Modelling the impact of lockdown easing measures on cumulative COVID-19 cases and deaths in England

Ziauddeen H, PhD 1,2,3, Subramaniam N, BSc 1,2, Gurdasani D, PhD† 4.

1 Dept. of Psychiatry, University of Cambridge, Cambridge UK
2 Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge UK
3 Cambridgeshire & Peterborough Foundation Trust, Cambridge UK
4 William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London UK

† Corresponding author:

Dr Deepti Gurdasani
William Harvey Research Institute,
Barts and The London School of Medicine and Dentistry,
Queen Mary University of London, London UK
Email: d.gurdasani@qmul.ac.uk
Phone: 07737650357
Abstract:

Background:
As countries begin to ease the lockdown measures instituted to control the COVID-19 pandemic, there is a risk of a resurgence of the pandemic. The UK started easing lockdown in England when levels of community transmission remained high, which could have a major impact on case numbers and deaths. Using a Bayesian model we assessed the potential impacts of successive lockdown easing measures in England, focusing on scenarios where the reproductive number (R) remains ≤1 in line with the UK government's stated aim.

Methods:
We developed a Bayesian model to infer incident cases and R in England, from incident death data from the Office of National Statistics. We then used this to forecast excess cases and deaths in multiple plausible scenarios in which R increases at one or more time points, compared to a baseline scenario where R remains unchanged by the easing of lockdown.

Findings:
The model inferred an R of 0.81 on the 13th May when England first started easing lockdown. In the most conservative scenario where R increases to 0.85 as lockdown was eased further on 1st June and then remained constant, the model predicts an excess 400 (95% CI 34-1988) deaths and 56,019 (95% CI 4768-278,083) cumulative cases over 90 days. In the scenario with maximal increases in R (but staying ≤1) with successive easing of lockdown, the model predicts 1,946 (95% CI 165-9,667) excess cumulative deaths and 351,460 (95% CI 29,894-1,747,026) excess cases.

Interpretation:
When levels of transmission are high, even small changes in R with easing of lockdown can have significant impacts on expected cases and deaths, even if R remains ≤1. This will have a major impact on tracing systems and health care services in England. This model can be updated with incoming death data to refine predictions over time.

Funding: None.
Research in context:

Evidence before this study:
The impact of social distancing and lockdown measures on controlling the COVID-19 pandemic has been studied extensively over the last few months. However, there has been little examination of the likely impact of easing lockdown measures in a staged manner as is being currently carried out in England, UK. We searched PubMed, medRxiv, bioRxiv, arXiv, and Wellcome Open Research for peer-reviewed articles, preprints, and research reports using the terms “COVID-19”, “United Kingdom” and “lockdown” for research examining these impacts, but found no relevant research that could inform the impact of phased easing of lockdown within England, UK.

Added value of this study:
Decisions around timing of easing lockdown need to be informed by current scientific evidence. In this context, this study provides urgently needed information about the potential impact of lockdown easing at this point within the COVID-19 pandemic in England. Using an epidemiological approach with Bayesian inference, we specifically assess several plausible scenarios of increase in R from baseline as a result of easing lockdown measures at levels of current community transmission, even when the R is maintained ≤ 1, which is the stated aim of the UK government. We provide a comparison of these scenarios, with a baseline scenario where R remains constant, as well as against elimination strategies, where transmission is aggressively suppressed to the lowest level possible. As our code is publicly available, these methods can be easily applied to accruing data, and to any number of scenarios to better understand the implications for public health policy.

Implications of all the available evidence:
Easing lockdown at a point of relatively high community transmission within the UK would lead to substantial excesses of deaths, and cases, even if R is maintained at ≤ 1. As expected, these increases are more marked, when R rises above 1, which is a distinct possibility, given recent estimates of R by a UK government advisory group.¹ Our findings suggest that an elimination strategy would be more appropriate at this point, to allow suppression of community transmission to a point where easing of lockdown would not have the same impact, as with current transmission, and would likely not overwhelm systems of test, trace and isolate, and health services within England.
Introduction:

As countries around the world negotiate the first wave of the COVID-19 pandemic, governments have had to make critical decisions about when and how they ease the lockdown measures that were instituted to control the pandemic. Given the risks of a resurgence of the pandemic and the consequent implications, these decisions need to be informed by best available scientific evidence available at the time.

