Title: SARS CoV-2 Serosurvey in Addis Ababa, Ethiopia

Short Title: SARS CoV-2 Serosurvey in Addis Ababa, Ethiopia

Authors: John H. Kempen, MD, MPH, MHS, PhD,1-4 Aida Abashawl, MD, MPH, MS,5 Hilkiah Kinfemichael,4 Mesfin Nigussie Difabachew, MD,6 Christopher J. Kempen,3 Melaku Tesfaye Debele,6 Abel A. Menkir,4 Maranatha T. Assefa,4 Eyob H. Asfaw,4 Leul B. Habtegabriel,4 Yohannes Sitotaw Addisie, BSC, MSC,7 Eric J. Nilles, MD, MSC,2,8 and Joseph C. Longenecker, MD, MPH, PhD.9

1. Department of Ophthalmology, Massachusetts Eye and Ear and Harvard Medical School; and Schepens Eye Research Institute; Boston, Massachusetts, USA.
2. Massachusetts Consortium on Pathogen Readiness (MassCPR), Boston, Massachusetts, USA.
3. MyungSung Christian Medical Center (MCM) Eye Unit, MCM General Hospital, Addis Ababa, Ethiopia.
7. Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia.
8. Department of Emergency Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
9. Faculty of Public Health and Department of Epidemiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.

Word Count: 793 words

Funding: Laboratory testing in the study was supported by International Clinical Laboratories, Addis Ababa, Ethiopia. Compliance expenses were paid by Massachusetts Eye and Ear, Boston, MA, USA.

Financial Disclosures: John H. Kempen, MD, PhD is a consultant (Data and Safety Monitoring Committee Chair) for Gilead Sciences, Inc.

Corresponding Author: John H. Kempen, M.D., Ph.D.; Address: Department of Ophthalmology, Massachusetts Eye and Ear and Harvard Medical School; Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114, USA.

Phone: +1 617-573-4494
Fax: +1 617-912-0117
Email: john_kempen@meei.harvard.edu

ORCID ID: 0000-0002-2967-4792
The global COVID-19 pandemic caused by SARS CoV-2 is causing both mortality/morbidity and collateral social and economic damage related to public panic and aggressive public policy measures to contain the disease worldwide.\(^{(1)}\) The epidemic appears to have taken hold much more slowly in sub-Saharan Africa than most of the world.\(^{(2)}\) Antibody testing to evaluate the population proportion previously infected with SARS CoV-2 has the potential to guide public policy, but has not been reported so far for sub-Saharan Africa.

Because a large proportion of cases of COVID-19 are asymptomatic and because the elderly are disproportionately affected with severe and symptomatic disease, we hypothesized that a young population might have experienced an epidemic without having recognized it before COVID-19 become widely known. Such a prior epidemic might explain slower growth of the epidemic in sub-Saharan Africa than elsewhere. We hypothesized that a severe influenza-like illness was epidemic in Addis Ababa, Ethiopia around the time COVID-19 was recognized, and might represent a prior epidemic. Because responses taken to contain COVID-19 prevent population-based sampling, and due to the urgency of the situation, we undertook a serological study of approximately 100 persons presenting to a laboratory for other reasons, and an additional group convalescent from the outbreak in November 2019/February 2020, to assess the extent of exposure of the population in Addis Ababa and indirectly assess whether this epidemic may have been attributable to SARS CoV-2.

The study was conducted at International Clinical Laboratories in Addis Ababa, Ethiopia, which offers the Abbott IgG test run on the ARCHITECT platform with approval of the Ethiopian Food and Drug Administration to the general public. This test, which has received the European CE
mark and an Emergency Use Authorization from the US Food and Drug Administration, has
been found to have 100% sensitivity and 99.9% specificity using the Abbott-determined index
value cutoff of 1.4 in an independent study by the University of Washington conducted in Idaho,
USA.(3) It has not yet been independently validated in Africa.

Subjects enrolled as part of the two groups met the following eligibility criteria: Age 14 years or
higher; resident in Addis Ababa for all of November 2019-February 2020 and no travel outside
Ethiopia since November 1, 2019. The following exclusion criteria also were absent: sore
throat, runny nose, cough or difficulty breathing and/or hospitalized or quarantined in the last 28
days; measured temperature>99.6 Fahrenheit, resting heart rate >100/minut, and/or resting
respiratory rate ≥25/minute); incarceration for a crime; unwilling to participate; or unable to
consent. The study was approved in advance by the Institutional Review Boards of MyungSung
Medical College (Addis Ababa, Ethiopia) and Partners Healthcare (Boston, USA), and the Addis
Ababa Regional Health Bureau; subjects provided written informed consent in Amharic or
English.

