Title Page

Impact of Chronic Comorbidities on Progression and Prognosis in Patients with COVID-19

A Retrospective Cohort Study in 1031 Hospitalized Cases in Wuhan, China

Hesong Zeng a*, MD., PhD., Tianlu Zhang b*, Xingwei He a, MD., Yuxin Du b, Yan Tong b, Xueli Wang c, Weizhong Zhang d*, MD., Yin Shen d*, MD., PhD.

a. Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China

b. Medical Research Institute, Wuhan University Renmin Hospital, Wuhan University, Wuhan, China

c. Institute of Central China Development, Wuhan University, Wuhan, China

d. Shanghai Institute of Hypertension. Ruijin Hospital. Shanghai Jiaotong University, Shanghai, China

Running title: Impact of Chronic Comorbidities on Progression and Prognosis in Patients with COVID-19

Reprint requests and correspondence to:

Dr. Yin Shen, MD., PhD., Medical Research Institute, Wuhan University Renmin Hospital, Wuhan University, Wuhan 430060, China. Tel & Fax: +86-13871550513, E-mail: yinshen@whu.edu.cn.

Dr. Weizhong Zhang, MD., Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University, Shanghai 200000, China. Tel & Fax: 86-13501706166, E-mail: zhangweizhong@china.com.

Dr. Hesong Zeng, MD., PhD., Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. Tel & Fax: +86-13907199959, E-mail: zenghs@tjh.timu.edu.cn.

* Hesong Zeng and Tianlu Zhang contribute equally to this work.
Conflict of interests: The authors certify that: (1) the paper is not under consideration elsewhere, (2) no part of the paper has been previously published, (3) all of the authors have read and approved the manuscript, and (4) none of the authors have any relevant disclosures.
Abstract

Background
The recent outbreak of COVID-19 has rapidly spread worldwide. A large proportion of COVID-19 patients with chronic underlying complications have been reported to be in severe condition and show unpromising clinical outcomes. But whether chronic comorbidities are risk factors affecting the severity of COVID-19 has not been well described.

Methods
We included COVID-19 patients who had been admitted to Tongji Hospital, Tongji Medical College of HUST (Wuhan, China) from January 27, 2020 to March 8, 2020 in this retrospective cohort study. The final date of follow-up was March 30, 2020. All patients were diagnosed with COVID-19 according to Prevention and control Scheme for Novel Coronavirus Pneumonia published by National Health Commission of the People’s Republic of China and WHO interim. Demographic data, medical history, clinical symptoms and signs, laboratory findings, chest computed tomography (CT), treatment and clinical outcomes were extracted from electronic medical records with standardized data collection forms and compared among different groups.

Results
1031 COVID-19 inpatients were included in this study, of whom 866 were discharged and 165 were dead in hospital. 73% of 165 dead patients had complicated chronic comorbidities. Of the 1031 patients, 514 (50%) were combined with chronic comorbidities, and showed CFR 2.8 times as that of patients without any underlying disease.

The number of patients with hypertension accounted for three fourths of those with concomitant underlying diseases. The univariable regression revealed that patients in the simple hypertension group showed overall risk higher than those in the simple diabetes mellitus group. In the age-grouped research, patients in the hypertension senile group were proved to be at the highest risk, which might be associated with the level of LDH and eGFR. In this retrospective cohort study, 166 (43%) patients with hypertension took CCB during the hospitalization, the odds ratio of CFR in patients with hypertension taking CCB group was 0.68 (P = 0.155), compared to those not.

Conclusion
Our data shows that the clinical manifestations of most hospitalized patients with COVID-19 are actually systemic syndromes, although COVID-19 is defined as novel coronavirus pneumonia in China. Hypertension is not just a chronic underlying comorbidity, but also a risk factor affecting the severity of COVID-19 and does play a critical role in worsening patients’ clinical outcomes. Therefore, hypertension management in patients with COVID-19 should be regarded as a major challenge in the diagnostic and therapeutic strategies, including optimal management of blood pressure and pathophysiological status.
Impact of Chronic Comorbidities on Progression and Prognosis in Patients with COVID-19

A Retrospective Cohort Study in 1031 Hospitalized Cases in Wuhan, China

Keywords: COVID-19; SARS-COV-2; Comorbidities; Hypertension

Nonstandard Abbreviations and Acronyms:
ACI Acute cardiac injury
AKI Acute kidney injury
ALT Alanine aminotransferase
APTT Activated partial thromboplastin time
AST Aspartate aminotransferase
CCB Calcium channel blockers
CCIR Case-critically ill rate
CDC Chinese Center for Disease Control and Prevention
CFR Case-fatality rate
CHD Coronary atherosclerotic heart disease
COVID-19 Coronavirus disease 2019
CRP C-reactive protein
CRRT Continuous renal replacement therapy
DM Diabetes mellitus
ECMO Extracorporeal membrane oxygenation
eGFR Glomerular filtration rate
ESR Erythrocyte sedimentation rate
IL-6 Interleukin 6
LDH Lactate dehydrogenase
LOS Length of stay
MAP Mean arterial pressure
NT-proBNP N-terminal pro-brain natriuretic peptide
OOS Oximeter oxygen saturation
PT Prothrombin time
RAS Renin-angiotensin-aldosterone system
RASI Renin-angiotensin-aldosterone system inhibitors
SARS-CoV-2 IgG SARS-CoV-2 Immunoglobulin G
SARS-CoV-2 IgM SARS-CoV-2 Immunoglobulin M
Scr Serum creatinine
TNI Troponin I
WHO World Health Organization
Abstract