Different countries have eased lockdown in different ways, and at different points in their epidemic trajectory. The UK imposed lockdown relatively late in its epidemic trajectory and began easing lockdown relatively early, while community transmission levels (incident cases) were still high. By contrast, Germany, Denmark, Italy and Spain started easing lockdown when incident cases and deaths were at much lower levels. Despite mitigating strategies such as test, trace and isolation systems in place, countries like Germany have seen increases in reproduction number (R) after easing lockdown, with increases to above 1 in June. South Korea, and China have also recently seen a resurgence in new cases, leading to new localised restrictions being put in place to control infection.

The impact of easing lockdown when community transmission remains high is poorly understood. Several experts, including SAGE, the scientific advisory body to the UK government, cautioned against this, warning that the testing and contact tracing services that are meant to mitigate the impact of easing lockdown, could be overwhelmed and there could be a major impact on health services. Nevertheless, the UK has proceeded with easing lockdown with the stated aim of doing so while keeping $R \leq 1$. On the 13th May, people who could not work from home were asked to return to work. On the 1st June schools were re-opened, outdoor markets and showrooms opened and households were allowed to meet in socially distanced groups of six. On the 15th June non-essential businesses, including the retail sector, were opened and currently on the 3rd of July, pubs, cafes, and hotels are due to open.

Understanding and quantifying the potential impact of lockdown easing measures at this point is crucial to informing public health strategy within England. Here, we model these impacts across a range of plausible scenarios. We use an epidemiological model of COVID-19 spread with Bayesian inference to infer parameters of the epidemic within England using daily death data from the Office of National Statistics (ONS). We estimate the time varying R and daily cases, and then use these to forecast cases and deaths in several plausible scenarios in which R increases as a result of easing lockdown, particularly focusing on scenarios in which R remains ≤ 1, and contrasting these with elimination strategies that aim to suppress R as much as possible.

Methods

Data for model development:

In order to model the impact of easing lockdown, we need to know the current levels of transmission, and growth parameters of the regional epidemic. Given the limited community testing and case detection in the UK, incident case numbers are likely to be
substantially underestimated. We therefore based our model on the number of incident deaths by date of occurrence, which are likely to be more reliable.5 Incident deaths are a function of incident cases in the previous weeks and the reproduction rate of the epidemic, and both these parameters can be inferred from the death data.5 We included data till the 29th of May for England, as reported by the ONS on the 16th of June 2020 (23rd week of published data).6 These data are based on deaths registered by the 13th of June. As reporting delays mean that more recent deaths are often underestimated, we only considered deaths up to the 29th May as the most reliable estimate prior to the first easing of lockdown on the 1st of June.

Primary outcomes:
We assessed the excess cumulative predicted cases and deaths, over a 90-day period after the 29th May. We assumed different scenarios of changing R at the points of lockdown easing, in comparison with a baseline scenario in which R remained constant during this period.

Estimation of incident cases:
Incident cases, and time-varying R numbers were estimated using a Bayesian model, similar to that previously described by Flaxman et al,5 accounting for the delay between onset of infection and death. The number of infected individuals is modelled using a discrete renewal process, as has been described before.5 This is related to the commonly used Susceptible-Infected-Recovered (SIR) model, but is not expressed in differential form.

