Sex and APOE genotype influence Alzheimer’s disease tau neuropathology

Paula Duarte-Guterman¹, Arianne Y. Albert², Cindy K. Barha³, Liisa A.M. Galea¹, on behalf of the Alzheimer’s Disease Neuroimaging Initiative δ

1. Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada
2. Women’s Health Research Institute of British Columbia, Vancouver, BC, Canada
3. Djavad Mowafaghian Centre for Brain Health and Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada

Address all correspondence and requests for reprints to:
L. A. M. Galea, PhD
Djavad Mowafaghian Centre for Brain Health
2215 Wesbrook Mall
Vancouver, British Columbia
V6T 1Z3, Canada
E-mail: lgalea@psych.ubc.ca.

δ Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
ABSTRACT

Alzheimer’s disease (AD) is characterised by severe cognitive decline and pathological changes in the brain (brain atrophy, hyperphosphorylation of tau, and deposition of toxic amyloid-beta protein). Females have worse neuropathology (AD biomarkers and brain atrophy rates) and cognitive decline than males, however biological sex can interact with diagnosis (mild cognitive impairment (MCI) or AD) and APOE genotype (number of ε4 alleles), although there are discrepancies between studies. Using the ADNI database, we analysed the effect of sex and APOE genotype (number of ε4 alleles) and sex and diagnosis (cognitively normal (CN), MCI, AD) on cognition (memory and executive function), hippocampal volume, CSF amyloid beta, CSF tau and ptau. More males were diagnosed with MCI but there was no sex difference in those diagnosed with AD, suggesting the progression from CN, MCI to AD may be sex-specific. We found, consistent with some studies, that females had higher levels of CSF tau-pathology that was disproportionately affected by APOE genotype compared to males. These results suggest that sex and APOE genotype effects on AD biomarkers may influence sex differences in incidence and progression of MCI and AD. We also detected sex differences in hippocampal volume but the direction was dependent on the method of correction. Females had better memory (including verbal) scores than males, which may suggest a delay in the onset of cognitive decline or diagnosis.

Keywords: Sex differences; Alzheimer’s disease; APOE genotype; neuroplasticity; hippocampus; memory.
INTRODUCTION

Alzheimer’s disease (AD) is characterized by severe cognitive decline and neuropathological markers such as brain atrophy, senile plaques, hyperphosphorylation of tau, and deposition of toxic amyloid-beta protein in the brain (Alzheimer’s Association, 2017). The hippocampus is one of the first brain areas to show atrophy with AD (Apostolova et al., 2006; Jack et al., 2000; Kidron et al., 1997) and hippocampal atrophy correlates with cognitive decline (Petersen et al., 2000) and AD pathology (neurofibrillary tangles; Jack et al., 2002). Female sex and possession of one or two alleles of APOEε4, the strongest genetic risk factor for sporadic AD, are important non-modifiable risk factors for AD (Riedel et al., 2016). In some studies, females show greater signs of neuropathology (neurofibrillary tangles, amyloid beta burden), rates of brain atrophy, including in the hippocampus, and cognitive decline than males but this may depend on whether females are already cognitively impaired (mild cognitive impairment (MCI) or AD) and on APOE genotype (Ardekani et al., 2016; Barnes et al., 2005; Cavedo et al., 2018; Fleisher et al., 2005; Holland et al., 2013; Hua et al., 2010; Irvine et al., 2012; Koran and Hohman, 2017; Lin et al., 2015; Sundermann et al., 2018; Wang et al., 2019). One allele of APOEε4 increases the risk of AD in females relative to males at an earlier age (between 65 and 75 years), indicating that the APOE genotype affects males and females differently (Neu et al., 2017). Previous studies have examined the interaction of APOE genotype and sex on cognitive function, hippocampal atrophy and AD biomarkers but findings are not consistent (Altmann et al., 2014; Buckley et al., 2019, 2018; Damoiseaux et al., 2012; Holland et al., 2013; Liu et al., 2019; Sampedro et al., 2015; Sohn et al., 2018; Wang et al., 2019). In order to improve diagnosis and treatment including the development of personalised treatments based on sex and genotype, it is important to understanding why females are at a higher risk and have a higher burden of the disease.
Using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, previous studies found a stronger association between APOEε4 and CSF tau levels in females compared to males (Altmann et al., 2014; Damoiseaux et al., 2012; Liu et al., 2019) but this has not been consistently reported in all ADNI studies (Buckley et al., 2019; Sampedro et al., 2015). In some ADNI studies, females with APOEε4 alleles have steeper hippocampal volume reductions (Holland et al., 2013) and cognitive decline (Wang et al., 2019) compared to males (although see: Buckley et al., 2018; Sohn et al., 2018). Differences in type of statistical analyses, sample size, how many groups were included in the analyses (cognitively healthy, MCI, AD), and types of cognitive tests (types of memory and executive function) are likely reasons for the discrepancies between studies.

