The timing and effectiveness of implementing mild interventions of COVID-19 in large industrial cities

Ting Tian¹, Wenxiang Luo¹#, Yukang Jiang¹#, Minqiong Chen¹, Wenliang Pan¹, Jiashu Zhao¹, Songpan Yang¹, Heping Zhang²*, Xueqin, Wang³,¹*

¹Dr. T. Tian, W. Luo and Y. Jiang contributed equally to this article

²Dr. H. Zhang and Dr. X. Wang are corresponding authors

Abstract

Background

The outbreak of novel coronavirus disease (COVID-19) has spread around the world since it was detected in December 2019. As the starting place of COVID-19 pandemic, the Chinese government executed a series of interventions to curb the pandemic. The “battle” against COVID-19 in Shenzhen, China is valuable because populated industrial cities are the epic centers of COVID-19 in many regions.

Methods

We used synthetic control methods to compare the spread of COVID-19 between Shenzhen and its counterpart regions that didn’t implement interventions for the total duration of 16 days starting from the day of the first reported case in compared locations. The hypothetical epidemic situations in Shenzhen were inferred by using time-varying reproduction numbers, assuming the interventions were delayed by 0
day to 5 days.

Results

The expected cumulative confirmed cases would be 1307, which is 4.86 times of 269 observed cumulative confirmed cases in Shenzhen on February 3, 2020, based on the data from the counterpart counties (mainly from Broward, New York, Santa Clara, Westchester and Orange) in the United States. If the interventions were delayed 5 days from the day when the interventions started, the expected cumulative confirmed cases of COVID-19 in Shenzhen on February 3, 2020 would be 676 with 95% CI (303,1959).

Conclusions

Early implementation of mild interventions can subdue the epidemic of COVID-19. The later the interventions were implemented, the more severe the epidemic was in the hard-hit areas. Mild interventions are less damaging to the society but can be effective when implemented early.

Introduction

The confirmed cases of novel coronavirus (SARS-Cov-2) disease (COVID-19) had been detected since December 20191, there are over 200 countries with reported confirmed cases2. A potent characteristic of SARS-Cov-2 is that it can be contagious during the incubation period, where asymptomatic individuals could become a
disseminating source3. Therefore, finding and implementing effective interventions is vital to disease control4-5.

On January 23, 2020, nonpharmaceutical interventions including all public transportation closures started at Wuhan, and a similar response was triggered cities geographically near Wuhan cities, such as the cities within Hubei province and Wenzhou in Zhejiang province on February 1, 20206. Guangdong province, where there is a large population of migrants from Hubei province7, activated the first-level public health emergency response on January 23, 20208. Shenzhen, with a confirmed case of COVID-19 firstly reported in Guangdong province, implemented the interventions by closely following and isolating the close contacts of confirmed cases of COVID-19. By far, the strategic polices for direct protection (such as wearing face masks) and for transmission reduction (for example 14 days isolation for travelers, cancellation of public gathering, delayed reopening of schools) have been maintained in Shenzhen. The intervention and control strategies of Shenzhen were adopted as a classical example in the report of WHO9.

As an industrial city, where there is a large population of inbound and outbound travelers10, Shenzhen implemented a relatively mild intervention strategy compared with that of Wuhan and mounted an early response to the epidemic of COVID-19 relatively to other cities such as Wenzhou. Therefore, of great interest is to examine how effective such mild but early interventions were in curbing the epidemic of COVID-19 in Shenzhen. We evaluated the treatment effects of intervention policies in
Shenzhen by comparing the epidemic data in Shenzhen with other U.S. counties and by considering different hypothetical starting dates of interventions.

Methods

Data Collection

Epidemic data were collected for daily cumulative confirmed cases of COVID-19 since January 19, 2020 in Shenzhen when the first confirmed case was reported. Its corresponding population, GDP, and areas were collected in the statistical yearbook. Also, the daily cumulative confirmed cases of COVID-19 for each county of each state in the United States were downloaded and available online since March 1, 2020. The corresponding populations, areas, and latitudes were collected from the United States Census Bureau (USCB). The White House issued a “call to action” for coronavirus guidelines including canceling gathering over 10 people and staying at home on March 16, 2020. Therefore, there were 16 days of duration before the interventions implemented in the United States. We compare the data between Shenzhen from January 19 to February 3, 2020 and counties in the United States from March 1 to March 16, 2020, by fixing the total duration at 16 days starting from the day of the first reported case in the locations of interest.

Statistical analysis

We employed synthetic control methods (SCM) to examine whether there were significant treatment effects of interventions implemented in Shenzhen from
January 19, 2020, when the first confirmed case was reported, by comparing the epidemic situations in Shenzhen with the counties in the United States from March 1, 2020 when the first confirmed cases were reported in the most counties. The comparison was made for the duration of 16 days, because that was the duration for the period when the United States did not call for the stay-at-home policy from the first day when most counties reported their first cases. We consider hypothetically delaying the starting date of interventions from 0 to 5 days after January 23, 2020 when the interventions were implemented in Shenzhen and simulated the likely outcomes of delayed interventions by using time-varying reproduction numbers.