We modelled cases from 30 days prior to the first day that 10 cumulative deaths were observed in England, similar to previous methods.5 The numbers of incident cases for the first 6 days of this period were set as parameters to be estimated by the model (**Supplementary Table 1**). Subsequent incident case numbers would then be a function of these initial cases, and estimated R values. We assumed a serial interval (SI) with a lognormal distribution with mean 4.7 and standard deviation (SD) of 2.9 days, as in Nishiura et al.7 The SI was discretised as follows:

\[
g_s = \int_{t=s-1}^{s} g(t) \, dt
\]

For $s=1,2\ldots N$, where N is the total number of intervals (each interval being 1 day) estimated. We estimated the distribution for 201 days, to align with the 111 days of data up to the 29th May, plus 90 days of forecasting. Given a SI distribution, the number of infections c_t on a given day t, is given by the following discrete convolution function:

\[
c_t = R_t \sum_{j=0}^{t-1} c_j g_{t-j},
\]

The incident cases on a given day t, are therefore a function of R at point t and incident cases up to time $t-1$, weighted by the distribution of the serial interval.
Estimation of time-varying reproduction number

The baseline reproduction number (R_0), and the subsequent time varying effective reproduction number (R_t) were estimated up to the 29th of May. We allowed R_t to change on at least three points: (1) 16th March, when the UK first introduced social distancing measures; (2) 23rd March, when lockdown measures came into place with stay at home instructions and closures of schools and non-essential businesses; and (3) 13th May, the first easing of lockdown. R_t was assumed to be stable after the 13th May, as given the limited death data (only up to the 29th May), we were unlikely to be able to estimate changes in R_t after this point with sufficient certainty.

Model selection

We assessed and compared models that allowed R_t to change at the 3 points described above (Model 1), with more flexible models that allowed more frequent changes (Models 2 and 3), as follows:

1. Model 1: 16th March, 23rd March, and 13th May
2. Model 2: Every week from the beginning of the modelling period, including on the 16th March, 23rd March, and 13th May
3. Model 3: 16th March, 23rd March, and 13th May, and every week between the 23rd March and 13th May i.e. during lockdown.

For each model, we used the R package loo to calculate expected log pointwise predictive density (ELPD) using Leave-one-out cross-validation (LOO) individually for each left out data point based on the model fit to the other data points. We then calculated between-model differences in ELPDs, to assess whether particular models predicted data better than others, as discussed previously. As the assumptions in estimation of ELPD may be violated given these are time-series data, and therefore correlated, we also compared the root mean squared errors (RMSE) across models to assess fit. The final model used was arrived upon based on these comparisons.

In addition, we also compared Model 1 (three change points) with models where each of the change points were left out in turn, as done by Dehnig et al, to assess if these dates do correspond to change points in R_t.

Estimation of deaths:

Incident deaths from COVID-19 are a function of the infection fatality rate (IFR), the proportion of infections that result in death, and incident cases that have occurred over the past 2-3 weeks. For observed daily deaths (D_t) for days $t \in 1, \ldots, n$, the expectation of observed daily deaths (d_t) is given by:

$$d_t = E(D_t)$$

As described in Flaxman et al., we model the number of observed daily deaths D_t as following a negative binomial distribution with mean d_t and variance $d_t + \frac{d_t^2}{\psi}$, where ψ follows a half normal distribution:
\[D_t \sim \text{Negative Binomial} \left(d_t, d_t + \frac{d_t^2}{\psi} \right), \quad \text{where} \quad \psi \sim \text{Normal}^+ (0,5). \]

Similar to estimation of incident cases, deaths at time point \(t \) \((d_t) \) were modelled as a function of incident cases up to time \(t-1 \), weighted by the distribution of time of infection to time of death \((\pi) \). The \(\pi \) distribution was modelled as the sum of the distribution of infection onset to symptom onset (the incubation period), and the distribution of symptom onset to death. As has been previously done,\(^5\) both of these were modelled as gamma distributions with means of 5.1 days (coefficient of variation 0.86) and 18.8 days (coefficient of variation 0.45), respectively as follows:

\[\pi \sim \text{IFR} \ast (\text{Gamma}(5.1, 0.86) + \text{Gamma}(18.8, 0.45)) \]

IFR was assumed to be 0.88\%, based on recent estimates from the University of Cambridge MRC Nowcasting and Forecasting model.\(^1\)