In addition, a basic understanding of sex differences in hippocampal function and structure is needed. There are sex differences in certain types of memory that involve the hippocampus in both humans and rodents, although not all studies find this sex difference for a variety of reasons (Yagi and Galea, 2019). Sex differences in executive function have also been found but are again not very large in size or consistent across studies (Grissom and Reyes, 2019). Females perform better in episodic memory tasks related to verbal memory, whereas males perform better in visuopatial-related tasks (meta-analysis by Asperholm et al., 2019; reviewed in Hamson et al., 2016). Some studies find sex differences in hippocampal volume with females having a smaller volume compared to males, but this seems to depend on whether the data were corrected for individual differences in brain volume and which method was used (meta-analysis by Tan et al., 2016). Understanding basic sex differences in hippocampal function and structure is important to determine how they can contribute to sex differences in vulnerability and progression of neurodegenerative diseases like AD.
The objective of this study was to analyse ADNI data to examine sex differences in cognitive ability (memory and executive function), volume of the hippocampus (using two different correction factors), and neuropathological markers of AD (CSF amyloid beta, tau, and phosphorylated tau), and how these may be affected either by APOE genotype (number of ε4 alleles), or dementia status (cognitively normal (CN), MCI, AD). We hypothesized that females will be more affected by APOE genotype and diagnosis (MCI and AD) and this will be reflected in worse cognitive scores and AD pathology, and smaller hippocampus volume than males.

METHODS

ADNI database

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org. Data used in this article were downloaded on or before Jan 16, 2019.

Memory, executive function, hippocampal volume, and CSF biomarkers

We included all participants who had the following baseline data: diagnosis in the ADNI database, cerebrospinal fluid (CSF) levels for amyloid beta, tau and phosphorylated tau (ptau), underwent a battery of neuropsychological tests, and had a brain MRI scan (total n = 1,460, n= 630 females, n=830 males; Table 1). Data included in our analyses were: demographics (age,
years of education, and ethnicity), baseline diagnosis (cognitively normal, CN; early MCI, EMCI; late MCI, LMCI; or AD), number of APOE ε4 alleles (0, 1 or 2), ADNI executive function z-scores, ADNI memory z-scores (using data from the ADNI neuropsychological battery and validated in Crane et al., 2012; Gibbons et al., 2012), hippocampal volume (mm3), CSF amyloid beta (pg/ml), CSF tau (pg/ml), and CSF p-tau (pg/ml). Inclusion and exclusion criteria are detailed online (http://adni.loni.usc.edu/methods/documents/) (see also Petersen et al., 2010; Aisen et al., 2010). Briefly, CN participants had normal memory function (measured by education-adjusted scores on the Wechsler Memory Scale Logical Memory II) and a Clinical Dementia Rating (CDR) of 0. Amnestic late MCI (LMCI) participants had objective memory loss (from Wechsler Memory Scale Logical Memory II scores), a CDR of 0.5, preserved daily activities, and absence of dementia. Early MCI (EMCI) participants had a milder episodic memory impairment compared to LMCI (Wechsler Memory Scale Logical Memory II scores ~0.5 and 1.5 SD below the mean of CN participants). All AD participants met NINCDS/ADRDA Alzheimer’s Criteria and a CDR of 0.5 or 1.0. The executive function score included WAIS-R Digit Symbol Substitution, Digit Span Backwards, Trails A and B, Category Fluency, and Clock Drawing (Gibbons et al., 2012). The composite memory score included Rey Auditory Verbal Learning Test, AD Assessment Schedule - Cognition, Mini-Mental State Examination, and Logical Memory data (Crane et al., 2012). Sex differences in hippocampal volume are influenced by controlling factors such as intracranial volume (Lotze et al., 2019; Tan et al., 2016). In the present study, we corrected hippocampus volume using two different methods. The first method (regression method) used the method in Mormino et al. (2014) and Jack et al. (2012) using the residuals of the linear regression between hippocampal volume and total intracranial volume. We also compared another widely used volume correction method.
(Sohn et al., 2018; Sundermann et al., 2018; meta-analysis by Tan et al., 2016 and references herein) by dividing hippocampal volume with intracranial volume to directly compare the different correction methods.