Effect of mild interventions

To apply synthetic control methods (SCM)16, we selected a pool of counties in the United States as a control region to Shenzhen (a treated region). In the control region, there were no interventions implemented for the COVID-19. The potential outcome of interventions in Shenzhen was expressed as:

\[
Y_{it}^1 - Y_{it}^0 = Y_{it}^1 - \sum_{j=1}^J w_j Y_{jt}^0, \quad (1)
\]

where \(Y_{it}^1 \) and \(Y_{it}^0 \) are COVID-19 cases per 100,000 at the time \(t \) with and without interventions implemented in Shenzhen, respectively. \(Y_{jt}^0 \) is the COVID-19 cases per 100,000 at the time \(t \) in the absence of intervention for each of \(J \) areas.

There were no broad interventions implemented in the early stage of the epidemic in the United States, which allowed us to define a pre-intervention period from March 1 to March 16. These 16-day epidemic data in the United States were
used as the benchmark in our comparison with the 16-day epidemic data in Shenzhen from January 19 to February 3, 2020. Thus, the values of t start from 1 to 16. The treatment effects of the interventions on the cases per 100,000 for Shenzhen were defined as $Y_{it}^1 - Y_{it}^0$ in the post-interventions period. Note that Y_{it}^0 is counterfactual for Shenzhen in the post-interventions period. Reliable estimates of Y_{it}^0 could be obtained by constructing a synthetic region whose epidemic situation was similar to that in Shenzhen in the pre-intervention period.

To select a pool of matching counties to Shenzhen, the pre-intervention features needed to be considered. We used the hierarchical clustering to assign the counties of the United States into a group similar to Shenzhen based on population density and latitude. The selected counties were combined to a synthetic region by also considering the 2-day COVID-19 cases per 100,000 in the pre-intervention period. The number of selected counties was determined by the epidemic situation and the sum of their corresponding weights was equal to 1. A placebo test also used to determine whether there are significant treatment effects of the interventions in Shenzhen.

The delay effects of mild interventions

Besides the determination of treatment effects of intervention in Shenzhen, we considered the likely outcomes of the late implementation of interventions on different days. A common formulation of infectious disease is susceptible-exposed-infectious-removed (SEIR) model. We refined the SEIR by
considering four compartments of individuals: Susceptible (\(S \)), Infected and infectious without isolation (\(I \)), Hospitalized in isolation (\(H \)), and Removed (\(R \)) in our model (See details in the supplementary appendix). To obtain the time-varying reproduction number \(R_t \), we assumed the transmission rate \(\alpha \) was time-variant and would decrease by the influence of interventions. We used logistic function\(^{20}\) to simulate the decreasing trend of \(\alpha \):

\[
\alpha_{\alpha_0,d,m}(t) = \frac{\alpha_0}{1 + \exp(\lambda_m (t - d - \frac{m}{2}))}, \tag{2}
\]

where \(\alpha_0 \) is the maximum transmission rate of COVID-19 during the early outbreak, \(d \) is the time of effective interventions and the transmission rate starts to decrease, \(m \) represents the duration of epidemic ending, \(\lambda_m \) is set to \(\frac{2 \log((1 - \varepsilon) / \varepsilon)}{m} \) and \(\varepsilon \) is equal to 0.01. The smaller the values of \(d \) and \(m \), the earlier effectiveness and the stronger intensity of interventions were implemented, respectively. The trend of \(\alpha_{\alpha_0,d,m}(t) \) was shown in supplementary appendix figure 1.

By the setting above, \(R_t \) was calculated as:

\[
R_t = \frac{\alpha_{\alpha_0,d,m}(t)}{\beta}, \tag{3}
\]

where \(1/\beta \) is the mean of the incubation period of COVID-19, and is assumed to be 5 days in terms of studies about COVID-19\(^1,21-22\). As the intensity of interventions was estimated by the parameter \(m \) and the time of effective interventions was reflected by the parameter \(d \), we varied the values of \(d \) to investigate the likely outcome of delayed interventions.
Results

SCM outcomes

69 areas (68 counties in the United States) including Shenzhen were grouped by using their corresponding latitude and population density (supplementary appendix Table 1). SCM was used to combine the 68 U.S. counties to construct a synthetic region of Shenzhen based on their latitude, population density and 2-day cases per 100,000 in the pre-intervention period. The synthetic and average values of latitude, population density, the third-day cases per 100,000 (i.e. January 21, 2020), and the fourth-day cases per 100,000 (i.e. January 22, 2020) were shown in Table 1. A “highly resembling” region of Shenzhen was obtained by mainly combining Broward (Florida), New York (New York), Santa Clara (California), Westchester (New York), and Orange (Florida) with their corresponding weights 0.366, 0.334, 0.124, 0.021 and 0.021 as an optimal solution, respectively. The weights of the remaining counties were represented in the supplementary appendix Table 2.