To discretise this distribution, we estimated the probability of death within each discrete time interval (1 day), conditional on surviving previous intervals. First we calculate the hazard \((h_t) \) the instantaneous probability of failure (i.e. dying) within a time interval, as follows:

\[h_t = \frac{\int_{\tau=0.5}^{\tau+0.5} \pi(t) \, dt}{1 - \pi_{\tau-0.5}} \]

As the denominator excludes individuals who have died, this ensures that \(h_t \) is calculated only among those surviving. The probability of survival within each interval is:

\[s_t = 1 - h_t \]

The cumulative survival probability of surviving up to the interval \(t-1 \) is therefore:

\[S_{T>\tau-1} = \prod_{j=1}^{t-1} s_j \]

, where \(T \) is the time of death of an individual. In other words the cumulative probability of survival up to interval \(t \) is simply the product of survival within each interval up to \(t-1 \), where the probability of survival within each interval \((s_t) \) is \(1-h_t \), where \(h_t \) is the probability of dying within that interval.

Given this, we now estimate the probability of death within interval \(t \), conditional on surviving up to \(t-1 \) as:

\[\omega_t = P(T = t \mid T > t-1) = S_{T>\tau-1} \ast h_t \]

Here \(\omega \) represents the discretised distribution of infection onset to death, with the probability of death within interval \(t \) conditional on surviving previous intervals. Deaths can
therefore be calculated as a function of incident cases of infection within previous intervals, as follows:

\[d_t = \sum_{j=0}^{t-1} c_j \omega_{t-j} \]

Here, the number of deaths within interval \(t \) (on a given day) is a sum of the number of daily cases up to the previous day, with previous cases weighted by the discretised probability distribution of time from onset of infection to death.

Estimated parameters and model priors:
We estimated the set of model parameters \(\theta = \{ c_1, d_0, R_0, R_t, \phi, \tau \} \) using Bayesian inference with Markov-chain Monte-Carlo (MCMC) (Supplementary Table 1). We estimated the number of cases in the first six days of the modelled period, as subsequent cases are simply a function of cases on these days, the SI, and \(R_t \). As described above, \(R_0 \) was constrained up to the 16\(^{th} \) March and then again after the 13\(^{th} \) of May. For the period prior to 16\(^{th} \) March, we assigned a normal prior for \(R_0 \) with mean 2.5 and SD 0.5. For the period that \(R_t \) was allowed to vary i.e. every week from the 16\(^{th} \) of March till the 13\(^{th} \) of May, we assigned a normal prior with a mean 0.8 and SD 0.25. These priors are based on estimates of time changing \(R_t \) from the University of Cambridge MRC biostatistics nowcasting and forecasting models\(^1 \) and SAGE estimates of \(R_t \)\(^{10} \) and consistent with Flaxman et al.\(^5 \) For the number of cases on day 1, we assigned a prior exponential distribution:

\[y \sim \text{exponential} \left(\frac{1}{\tau} \right) \]

where \(\tau \sim \text{exponential}(0.03) \)

Model estimation:
Parameters were estimated using the Stan package in R with Markov chain Monte Carlo (MCMC) algorithms used to approximate a posterior distribution of parameters by randomly sampling the parameter space. We used 4 chains with 1000 warm up samples (which were discarded), and 3000 subsequent samples in each chain (12,000 samples in total) to approximate a posterior distribution using the Gibbs Sampling algorithm. From these we obtained the best-fit values and the 95% credible intervals for all parameters. We used these parameters to estimate the number of incident cases and deaths in England. We examined the fit of the model predicted deaths to the observed daily deaths from the ONS, and also the consistency of the model parameters with known values in the literature, estimated from global data. We assessed the distribution of \(R \)-hat values for all parameters, to assess convergence between chains.