Statistical Methods

We compared all available data for each study variable between the sexes using the Wilcoxon rank sum test for continuous variables and Fisher’s exact test for categorical variables. We used general linear models to determine the relationships between (1) sex and APOE genotype or (2) sex and dementia diagnosis as predictor variables, and cognitive ability, corrected hippocampal volume, and AD biomarkers as dependent variables. Due to the sample size, we were not able to study sex, APOE and diagnosis in one model. All models included age as a covariate. All models initially included an interaction between sex and APOE genotype or sex and dementia diagnosis; if this interaction was not significant, it was removed from the model to estimate the main effects of sex and APOE genotype or diagnosis. Significance was based on the likelihood ratio test, and all p-values for comparisons of sex and either APOE or diagnosis for all outcomes combined were corrected for multiple testing using the Benjamini-Hochberg false discovery rate method with the family-wise error rate set to 0.05 (Benjamini and Hochberg, 1995). In total, three p-values per dependent variable were included in each set of models (interaction term and main effects of sex and APOE or diagnosis) resulting in 21 p-values corrected (7 dependent variables; Tables 1 to 3) for each of the models (sex and APOE and sex and diagnosis) for each of the models (sex and APOE and sex and diagnosis). All regression analyses were carried out in R v3.5.1 (R Core Team, 2018).
RESULTS

Demographic information

Table 1 gives a summary of the variables for the overall data set (N=1460). Overall, females were significantly younger and had fewer years of education than males (P<0.0001 for both). There were more white males than white females in our sample and there were more non-white females compared to non-white males (P<0.05). In terms of APOE genotype, there were no sex differences in distribution of APOE genotype with 40% females and 38.8% males possessing one allele of APOEε4 and 11% females and 12% of males possessing two alleles of APOEε4. In the overall data set, the proportion of participants in each of the diagnosis categories was significantly different for females and males (P<0.05). More females were cognitively normal than males (26.7% compared to 20.8%, unadjusted P = 0.01) and although there were more females with a baseline diagnosis of AD compared to males (23.7% compared to 21.7%, unadjusted P = 0.41), this was not significant. However, there were more males with a diagnosis of late MCI (39.5% versus 32.5%, unadjusted P=0.007) but not early MCI (18.0% versus 17.1%, unadjusted P=0.74) compared to females.

Sex and APOE genotype were associated with changes in memory, hippocampus volume, AD biomarkers

Our first aim was to investigate whether sex and APOE genotype interact to influence cognitive ability, volume of the hippocampus, and biomarkers of AD. There were significant interactions between sex and APOEε4 genotype for CSF tau, and p-tau (P=0.001 and 0.002, respectively; Table 2). Tau and p-tau levels were significantly higher in females with one or two
alleles of APOEε4 compared to males (Fig 1 A and B). Although CSF p-tau and tau levels also
increased in males with APOEε4 genotype, they did not rise to the same extent as in females.

Both sex and APOE genotype were independently (main effects of sex or APOE
genotype) associated with memory z-scores and corrected hippocampal volume (Table 2).
Females had higher memory z-scores across all APOE genotypes (P<0.0001; Fig 1 C).
Curiously, females had smaller or larger hippocampi than males depending on the correction
method used: females had smaller corrected hippocampal volume based on the regression
method (Mormino et al., 2014) (P<0.0001; Fig 1 D) but larger hippocampal/intracranial volume
compared to males (P<0.0001; Table 2). These data suggest it is important to consider different
correction factors when studying sex differences in volumes of brain structures. Lower memory
z-scores were associated with increasing number of APOEε4 alleles in both sexes (P<0.0001).
Similarly, corrected hippocampus volume (independent of method of correction) was
significantly lower with increasing number of APOEε4 alleles in both sexes (Ps<0.0001).
Increasing APOEε4 alleles was also associated with lower executive function z-scores
(P<0.0001), and lower CSF amyloid beta (P<0.0001; Table 2; Fig 1 E and F), however there was
no additional association of these variables with sex.

Sex and diagnosis were associated with changes in memory, hippocampus volume, and AD
biomarkers

We next tested whether sex and dementia status (CN, MCI, and AD) influenced cognitive
ability, corrected hippocampal volume, and CSF biomarkers of AD. There were no significant
interactions between sex and diagnosis for any of the tested variables (memory, executive
function, corrected hippocampal volume, CSF tau, p-tau, and amyloid beta). However, overall
both sex and diagnosis were independently associated with memory z-scores, corrected hippocampal volume and CSF tau and p-tau (Table 3). As expected based on the analyses with APOE genotype, females had higher memory z-scores (P<0.0001), smaller corrected hippocampus volume (P<0.0001) but larger hippocampus/intracranial volume ratio (P<0.0001; Table 3), and higher tau and p-tau compared to males (Ps<0.0001), irrespective of diagnosis (Table 3). As expected, increasing severity of diagnosis was associated with lower memory and executive function z-scores (Ps<0.0001), smaller corrected hippocampus volume (Ps<0.0001; independent of correction method), lower CSF amyloid beta (P<0.0001), and higher CSF tau and p-tau irrespective of sex (Ps<0.0001; Fig 2 A-F).