After training the study team, 99 subjects were recruited from the participating laboratory’s
waiting room during May 18-21 inclusive; their characteristics are summarized in the Table.
Among these, three tested positive for SARS CoV-2 IgG (3.03%, 95% binomial exact
confidence interval (CI): 0.63%-8.6%). None of the positive cases were taking medications; one
had a chronic runny nose with no other symptoms. Taking into account the sampling scheme
and pre-test probability (1.26% based on 1,923 positive results among 152,334 tests as of June 9,
2020(4)), the range of plausible values according to the method of Larremore and colleagues(5)
are given in the Figure. Forty-five Ethiopians recruited from the investigators’ network who recalled being sick with a COVID-compatible illness between November 1, 2019 and February 29, 2020, were recruited enrolled May 22-27, of whom one tested positive for SARS CoV-2 IgG (2.2%, 95% CI: 0.056%-12%).

Our results, the first serological general population data on SARS-CoV2 reported from sub-Saharan Africa, are a start toward the vast and important work of characterizing the extent of spread over time in this region with approximately one-seventh of the world’s population. While the results of this kind of sample are limited in scope and not easily generalizable, the results do suggest that the large majority of residents of Addis Ababa have not yet been infected by SARS CoV-2 and are at risk. The results do not suggest any particular risk factors for SARS CoV-2 seropositivity.

Decision-makers in Ethiopia, Africa, and elsewhere all are faced with the dilemma of weighing the trade-offs between the direct consequences of the COVID-19 epidemic and the health, economic and other consequences of aggressive control measures.(2) Given the very young age structure of sub-Saharan Africa with associated lesser direct risk from COVID-19,(6, 7) the risk of famine(8) and limited access to essential services(1) as well as economic problems in this region as collateral problems from COVID-19-associated public panic and restrictive policies, different decisions may be appropriate in the African situation than in countries with an older population age structure and developed economic situation. (9)
Figure Caption: The range of plausible values of SARS CoV-2 IgG seropositivity among asymptomatic persons with no history of COVID-19 infection, expressed as probability density (Addis Ababa, Ethiopia, May 2020), based on sensitivity and specificity results for the test determined by the University of Washington(3) is shown in black. An alternative range under less favorable sensitivity and specificity assumptions is given in red. Se=sensitivity; Sp=specificity.

Two Sentence Biography of First Author: Dr. John H. Kempen is Director of Epidemiology for Ophthalmology/Senior Scholar, Massachusetts Eye and Ear/Schepens Eye Research Institute, and Professor of Ophthalmology, Harvard Medical School. He is President of Sight for Souls, a charity developing self-sustaining eye care systems in developing countries, and spends much of the year doing development work, teaching, and research in Addis Ababa, Ethiopia.

Acknowledgments: We thank Daniel B. Larremore, PhD and Yonatan Grad, PhD for preparing the Figure in accordance with their method.(5)
References:

Table: Characteristics of subjects who tested negative or positive for SARS CoV-2 IgG in Addis Ababa, Ethiopia (May, 2020)

<table>
<thead>
<tr>
<th></th>
<th>SARS CoV-2 IgG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td>Female</td>
<td>55%</td>
</tr>
<tr>
<td>Age (years), mean</td>
<td>37.8</td>
</tr>
<tr>
<td>Ethiopian</td>
<td>97%</td>
</tr>
<tr>
<td>Total count of people at home, mean</td>
<td>3.8</td>
</tr>
<tr>
<td>Count of children at home, mean</td>
<td>0.97</td>
</tr>
<tr>
<td>Health care worker</td>
<td>19.4%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>12.9%</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>12.1%</td>
</tr>
<tr>
<td>Obesity</td>
<td>4.4%</td>
</tr>
<tr>
<td>Lung disease</td>
<td>2.2%</td>
</tr>
<tr>
<td>Pregnant (among females)</td>
<td>9.6%</td>
</tr>
<tr>
<td>Smoker</td>
<td>3.3%</td>
</tr>
<tr>
<td>Any symptoms*</td>
<td>24.7%</td>
</tr>
<tr>
<td>Contact with confirmed COVID-19 case</td>
<td>1.1%</td>
</tr>
<tr>
<td>Subject thinks (s)he had COVID-19 before**</td>
<td>1.2%</td>
</tr>
<tr>
<td>Exposure to traveler***</td>
<td>8.6%</td>
</tr>
</tbody>
</table>

*Any of the following symptoms each month between November 2019-March 2020 inclusive: fever>37.7 C; feverish (did not measure); chills; headache; coughing or sneezing (more than normal); sore throat; difficulty breathing; runny/stuffy nose; "feeling more tired than usual"; decreased appetite; body or muscle aches; joint pains; decreased sense of smell or taste; nausea; vomiting>2 times; abdominal pain; diarrhea. The subject with positive test result reported a runny/stuffy nose for all five months and no other symptoms.

**Nine subjects were "not sure," including one with positive test result.

***Family member, friend or co-worker traveled outside Ethiopia between November 2019-March 2020 inclusive.