared to wild type ALDH2 and ALDH2 E504K. n=6 replicates/group, *P<0.01 relative to wild type ALDH2 enzyme activity.
Acknowledgements: The authors would like to thank Martina Steffen for her initial support as a clinical coordinator for this study and Kayla Anchondo-Johnson, RN for her assistance in physiologic data. Funding was supported by Stanford ChEM-H (ERG and DMR) and the National Institute of Health, National Institute of General Medical Sciences GM119522 (ERG).

Conflicts of Interest: Funding for this project was supported by Stanford Chem-H (ERG and DMR), NIAAA AA011147 (DMR), and NIGMS GM119522 (ERG).

Eric Gross holds a patent related to the ALDH2 activator Alda-1 and research funding from the National Institutes of Health. Daria Mochly-Rosen and Che-Hong Chen hold patents related to Alda-1. Dr. Angst is a consultant for Syneos Health, Hassard and Bonnington LLP, and has funding for a research study from Alkahest Inc. Additional authors have no disclosures.
References:

Figure 1.

A.

Baseline | Alcohol 0.25g/kg | Monitor Stage

0 | -10 min | 10 min | 140 minutes

B.

58 Asian People Contacted Lab with Interest in Study
- 7 Lost to Followup
- 51 Participated in Phone Screening
- 22 Screened Out of Study
- 29 Provided Saliva Sample
- 18 Asian Participants Received Alcohol Challenge
 - 8 Asian Flushers with ALDH2*2 Mutation Received Alcohol Challenge
 - 8 Asian Controls with Wild Type ALDH2 Received Alcohol Challenge
- 12 Excluded due to Normal ALDH2 Genotype
- 1 Excluded due to Homozygous ALDH2*2 Mutation

C.

96 Nonasian People Contacted Lab with Interest in Study
- 28 Lost to Followup
- 68 Participated in Phone Screening
 - 4 due to Weight Exceeding 225 Pounds
 - 16 due to Flush Reaction Requirements
 - 2 due to Pregnancy or Breastfeeding
- 31 Screened Out of Study
- 37 Provided Saliva Samples
- 27 Excluded due to Normal ALDH2 Genotype
- 10 Nonasian Flushers Received Alcohol Challenge
 - 6 due to Weight Exceeding 225 Pounds
 - 23 due to Flush Reaction Requirements
 - 2 due to Pregnancy or Breastfeeding
Figure 2.

A. Ethanol

- Parts per million
- Time (minutes)

B. Acetaldehyde

- Parts per million
- Time (minutes)

C. Acetic Acid

- Parts per million
- Time (minutes)

D. Heart Rate

- Beats per minute
- Time (minutes)

E. Skin Temperature

- Degrees Fahrenheit
- Time (minutes)

F. Mean Arterial Pressure

- mm Hg
- Time (minutes)
Figure 3.

A. Ethanol

B. Acetaldehyde

C. Acetic Acid

D. Heart Rate

E. Skin Temperature

F. Mean Arterial Pressure