DISCUSSION

In the present study, we found that CSF tau pathology was disproportionately elevated by APOEε4 genotype in females compared to males. However, diagnosis and APOE genotype were independently associated with reduced memory and executive function scores, corrected hippocampal volume and reduced CSF amyloid beta which was similar in males and females. Furthermore, there were main effects of sex as females had higher tau-related pathology compared to males. Interestingly, depending on the correction method, females had either smaller or larger hippocampus volume compared to males. Finally, we found that females had better memory scores, even after adjusting for age, which may contribute to their delayed diagnosis (Sundermann et al., 2017). In this ADNI cohort, significantly more males presented with a diagnosis of MCI whereas there was no sex difference in the number of participants diagnosed with AD, suggestive of sex differences in transitions to MCI and to AD. It is interesting to note that population-based studies find prevalence of MCI is higher in males.
whereas prevalence of AD is higher in females (Mielke et al., 2014; Petersen et al., 2010; Winblad et al., 2016), although not all studies agree in the higher prevalence or incidence of AD in females (Jack et al., 2019; reviewed in Nebel et al., 2018). Previous work has demonstrated sex differences in rates of AD and symptoms of AD (reviewed in Ferretti et al., 2018; Mielke et al., 2014; Nebel et al., 2018), and our current study suggests that certain AD biomarkers (CSF tau but not CSF amyloid beta) are different between males and females between genotypes. These data provide clues as to how these sex differences in biomarkers of neuropathology may inform on sex differences in AD lifetime risk and progression.

Females showed greater tau neuropathology disproportionately affected by APOE genotype

In the present study, we found that females have significantly higher baseline tau and p-tau levels in CSF than males, which is in agreement with a recent ADNI study (Sundermann et al., 2018) and with a mouse AD model (mutant tau and APP trangenic mice, Lewis et al., 2001). CSF tau and p-tau are indicative of the formation of neurofibrillary tangles and AD pathology (Blennow et al., 2015; Henriques et al., 2018). Our findings disagree with an earlier ADNI study (Holland et al., 2013), which may be due to our increased sample size. We found that levels of tau and p-tau were disproportionately elevated with APOEε4 allele expression in females compared to males. Previous studies have found a significant interaction between sex and APOE genotype on levels of CSF tau in MCI (Altmann et al., 2014) but not in cognitively healthy individuals (Altmann et al., 2014; Buckley et al., 2019; Sampedro et al., 2015; but see Damoiseaux et al., 2012). Our data extends these data by adding that the interaction with sex and APOE genotype is also seen in individuals with AD. A meta-analysis that included data from ADNI also found a stronger association between APOEε4 and tau levels in females compared to
males (Hohman et al., 2018) but interestingly this association is not present in all ADNI studies which may depend on sample size, type of statistical analysis, and the diagnosis groups included in the analyses (Buckley et al., 2019; Sampedro et al., 2015). Previous studies indicate that females with the APOEε4 allele are at a greater risk for developing AD than are males with this allele (Altmann et al., 2014; Neu et al., 2017), and sex differences in tau and p-tau may be one underlying mechanism by which this occurs but further replication with additional and larger populations are needed. Levels of CSF tau are hypothesized to increase after CSF amyloid beta declines and amyloid beta aggregates and deposits in the brain (Blennow et al., 2015). However, in this study, although we found sex differences in CSF tau and p-tau levels, no significant differences were seen in CSF amyloid beta after controlling for age (see below) indicating that the pathway may be different in females compared to males or that the timeline of tau and amyloid beta deposition may not be consistent.