Sensitivity analyses:
We carried out sensitivity analyses using broader, and uninformative priors for \(R_0 \) and \(R_t \) to examine the sensitivity of \(R_t \) estimates to prior specification. We also examined the impact of the SI by comparing the baseline model (SI of mean 4.7 and SD 2.9 days), with a longer SI modelled as a gamma distribution with mean 6.5 and coefficient of variation of 0.72, as estimated by Chan et al.\(^{11} \)
Forecasting cases and deaths:

All forecasts were carried out up to 90 days (27th August 2020) after the last day reliable ONS death records were available (29th May 2020). We considered a set of scenarios in which R_t increased from baseline on the 1st of June and then remained constant, as well as those in which further increases in R_t occur on the 15th June and the 1st July (Figures 3a, 4a and 5a). We considered an increase in R_t of up to 0.25 in increments of 0.05, this being a plausible degree of change in response to easing lockdown, based on the empirical data from other countries,4,12 as well as the modelling by UK SAGE.13 Finally, for comparison with a strategy of elimination, namely suppressing R_t to the lowest level possible before easing lockdown measures, as has been done South Korea, New Zealand and Australia, we also modelled scenarios with R_t values of 0.6 and 0.7.

For each of these scenarios, we predicted the number of incident cases, and incident deaths, using the functions from the inference model above. Briefly cases are a function of R_t, incident cases on previous days and the SI discretised distribution:

$$c_t = R_t \sum_{j=0}^{t-1} c_j g_{t-j}.$$

Deaths are a function of incident cases over previous weeks, and the distribution of onset of infection to death times:

$$d_t = \sum_{j=0}^{t-1} c_j \omega_{t-j}$$

All scenarios were compared to a baseline scenario of no change in R_t from the 13th of May onwards.

Results

Model selection and model inferences

Model 3, which allowed weekly changes in R_t during lockdown, produced the best fit to the data (Supplementary Table 2). This was therefore used as the primary model and unless otherwise stated, all inferences described subsequently are from this model.

We infer R_0 of 3.6 (95% credible intervals (CI) 3.3-3.9), consistent with previous estimates within the UK.5 The R_t is estimated to have declined substantially following initiation of social distancing, and lockdown measures, reaching a low of 0.66 (95% CI 0.35-1.04) during the week 30th March-5th April 2020. The most recent R_t from the 13th of May is estimated as 0.81 (95% CI 0.35-1.28) (Figure 1). On examining the impact of constraining R_t on model fit at any of the 3 change points, this appears greatest for the 16th March (when social distancing measures were put into place) (Supplementary Table 3) with only modest impacts on model fit of constraining R_t on 23rd March and 13th May.

The model showed a good fit to the observed distribution of deaths up to the 29th May (Figure 2). Rhat estimates were < 1.05 for all estimated parameters (Supplementary Figure 1). Leave one out cross-validation also supported a good model fit, with the shape
parameter k<0.5 for all values (Supplementary Figure 2). The median number of incident cases inferred on the 29th May was 8,972/day (95% CI 552-47,867), which is broadly consistent with the estimates from the ONS survey for England based on a random sample of the population within the same time period.

Forecasts of lockdown easing scenarios

In the baseline forecasting scenario where R_t remains constant ($R_{test}=0.81$) through the 90-day forecasting period (13th May to 27th August 2020), the model predicts 49,458 cumulative deaths in England (Supplementary Table 4). By comparison, the ONS reported 44,294 cumulative deaths up to 29th May in England (registered up to 13th June).

In the scenarios where R_t increases on the 1st of June and then remains constant, for increases from the median 0.81 to 0.85, 0.90, 0.95 and 1, the model predicts median excess deaths of 400 (95% CI 34-1988), 1094 (95% CI 93-5427), 2108 (179-10453), 3619(95% CI 308-17937), respectively. Increases of R_t to 1.05 and 1.1, with resultant exponential growth, lead to excess median deaths of 5,906 (95% CI 503-29,254), and 9,410 (802-46,581), respectively (Figure 3 and Supplementary Table 4).