Background
The recent outbreak of COVID-19 has rapidly spread worldwide. A large proportion of COVID-19 patients with chronic underlying complications have been reported to be in severe condition and show unpromising clinical outcomes. But whether chronic comorbidities are risk factors affecting the severity of COVID-19 has not been well described.

Methods
We included COVID-19 patients who had been admitted to Tongji Hospital, Tongji medical college of HUST (Wuhan, China) from January, 27, 2020 to March, 8, 2020 in this retrospective cohort study. The final date of follow-up was March, 30, 2020. All patients were diagnosed with COVID-19 according to Prevention and control Scheme for Novel Coronavirus Pneumonia published by National Health Commission of the People’s Republic of China and WHO interim. Demographic data, medical history, clinical symptoms and signs, laboratory findings, chest computed tomography (CT), treatment and clinical outcomes were extracted from electronic medical records with standardized data collection forms and compared among different groups.

Results
1031 COVID-19 inpatients were included in this study, of whom 866 were discharged and 165 were dead in hospital. 73% of 165 dead patients had complicated chronic comorbidities. Of the 1031 patients, 514 (50%) were combined with chronic comorbidities, and showed CFR 2.8 times as that of patients without any underlying disease.

The number of patients with hypertension accounted for three fourths of those with concomitant underlying diseases. The univariable regression revealed that patients in the simple hypertension group showed overall risk higher than those in the simple diabetes mellitus group. In the age-grouped research, patients in the hypertension senile group were proved to be at the highest risk, which might be associated with the level of LDH and eGFR. In this retrospective cohort study, 166 (43%) patients with hypertension took CCB during the hospitalization, the odds ratio of CFR in patients with hypertension taking CCB group was 0.68 (P = 0.155), compared to those not.

Conclusion
Our data shows that the clinical manifestations of most hospitalized patients with COVID-19 are actually systemic syndromes, although COVID-19 is defined as novel coronavirus pneumonia in China. Hypertension is not just a chronic underlying comorbidity, but also a risk factor affecting the severity of COVID-19 and does play a critical role in improving patients’ clinical outcomes. Therefore, hypertension management in patients with COVID-19 should be a major challenge in the diagnostic and therapeutic strategies, including optimal management of blood pressure and pathophysiological status.
Introduction

The infection of COVID-19 has swiftly spread worldwide. The clinical spectrum of COVID-19 patients appears to be wide, ranging from asymptomatic infection to mild, and to critical illness [1, 2]. A significant portion of COVID-19 patients were reported to have at least one underlying complication when admitted to hospital, with hypertension, diabetes mellitus, and other cardiovascular diseases being the most common [3].

There were about 20% of COVID-19 patients abruptly progressing from mild or normal condition to severe or critical illness, while the critical determinants remain to be identified. For early detection, early prediction, and early treatment, identifying the factors and biological indicators, in particular, those of early warning value for the development of disease progression and prognosis, are critical for clinical decision making and medical resource allocation.

In this article, we conducted an in-depth retrospective analysis of COVID-19 inpatients who were received and treated intensively in the early stage of the pandemic. Our aim was to reveal the factors of great influence on and predictive value of COVID-19 progression through the medical history, laboratory indicators and prognosis outcomes.

Methods

Study design and participants

This retrospective cohort study included 1031 COVID-19 inpatients from Tongji Hospital, Tongji medical college of HUST (Wuhan, China). All patients were diagnosed with COVID-19 according to Prevention and control Scheme for Novel Coronavirus Pneumonia (5th edition) published by National Health Commission of the People’s Republic of China [4] and WHO interim guidance. A confirmed case of COVID-19 was defined as a positive result of serum antibody or real-time reverse-transcriptase–polymerase-chain-reaction (RT-PCR) assay of nasal or pharyngeal swab specimens.

The admission date of these hospitalized patients was from January 27, 2020, to March 8, 2020. The date cutoff for the study was March 30, 2020. The study was designed by the investigators and conducted in accordance with the principles of the Declaration of Helsinki. The Institutional Review Board of Tongji Hospital, Wuhan, China, approved this retrospective study and written informed consent was waived (No. TJ-C20200140). Data was analyzed and interpreted by the authors.