Before the mild intervention policies were implemented on January 23, 2020, the trends of actual cases per 100,000 in both Shenzhen and "synthetic Shenzhen" were highly similar, suggesting that such synthetic region could be used to estimate the "counterfactual" results of Shenzhen. Based on the Figure 1, after 1 day of the implementation of the policies, the growth rate of actual cases per 100,000 in Shenzhen was relatively slower than that of "synthetic Shenzhen" until January 29, 2020. After that, there was a sharp increase in the gap of cases per 100,000 between Shenzhen and “synthetic Shenzhen”. On the 16th day from January 19, 2020, i.e.,
February 3, 2020, the estimated number of cases per 100,000 in "Synthetic Shenzhen" was 11.72, which is 4.86 times of the actual Shenzhen (2.41) (Figure 1). In other words, Shenzhen had not implemented mild intervention policies on January 23, 2020, the projected number of cumulative confirmed cases would be reach 1307 on February 3, 2020, i.e., the epidemic of COVID-19 in Shenzhen would have expanded to approximately 4.86 times.

A placebo test was performed to determine the significance level of the difference in the trends of COVID-19 cases per 100,000. To this end, we plotted the gap curves between Shenzhen and synthetic Shenzhen by in turn exchanging Shenzhen and each one of the 68 counties in the homogenous group to Shenzhen. The gap of COVID-19 cases per 100,000 between Shenzhen and our synthetic Shenzhen was the negatively largest among the negative gaps, i.e. the negative effect of the intervention policies on COVID-19 per 100,000 in Shenzhen was the lowest of all. For those 68 counties, the probability of having a gap for Shenzhen under a random permutation of the control measures was 5%, which is statistically significant in a conventional test. This suggested that the mild intervention policies of Shenzhen might have significantly reduced the COVID-19 cases per 100,000 (Figure 2).

The likely outcomes of delayed interventions

There were mild but early interventions implemented in Shenzhen. It is worth examining the likely outcomes of those interventions if they were delayed by different days (Figure 3). Based on our simulation by delaying the interventions, the expected
number of cumulative confirmed cases would be 2.32 times for a 4-day delay and larger 2.51 times for a 5-day delay on February 3, 2020 (Figure 3). The expected number of cumulative confirmed cases with corresponding 95% credible interval (CI) for different days of delay were summarized from January 29 to February 3, 2020 in Table 2. The full simulation results from January 19 to February 29, 2020 are presented in supplementary appendix figure 2. According to Table 2, the expected cumulative confirmed cases for 0-day delay (i.e. the predicted cumulative confirmed cases) was very close to the actual cumulative confirmed cases of Shenzhen, while the expected cumulative confirmed cases were 624 with corresponding 95% CI (298,1551) for the 4-day delay and 676 with corresponding 95%CI (303,1959) for the 5-day delay. Based on Fig 1, if the mild interventions delayed for 4 or 5 days, the epidemic of COVID-19 in Shenzhen could be more severe than that in synthetic Shenzhen (1307 cumulative confirmed cases on February 3, 2020).

Discussion

We used the daily reported cumulative confirmed case data for 16 days since January 19, 2020, in Shenzhen and the corresponding data for 16 days since March 1, 2020 in 68 counties in the United States serving as a control group, i.e., the “synthetic Shenzhen,” those 68 U.S. counties were selected to match Shenzhen by latitude, population density and the 2-day COVID-19 cases per 100,000 in the pre-intervention period. Those 68 U.S. counties did not implement systematic interventions.

The cases of COVID-19 per 100,000 in Shenzhen were significantly lower than
those in “synthetic Shenzhen” after January 29, 2020. This indicated that the implementation of the mild intervention policies on January 23, 2020 in Shenzhen had a significant effect on controlling the epidemic of COVID-19. The reduction in the COVID-19 cases per 100,000 became larger and larger as time moved on (Figure 1).

The predicted cumulative confirmed cases (0-day delay) were very close to the observed cumulative confirmed cases of Shenzhen, indicating that our simulation could provide precise estimates. Therefore, our simulated likely outcomes of delayed interventions are expected to be reliable. According to our simulation, there was little different from January 23 to January 29, but the gap in the expected cumulative confirmed cases started to increase after January 29, 2020. This was consistent with the trend of the epidemic between Shenzhen and synthetic Shenzhen. So, it took about a week to see clear effects of inventions. If the mild interventions were delayed by a week or longer, the epidemic of COVID-19 could have been severe. When the mild interventions were implemented early, the epidemic situation was significantly mitigated.