In scenarios where R_t increases on the 1st June, 15th June and 1st July, we find that compared to the baseline scenario, increases of R_t to 0.85, 0.90, 0.95 on these dates respectively would lead to 924 (95% CI 78-4597) excess deaths. If R_t increases to 0.90, 0.95 and 1 at these time points, then excess estimated deaths increase to 1,946 (95% CI 165-9667). In these scenarios R_t remains ≤1 (Figures 3-5 and Supplementary Table 4). Increases of R_t above 1 at any point of results in rapid increases in cases, and deaths, predicting a second wave of the epidemic within England (Figure 4-5 and Supplementary Table 4).

Even in a conservative scenario where R_t increases from 0.81 to 0.85 on the 1st June and then remains constant thereafter, the model predicts an excess of 56,019 (95% CI 4768-278,083) cumulative cases over 90 days. On the other hand the scenario with the largest changes in R_t, but still remaining ≤1, predicts an excess of up to 625,524 cumulative cases (95% 53104-3,082,007) (Figures 6-8 and Supplementary Table 4).

Forecasts from an elimination scenario

Compared to the baseline scenario of R_t staying at 0.81, we find that maintaining R_t at 0.60 and 0.70 would result in 127,932(95% CI 10,887-127,932), and 87,720 (95% CI 7465 to 435,596) fewer cumulative cases, and 1,026 (95% CI 87-5096) and 686 (58-3406) fewer deaths over the modelled 90 day period (Figure 3, Figure 6, Supplementary Table 4).

Robustness of model in sensitivity analyses

Using uninformative (no prior specified) or broader priors (SD=1) for R_t did not alter the median estimates of R_t, except in the final interval (13th to 29th March) where estimates are extremely uncertain (1.43 (95% CI 0.07-4.01) and 0.97 (95% CI 0.06-2.5) respectively) (Supplementary Figure 3), potentially reflecting the paucity of death data informing these estimates. Despite the uncertainty around these estimates, the median estimates are higher than 0.81.
Using a longer SI leads to an increase in the estimated R_0, although subsequent estimates following easing of lockdown remain broadly similar (Supplementary Figure 4). This model is comparable to the primary model with regard to fit to observed deaths (Supplementary Figure 5) but predicts large increases in excess deaths and cases in scenarios where R_t increases, as the impact of this is propagated further in time (Supplementary Table 5). These sensitivity analyses suggest that the primary model with stricter priors and a shorter SI is likely to be conservative in its predictions.

Discussion

In this paper we describe a Bayesian model for inferring incident cases and reproduction numbers from daily death data, and for forecasting the impact of future changes in R. Our findings provide important quantification of the likely impact of relaxing lockdown measures in England, and to our knowledge, this is the first study to comprehensively assess this through several plausible scenarios. Importantly we show that even in scenarios in which R remains ≤ 1 (in line with the UK government’s stated aim), small increases in R_t from lifting lockdown measures, can lead to a substantial excess of deaths with 1,946 (95% CI 165-9667) in the most severe scenario modelled.

Our model inferences are robust to modelling assumptions and our model is likely conservative in its predictions. Our estimated R_t of 0.81 following 13th May is consistent with estimates from the SAGE group advising government.10 We have assessed increases in R_t that are entirely plausible, given the data from other European countries that have started easing lockdown.4 Our sensitivity analyses show that if the priors on R_0 and R_t are less constrained, the inferred R_t as on the 29th of May increases to as much as 0.97. Given the recent reports of R rising above 1 in Germany, this is very plausible. Similarly considering a longer serial interval results in an increase in predicted cases and deaths. However even with this conservative specification, the model predicts a substantial excess of cases and deaths in scenarios where R remains ≤ 1. Rises in R_t above 1 would lead to exponential increases in cases, and subsequently deaths. In contrast, we show that pursuing an elimination strategy where R_t would be suppressed to 0.6 or 0.7 could prevent a median estimated 1,026 and 686 deaths respectively.