Females have a higher lifetime risk of AD than males and show greater cognitive decline with AD than males (reviewed by Ferretti et al., 2018; Mielke et al., 2014; Nebel et al., 2018). The disproportionate effect of APOEε4 genotype on tau-related pathology in females supports the idea that females have a higher burden of the disease dependent on APOE genotype. Intriguingly, males are more likely to be diagnosed with MCI compared to females (Jack et al., 2019; Mielke et al., 2014; Petersen et al., 2000), whereas females progress faster from MCI to AD (Lin et al., 2015). These findings are similar to those in the current study as we found more males than females diagnosed with MCI but no sex difference in AD, suggesting that females “catch up” to males. Sex differences in tau-related pathology found in the current study may be the underlying mechanism for this accelerated transition.
Females had better memory scores than males

As expected, we found that increasing APOEε4 alleles and AD diagnosis was associated with reduced memory and executive function scores consistent with past literature (Buckner, 2004; Ewers et al., 2012; Mungas et al., 2010; Petersen et al., 2000). Surprisingly, although females have higher levels of tau and p-tau, they presented with better memory and executive function scores than males, regardless of diagnosis and APOE genotype. Previous studies found that females have better verbal memory compared to males across diagnoses (CN, Jack et al., 2015; MCI and AD, Sundermann et al., 2018, 2016). Here, we used the ADNI memory score developed by Crane et al. (2012) to detect abnormal memory including language, attention, and logical memory so it is possible that verbal memory may be driving the sex difference favouring females in the present study. In contrast, Buckley et al. (2018) found no sex differences using a composite cognitive score that includes memory and executive function (Preclinical Alzheimer’s Cognitive Composite score with semantic processing, PACC5) using ADNI and two other cohorts. Altogether, we found that in females CSF tau pathology was increased but memory scores, which included verbal memory, were higher compared to males suggesting females have a reserve against brain damage that delays either the onset of cognitive decline (Stern, 2002) or diagnosis (Sundermann et al., 2017). However, once cognitive decline begins, females show higher rates of declines compared to males (Buckley et al., 2018; Holland et al., 2013; Hua et al., 2010) perhaps because the underlying pathology is elevated in females.

Sex differences in hippocampal volume depended on correction method

We found that increasing APOEε4 alleles and AD diagnosis was associated with reduced corrected hippocampal volume (both methods of correction) consistent with previous literature.
Curiously, depending on the correction method, females had larger or smaller hippocampal volume compared to males. Females had smaller corrected hippocampal volume using the residuals of the linear regression between hippocampal volume and total intracranial volume (regression method by Mormino et al., 2014; Jack et al., 2012) but larger ratio of hippocampal/intracranial volume compared to males (method used in Sohn et al., 2018; Sundermann et al., 2018; Tan et al., 2016). Previous studies have suggested that there are sex differences in hippocampal volume, favoring males, but the sex differences depend on whether hippocampal volume is corrected for by intracranial volume or total brain volume and the method of correction (Tan et al., 2016). In a number of studies, including the present study, males have a larger hippocampus without correcting for intracranial volume (Cavedo et al., 2018; Jack et al., 2015; Murphy et al., 1996; Ritchie et al., 2018; Sohn et al., 2018; Sundermann et al., 2018; Tan et al., 2016). However after correcting for intracranial volume using the regression model, studies have found females have larger (Jack et al., 2015), smaller (present study) or no difference (Cavedo et al., 2018; Tan et al., 2016) in corrected hippocampal volume compared to males. Using the ratio method, Sohn et al. (2018), Sundermann et al. (2018), Murphy et al. (1996) and the current study found that females had larger hippocampal volumes compared to males. In their meta-analysis, Tan et al. (2016) conclude that sex differences in hippocampal volume are modest and highly depend on correction method and this is supported by our findings. These results have important implications for understanding sex differences in diseases that influence the integrity of the hippocampus as they lead to very different conclusions regarding hippocampal plasticity. We
suggest future research should report uncorrected as well as corrected volumes using multiple methods.

Regardless of hippocampal volume, volume loss is greater in aging females (Ardekani et al., 2016; Koran et al., 2017; Murphy et al., 1996) and in females with one or two APOEε4 alleles (Fleisher et al., 2005). Although in the present study we did not examine longitudinal data, we found that increasing APOEε4 alleles reduced corrected hippocampal volume similarly in males and females. In contrast, when CN, MCI and AD individuals were analysed separately in the ADNI database, APOEε4 was associated with a smaller corrected hippocampal volume in CN males only (Sundermann et al., 2018) and greater sex differences in longitudinal changes as females with low CSF amyloid beta had more hippocampal atrophy and faster decline in memory and executive function than males (Koran et al., 2017). Therefore, sex and APOE genotype can interact to affect corrected hippocampal volume reduction with age in certain subgroups and across time (e.g., in CN or individuals with low CSF amyloid beta). Differences in results between studies are likely due to differences in statistical analyses (e.g., analysing diagnosis groups separately, partitioning the data based on amyloid beta levels, and differences in covariates included) and/or whether longitudinal data analyses are included.