What is already known on this subject

- The interventions were used to control the fast spread of virus. There is a lack of studies from the timing of the interventions and the intensity of interventions for infectious disease
Studies showed the delay effects of interventions in some areas, but no study has been done to investigate delaying different days and the causal effects of interventions.

What this study adds

- Common and mild interventions in a representative Chinese city were compared with its counterpart areas in the United States where similar interventions were not implemented timely.

- The treatment effects of the interventions were evaluated by causal inference methods.

- The starting time of the interventions was important. The slower the interventions were implemented, the more severe epidemic of COVID-19 would have been in the hard hit areas.

Acknowledgments

We would like to thank all individuals who are collecting epidemiological data of the COVID-19 outbreak around the world.
Competing interests: Authors declare no competing interests.

Contributions: TT, XW and HZ developed the idea and research. TT, WL and YJ wrote the first draft of the manuscript and all other authors discussed results and edited the manuscript. WL, MC, WP, JZ and SY collected and validated epidemiological data and census data.

Patient consent for publication: Not required.

Reference

Table 1. The synthetic and average values of latitude, population density, the third day and the fourth day cases per 100,000 for 68 counties in the pre-intervention period

<table>
<thead>
<tr>
<th>Features</th>
<th>Shenzhen</th>
<th>Average of 68 counties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real</td>
<td>Synthetic</td>
</tr>
<tr>
<td>Latitude</td>
<td>22.55</td>
<td>33.62</td>
</tr>
<tr>
<td>Population density</td>
<td>6670</td>
<td>6670</td>
</tr>
<tr>
<td>3rd day cases per 100,000</td>
<td>0.115</td>
<td>0.115</td>
</tr>
<tr>
<td>4th day cases per 100,000</td>
<td>0.107</td>
<td>0.095</td>
</tr>
</tbody>
</table>
Table 2: The likely outcome of intervention implemented delay in different days including the expected cumulative confirmed cases with corresponding 95% CI from January 29 to February 3, 2020

<table>
<thead>
<tr>
<th>Date</th>
<th>Actual</th>
<th>0 day</th>
<th>1 day</th>
<th>2 days</th>
<th>3 days</th>
<th>4 days</th>
<th>5 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/29</td>
<td>86</td>
<td>92 (68,132)</td>
<td>96 (69,146)</td>
<td>98 (69,154)</td>
<td>99 (69,159)</td>
<td>99 (69,163)</td>
<td>99 (69,165)</td>
</tr>
<tr>
<td>01/30</td>
<td>110</td>
<td>126 (89,185)</td>
<td>136 (91,216)</td>
<td>141 (93,238)</td>
<td>144 (93,258)</td>
<td>145 (93,271)</td>
<td>146 (93,281)</td>
</tr>
<tr>
<td>01/31</td>
<td>170</td>
<td>163 (112,249)</td>
<td>187 (122,309)</td>
<td>202 (125,363)</td>
<td>209 (126,407)</td>
<td>213 (126,448)</td>
<td>215 (126,490)</td>
</tr>
<tr>
<td>02/01</td>
<td>196</td>
<td>201 (135,318)</td>
<td>244 (155,415)</td>
<td>281 (164,522)</td>
<td>300 (166,610)</td>
<td>313 (167,716)</td>
<td>319 (167,813)</td>
</tr>
<tr>
<td>02/02</td>
<td>226</td>
<td>236 (154,392)</td>
<td>302 (188,518)</td>
<td>370 (211,685)</td>
<td>417 (225,862)</td>
<td>450 (226,1098)</td>
<td>469 (227,1294)</td>
</tr>
<tr>
<td>02/03</td>
<td>269</td>
<td>269 (171,458)</td>
<td>355 (216,616)</td>
<td>456 (260,865)</td>
<td>554 (288,1175)</td>
<td>624 (298,1551)</td>
<td>676 (303,1959)</td>
</tr>
</tbody>
</table>
Figure 1. The trends of COVID-19 cases per 100,000 between Shenzhen and Synthetic Shenzhen from January 19 to February 3, 2020. The black dashed line indicated the day of starting the intervention policies in Shenzhen.
Figure 2. The permutation test of the treatment effects of implementing the policies in Shenzhen and the 68 control regions in the U.S. All grey curves represent the placebo tests of COVID-19 cases per 100,000 gaps between a control area (an arbitrary random county of the 68 counties) and synthetic control city (a combination of remaining 67 counties and Shenzhen), and the blue curve represents the placebo test of COVID-19 cases per 100,000 gap between Shenzhen and synthetic Shenzhen.
Figure 3. The expected number of cumulative confirmed cases for mild interventions if they were delayed by different days. The points represent the actual cumulative confirmed cases of Shenzhen.