Unlike other European countries, the UK began to ease lockdown when community transmission was still high with an estimated incidence of infection of >8000 cases and >300 deaths being observed per day in England. In Denmark and Germany some of the increases in R since easing lockdown, have likely been mitigated by the low levels of transmission at the point of easing lockdown. Another important factor may be the use of aggressive case detection and contact tracing approaches, which the UK seems unlikely to have fully operational till later this year, and the existing system is at risk of being overwhelmed by major increases in incident cases. Given the lack of comprehensive testing, the UK’s current estimates of R_t rely on incident deaths (as used by the MRC Nowcasting and Forecasting model)1, which means that changes in R_t reflect changes in community transmission from a median of 2-3 weeks ago.10 With lockdown being eased in 2-weekly steps, this means that by the time we detected the impact of one step, the next one would already have been instituted so mitigating these impacts would be extremely
challenging. The UK SAGE has also expressed concerns that increases in R up to 1.2 may continue undetected for longer periods of time. Our findings strongly suggest that despite small increases, we would likely see substantial increases in cases and deaths, which may be detected too late to mitigate impact. This is particularly important when we consider the impact on health services, which have managed to deal with the pandemic by suspending much of routine healthcare, which is likely to substantially increase indirect causes of deaths from cancer, and cardiovascular disease.

We acknowledge some important limitations of our model. The first is that it is based on a back calculation of cases based on incident deaths, which are likely to underestimated due to reporting delays and underreporting. Second, our model is reliant on inferring cases, and reproduction numbers, which depend on the assumed distributions of the serial interval, and the time of onset to death distributions. While we have based our assumptions on the literature, misspecification of these would influence our estimates. While we have evaluated this, greater deviations from true estimates would make our forecasting less reliable. Third, similar to Flaxman et al, our model uses the IFR as a multiplier for the distribution of time from infection to death, in the absence of reliable population level case fatality rates (CFR). While this would not affect the estimation of deaths, if the CFR were higher (due to large proportions of cases being asymptomatic), then the predicted case numbers would be overestimated by our model. We have also, for simplicity, assumed that IFR remains constant throughout the pandemic and the forecasting period, and this may not reflect complex heterogeneity in IFR over time. Finally, we do not consider the impact of mitigatory measures in our current modelling. However mitigatory measures are likely to be implemented with significant delays from when community transmission increases, namely when changes in R are detected. If such measures, like re-introducing lockdown, or school closures, were re-implemented, they may reduce the impact of the modelled scenarios.

In summary, we show that increases in R_t as a result of easing lockdown would have a substantial impact on incident transmission and deaths for even modest increases that still maintain $R_t \leq 1$. We argue for a more cautious approach with a focus on elimination, by reducing R_t and incident cases to low levels prior to easing lockdown measures and then too with careful monitoring.

Contributors:
DG conceived the study and designed the model with NS. DG programmed the model and made the figures. HZ and NS consulted on the model design. All authors interpreted the results, contributed to writing the Article, and approved the final version for submission.

Declaration of interests:
None.

Data sharing:
All data on daily deaths used in this study were taken from the Office of National Statistics website.
The code for the model is available at:
https://github.com/dgurdasani1/lockdownsim

Acknowledgements:
HZ is partly funded by the Bernard Wolfe Health Neuroscience Fund at the University of Cambridge. NS is funded by a Strategic Award from the Wellcome Trust. DG is funded by the UKRI/Rutherford HDR-UK fellowship programme (reference MR/S003711/2).
We would like to particularly acknowledge and thank Flaxman et al and the team at Imperial College London for making their code available for us to use.