AD affects amyloid beta similarly in both sexes

We found that AD diagnosis was associated with lower CSF amyloid beta, as expected, and this was irrespective of sex, which indicates greater amyloid deposition with AD (Henriques et al., 2018). These findings are consistent with data from studies in cognitively healthy individuals (Buckley et al., 2018; Jack et al., 2015). Other studies have found using PET that males have higher amyloid beta levels or lower amyloid beta burden compared to females.
dependent on APOE genotype (Sundermann et al., 2018) or in cognitively normal adults in the anterior cingulate (Cavedo et al., 2018). In this study, we used CSF amyloid beta data which detect abnormal amyloid deposition earlier than amyloid beta by PET (reviewed in Blennow et al., 2015). Thus, taken together, sex differences in amyloid beta may be detected in specific brain regions and later in the disease, although more research is needed investigating sex differences in AD biomarkers.

Limitations

The ADNI data are not representative of the population as it is mostly composed of white and highly educated individuals. Ethnicity (Fitten et al., 2014; Mayeda et al., 2016; Steenland et al., 2016) and education (Sharp and Gatz, 2011) can affect incidence, prevalence and age of AD onset. Therefore, our conclusions may not apply to more ethnically and socially diverse populations. In this cohort, the proportion of participants in the different APOEε4 allele groups is correlated with AD diagnosis. Future research with a larger cohort is required to test in one model how sex, APOE genotype and diagnosis interact together.

CONCLUSION

AD biomarkers, CSF tau and p-tau but not amyloid beta, were disproportionately affected by APOE genotype in females compared to males supporting sex differences in the manifestation of AD. Hippocampal volumes were different between the sexes but the direction was dependent on the method of correction. Interestingly, although females in this cohort had elevated AD biomarkers, they also had higher memory function scores compared to males, regardless of
APOE genotype and dementia diagnosis. Therefore, it is possible that females may have a
reserve that protects the brain from damage to delay cognitive decline or delay diagnosis.

ACKNOWLEDGMENTS

Data collection and sharing for this project was funded by the Alzheimer's Disease
Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD
ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the
National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering,
and through generous contributions from the following: AbbVie, Alzheimer’s Association;
Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-
Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli
Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company
Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy
Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development
LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx
Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal
Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian
Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private
sector contributions are facilitated by the Foundation for the National Institutes of Health
(www.fnih.org). The grantee organization is the Northern California Institute for Research and
Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the
University of Southern California. ADNI data are disseminated by the Laboratory for Neuro
Imaging at the University of Southern California. Funding for this study was provided by a
Canadian Institutes of Health Research (CHIR) grant to LAMG (PJT-148662). PDG is funded by the Alzheimer’s Association of the USA and Brain Canada with the financial support of Health Canada through the Brain Canada Research Fund (AARF-17-529705). The views expressed herein do not necessarily represent the views of the Minister of Health or the Government of Canada. We thank Elizabeth Perez for help with data organization.

CONFLICT OF INTEREST

The authors have no conflict of interest to report.

REFERENCES

8 years. Alzheimer’s & Dementia: Translational Research & Clinical Interventions 1, 103–110. https://doi.org/10.1016/j.trci.2015.07.001

FIGURE CAPTIONS

Figure 1. A. CSF tau (pg/ml), B. CSF p-tau (pg/ml), C. ADNI memory z-scores, D. hippocampal volume (corrected with regression method), E. ADNI executive function z-scores, and F. CSF amyloid beta (pg/ml) in ADNI participants by sex and number of APOEε4 alleles (0, 1, 2 alleles).

Figure 2. A. ADNI memory z-scores, B. hippocampal volume (corrected with regression method), C. CSF tau (pg/ml), D. CSF p-tau (pg/ml), E. ADNI executive function z-scores, F. CSF amyloid beta (pg/ml) in ADNI participants by sex and diagnosis (CN, EMCI, LMCI, AD). CN, cognitively normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; AD, Alzheimer’s disease.
Figure 2

A. Memory z-score

B. Hippocampal volume (corrected)

C. Tau

D. P-tau

E. Executive Function z-score

F. Amyloid-beta
Table 1. Demographic and clinical information for all participants and subdivided by sex. Biomarkers for AD are from cerebrospinal fluid. P-values adjusted for age are presented for easier comparison and are taken from the linear model of sex and APOE genotype (Table 2). Volume of the hippocampus was corrected using a regression method or using a ratio with intracranial volume (see methods for more details).

<table>
<thead>
<tr>
<th></th>
<th>Total No. 1,460</th>
<th>Female No. 630</th>
<th>Male No. 830</th>
<th>P-value</th>
<th>P-value (adjusted for age)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>74.13 (±7.25)</td>
<td>73.15 (±7.28)</td>
<td>74.87 (±7.14)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>Education (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>15.83 (±2.88)</td>
<td>15.15 (±2.79)</td>
<td>16.34 (±2.85)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>1,352 (92.60%)</td>
<td>573 (90.95%)</td>
<td>779 (93.86%)</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>Not white</td>
<td>108 (7.40%)</td>
<td>57 (9.05%)</td>
<td>51 (6.14%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>341 (23.4%)</td>
<td>168 (26.7%)</td>
<td>173 (20.8%)</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>EMCI</td>
<td>257 (17.6%)</td>
<td>108 (17.1%)</td>
<td>149 (18.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMCI</td>
<td>533 (36.5%)</td>
<td>205 (32.5%)</td>
<td>328 (39.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>329 (22.5%)</td>
<td>149 (23.7%)</td>
<td>180 (21.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APOEε4 allele number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>702 (48.08%)</td>
<td>300 (47.62%)</td>
<td>402 (48.43%)</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>574 (39.32%)</td>
<td>252 (40.00%)</td>
<td>322 (38.80%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>170 (11.64%)</td>
<td>70 (11.11%)</td>
<td>100 (12.05%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>14 (0.96%)</td>
<td>8 (1.27%)</td>
<td>6 (0.72%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume of hippocampus (uncorrected, mm³)</td>
<td></td>
<td></td>
<td></td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>6659.47 (±1176.42)</td>
<td>6446.71 (±1169.97)</td>
<td>6822.86 (±1155.87)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>226 (15.48%)</td>
<td>94 (14.92%)</td>
<td>132 (15.90%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume of hippocampus (regression corrected)</td>
<td></td>
<td></td>
<td></td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>6659.47 (±1174.34)</td>
<td>6447.09 (±1167.90)</td>
<td>6822.57 (±1153.83)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>226 (15.48%)</td>
<td>94 (14.92%)</td>
<td>132 (15.90%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume of hippocampus/intracranial volume</td>
<td></td>
<td></td>
<td></td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>0.00436 (±0.00080)</td>
<td>0.00454 (±0.00082)</td>
<td>0.00423 (±0.00076)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>226 (15.48%)</td>
<td>94 (14.92%)</td>
<td>132 (15.90%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amyloid Beta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>830.97 (±358.04)</td>
<td>856.41 (±346.87)</td>
<td>812.44 (±365.16)</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>513 (35.14%)</td>
<td>231 (36.67%)</td>
<td>282 (33.98%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>294.38 (±137.27)</td>
<td>314.56 (±152.70)</td>
<td>279.70 (±122.91)</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>513 (35.14%)</td>
<td>231 (36.67%)</td>
<td>282 (33.98%)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>PTau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>28.89 (±15.31)</td>
<td>30.87 (±16.95)</td>
<td>27.44 (±13.83)</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>513 (35.14%)</td>
<td>231 (36.67%)</td>
<td>282 (33.98%)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>Executive Function (ADNI_EF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>0.02 (±0.96)</td>
<td>0.06 (±0.97)</td>
<td>-0.00 (±0.95)</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>311 (21.30%)</td>
<td>145 (23.02%)</td>
<td>166 (20.00%)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>Memory (ADNI_MEM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>0.10 (±0.87)</td>
<td>0.21 (±0.94)</td>
<td>0.02 (±0.80)</td>
<td>0.0006</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>310 (21.23%)</td>
<td>145 (23.02%)</td>
<td>165 (19.88%)</td>
<td>< 0.0001</td>
<td></td>
</tr>
</tbody>
</table>