References:

12. STATUS FOR SMITETRYKKET I DANMARK, 29/4 2020: Statens Serum Institut.
Figure 1: Estimated time-varying reproduction number (R_t) for England

The figure shows the R_t estimated by Model 3 (blue) with 90% credible intervals (grey) with a serial interval of mean 4.7 and SD 2.9 days. From 3.6 (CI 3.3-3.9), R_t drops on the 16th March and 23rd March (indicated by vertical dashed lines) when social distancing and lockdown were instituted, reaching a low of 0.66 (95% CI 0.35-1.04) in the week of the 30th March. The last estimated R_t is 0.81 (95% CI 0.35-1.28).
Figure 2: Model fit to observed death data

Daily deaths predicted by Model 3 (blue) with 90% credible intervals (grey) show a good fit to the observed deaths from the ONS (red).
Figure 3. Predicted deaths with R_t increasing on 1st June

(A) The model compared scenarios in which R_t increases to 0.85 (green), 0.90 (dark blue), 0.95 (red), 1 (purple) and 1.05 (brown) and then remains constant for the 90-day forecasting period. The comparator baseline scenario is of R_t remaining at 0.81 (black) and two elimination strategies of R_t reducing to 0.7 (yellow) and 0.6 (light blue) were also considered. Vertical dashed lines represent time-points of easing lockdown. (B), (C) the incident and cumulative deaths increase in all scenarios in which R_t increases and reduces in the two elimination scenarios.
Figure 4. Predicted deaths in scenarios of R_t increase on 1st and 15th June compared with baseline scenario
(A) The model compared scenarios in which R_t increases to 0.85 (green), 0.90 (blue), 0.95 (red), 1 (purple) and 1.05(brown) and then further by 0.05 on the 15th June and then remaining constant for the 90-day forecasting period. The comparator baseline scenario is of R_t remaining at 0.81 (black). Vertical dashed lines represent time-points of easing lockdown. (B), (C) The incident and cumulative deaths increase in all scenarios in which R_t increases.
Figure 5. Predicted deaths in scenarios of R_t increase on 1st June, 15th June and 3rd July compared with baseline scenario

(A) The model compared scenarios in which R_t increases to 0.85 (green), 0.90 (blue), 0.95 (red), 1 (purple) and 1.05(brown) and then further by 0.05 on the 15th June and then again by 0.05 on the 3rd July before remaining constant for the 90-day forecasting period. The comparator baseline scenario is of R_t remaining at 0.81 (black). Vertical dashed lines represent time-points of easing lockdown. (B), (C) The incident and cumulative deaths increase in all scenarios in which R_t increases.
Figure 6. Predicted cases in scenarios of R_t increase on 1st June compared with baseline and elimination scenarios

(A) The model compared scenarios in which R_t increases to 0.85 (green), 0.90 (dark blue), 0.95 (red), 1 (purple) and 1.05 (brown) and then remains constant for the 90-day forecasting period. The comparator baseline scenario is of R_t remaining at 0.81 (black) and two elimination strategies of R_t reducing to 0.7 (yellow) and 0.6 (light blue) were also considered. Vertical dashed lines represent time-points of easing lockdown. (B), (C) the incident and cumulative cases increase in all scenarios in which R_t increases and reduces in the two elimination scenarios.
Figure 7. Predicted cases in scenarios of R_t increase on 1st June and 15th June compared with the baseline scenario

(A) The model compared scenarios in which R_t increases to 0.85 (green), 0.90 (blue), 0.95 (red), 1 (purple) and 1.05 (brown) and then further by 0.05 on the 15th June and then remaining constant for the 90-day forecasting period. The comparator baseline scenario is of R_t remaining at 0.81 (black). Vertical dashed lines represent time-points of easing lockdown. (B), (C) The incident and cases increase in all scenarios in which R_t increases.

A. B. C.
Figure 8. Predicted cases in scenarios of R_t increase on 1st June and 15th June and 3rd July compared with the baseline scenario (A) The model compared scenarios in which R_t increases to 0.85 (green), 0.90 (blue), 0.95 (red), 1 (purple) and 1.05 (brown) and then further by 0.05 on the 15th June and then again by 0.05 on the 3rd July before remaining constant for the 90-day forecasting period. The comparator baseline scenario is of R_t remaining at 0.81 (black). Vertical dashed lines represent time-points of easing lockdown. (B), (C) The incident and cumulative cases increase in all scenarios in which R_t increases.