P-values are from Wilcoxon rank sum tests for continuous variables and Fisher’s exact tests for categorical variables. Missing refers to number of individuals and the percent of the total cohort that had missing data for that variable.
<table>
<thead>
<tr>
<th>Predictors</th>
<th>ADNI MEM</th>
<th>ADNI EF</th>
<th>ABETA</th>
<th>Hippocampus volume (regression method)</th>
<th>Hippocampus/Intracranial volume</th>
<th>TAU</th>
<th>PTAU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.63 (1.12 – 2.14)</td>
<td>2.05 (1.47 – 2.62)</td>
<td>1458.67 (1247.77 – 1669.57)</td>
<td>(10935.47 – 12165.88)</td>
<td>0.00752 (0.00709 – 0.00795)</td>
<td>56.15 (-50.03 – 142.34)</td>
<td>4.75 (-8.89 – 14.38)</td>
</tr>
<tr>
<td>AGE (years)</td>
<td>-0.02 (-0.02 – -0.01)</td>
<td>-0.02 (-0.03 – -0.02)</td>
<td>-6.19 (-9.01 – -3.36)</td>
<td>-65.72 (-73.95 – -57.49)</td>
<td>-0.00004 (-0.00004 – -0.0003)</td>
<td>2.68 (1.54 – 3.81)</td>
<td>0.26 (0.13 – 0.39)</td>
</tr>
<tr>
<td>Male (ref = Female)</td>
<td>-0.17 (-0.26 – -0.07) 0.003</td>
<td>-0.03 (-0.14 – 0.08) 0.73</td>
<td>-29.77 (-71.55 – 12.01)</td>
<td>482.18 (365.03 – 599.32)</td>
<td>0.00001 (-0.00033 – -0.00016)</td>
<td><0.0001 -7.37 (-31.43 – 16.70)</td>
<td>-0.34 (-3.03 – 2.35)</td>
</tr>
<tr>
<td>APOE status (ref = 0 alleles)</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>1 allele</td>
<td>-0.45 (-0.55 – -0.34)</td>
<td>-0.3 (-0.42 – -0.19)</td>
<td>-240.23 (-284.27 – -196.20)</td>
<td>-518.73 (-642.15 – -395.31)</td>
<td>-0.00051 (-0.00004 – -0.00022)</td>
<td>104.14 (77.21 – 131.06)</td>
<td>11.73 (8.72 – 14.74)</td>
</tr>
<tr>
<td>2 alleles</td>
<td>-0.69 (-0.85 – -0.53)</td>
<td>-0.46 (-0.64 – -0.28)</td>
<td>-455.95 (-521.02 – -390.88)</td>
<td>-946.01 (-1136.77 – -755.25)</td>
<td>-0.00057 (-0.00071 – -0.00044)</td>
<td>178.88 (137.45 – 220.33)</td>
<td>19.81 (15.18 – 24.44)</td>
</tr>
<tr>
<td>Interaction term</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Male:1 allele</td>
<td>-49.76 (-85.30 – -14.22)</td>
<td>-5.58 (-9.55 – -1.60)</td>
<td>-49.76 (-85.30 – -14.22)</td>
<td>-5.58 (-9.55 – -1.60)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1145</td>
<td>1144</td>
<td>947</td>
<td>1224</td>
<td>1224</td>
<td>947</td>
<td>947</td>
</tr>
<tr>
<td>R² / adjusted R²</td>
<td>0.106 / 0.103</td>
<td>0.058 / 0.055</td>
<td>0.203 / 0.199</td>
<td>0.2330 / 0.231</td>
<td>0.191 / 0.189</td>
<td>0.140 / 0.134</td>
<td>0.136 / 0.130</td>
</tr>
</tbody>
</table>

Table 2. Linear regression results for models with sex and APOE status. P-values are for overall tests and are FDR-adjusted.
Table 3. Linear regression results for models with sex and baseline diagnosis. P-values are for overall tests and are FDR-adjusted.

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Estimates (CI)</th>
<th>adjusted p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.79 (1.45 – 2.13)</td>
<td>0.00747 (0.00710 – 0.00785)</td>
<td>154.16 (78.57 – 237.75)</td>
<td>0.00747 (0.00710 – 0.00785)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGE (years)</td>
<td>-0.01 (-0.01 – -0.00)</td>
<td>-0.00003 (-0.00004 – -0.00003)</td>
<td>1.25 (0.15 – 2.36)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (ref = Female)</td>
<td>-0.16 (-0.23 – -0.09)</td>
<td>-0.00016 (-0.00027 – -0.00005)</td>
<td>37.85 (13.41 – 62.30)</td>
<td>4.22 (1.48 – 6.96)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosis (ref = CN)</td>
<td><0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMCI</td>
<td>-0.5 (-0.61 – -0.39)</td>
<td>-0.42 (-0.56 – -0.27)</td>
<td>-85.2 (-148.82 – -21.59)</td>
<td>-340.14 (-495.23 – -185.04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMCI</td>
<td>-1.08 (-1.16 – -1.00)</td>
<td>-0.79 (-0.90 – -0.67)</td>
<td>-256.85 (-315.81 – -197.89)</td>
<td>-304.98 (-1183.33 – -916.63)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>-1.84 (-1.94 – -1.75)</td>
<td>-1.63 (-1.76 – -1.50)</td>
<td>-390.48 (-453.59 – -327.37)</td>
<td>-1603.56 (-1751.83 – -1455.29)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations: 1150 / 1149 / 947 / 1234 / 1234 / 947 / 947

R^2 / adjusted R^2: 0.589 / 0.588 / 0.380 / 0.377 / 0.168 / 0.164 / 0.416 / 0.414 / 0.398 / 0.396 / 0.164 / 0.160 / 0.156 / 0.152