Data collection

We obtained raw data regarding 1031 hospitalized COVID-19 patients in Tongji Hospital. Demographic data, medical history, clinical symptoms and signs, laboratory
findings, chest computed tomography (CT), treatment and clinical outcomes were extracted from electronic medical records with standardized data collection forms for hospitalized COVID-19 patients. All data were doubled checked by two experienced physicians to ensure the accuracy of data collection. Disagreement between these two major reviewers was adjudicated by a third reviewer.

Demographic data included age and sex; clinical symptoms and signs included fever, cough, dyspnea, myalgia, diarrhea, chest congestion, heart rate, blood pressure and OOS; Laboratory findings from laboratory information system consist of a complete blood count, LDH, PT, APTT, Scr, eGFR, ALT, AST, serum albumin, D-dimer, NT-proBNP, TNI, CRP, ESR, IL-6, SARS-CoV-2 IgG, SARS-CoV-2 IgM and SARS-CoV-2 nucleic acid detection. Chest CT report data was obtained from image acquisition and communication systems. Smoking history and baseline comorbidities (hypertension, DM, CHD, COPD, AKI, stroke and cancer) were extracted from medical history. Drug use condition (anti-hypertension, anti-coronary drugs, antiviral drugs, antibiotics, corticosteroids, gamma globulin, traditional Chinese medicine) and mechanical interventions (non-invasive ventilator, tracheal intubation, ECMO, CRRT) of COVID-19 patients during hospitalization were collected from medical advice. Information about the time from symptom onset to admission to hospital, severity of illness (normal/severe), and clinical outcome (discharge or death) were obtained from the electronic medical system.

Study definitions

According to *Diagnosis & Treatment Scheme for Novel Coronavirus Pneumonia* (Trial 7th edition) published by National Health Commission of the People’s Republic of China [5], the severity of COVID-19 inpatients was classified into mild, common, severe and critically ill. Acute cardiac injury (ACI) was diagnosed if serum levels of TNI were more than 0.342 μg/L for males and more than 0.156 μg/L for females. Acute kidney injury (AKI) was diagnosed if eGFR was less than 60 ml/min. The composite endpoint was the occurrence of ACI, AKI, or use of tracheal intubation. Different groups were divided on the basis of collected medical history. Patients with hypertension were included in the hypertension group, and patients without hypertension were included in the non-hypertension group. The simple hypertension group referred to patients with hypertension while without diabetes mellitus. The simple diabetes mellitus group referred to patients with diabetes mellitus while without hypertension. The hypertension and diabetes mellitus group referred to patients with both hypertension and diabetes mellitus. The others group referred to patients without hypertension and diabetes mellitus. Patients without hypertension, DM, CHD, COPD and cancer were included in the non-underlying disease group [6].

Statistical analysis

Continuous variables were presented as medians with standard deviation (SD) and compared with independent sample T test. Categorical variables were summarized as counts and percentages n (%) and compared with Pearson χ² test. The missing data was
removed. We used univariable and multivariable logistic regression models to look for insights into risk factors associated with incidence of critically ill cases, fatality cases and composite endpoint. A two-sided α of less than 0.05 was considered statistically significant. All the analyses were performed using SPSS software (version 21.0).

Results

There were 514 patients with chronic comorbidities in the total 1031 COVID-19 inpatients, accounting for 50%, two thirds of whom had one chronic comorbidities. The CFR (23.5%) of patients with chronic comorbidities was 2.8 times as that of patients with no underlying disease (8.5%). There was no difference in CFR among patients with different number of chronic comorbidities.

There were 866 discharged patients and 165 dead patients in the total 1031 COVID-19 inpatients. The clinical characteristics and prognosis conditions, including demographic data, clinical symptoms and signs, chronic comorbidities, and drug therapy, of these two groups are listed in Table 1. Among dead patients, 73% had chronic comorbidities (Table 1), 56% (92/165) had hypertension or diabetes mellitus (Appendix Table 4), 47% had hypertension (Table 1).

There were 573 patients included in the others group (Others), 269 in the simple hypertension group (HTN), 74 in the simple diabetes mellitus group (DM) and 115 in the hypertension and diabetes mellitus group (HTN+DM). Multiple indicators including CCIR, CFR, the incidence of ACI, AKI and tracheal intubation, the use of non-invasive ventilator, ECMO and CRRT, were compared among these four groups (Figure 1). The CCIR and CFR were relatively higher in groups with chronic comorbidities. Compared to Others group, various prognostic indicators were significantly higher in HTN group and DM group. Patients in HTN+DM group showed higher incidence of ACI, AKI and tracheal intubation and the use of non-invasive ventilator.

Odds ratio of three major prognostic indicators (incidence of severe cases, fatality cases and cases with composite endpoint) were adjusted by age (Figure 2) in COVID-19 inpatients with HTN , DM and HTN+DM group, and showed that simple hypertension to be at higher risk than those with simple diabetes mellitus. Odds ratio of occurrence of composite endpoint was 1.53 in the HTN group (P=0.019) and 1.55 (P<0.001) in the HTN+DM group (Figure 2, Appendix Table 4).

The total of 1031 COVID-19 inpatients were divided into four groups, ie the hypertension discharged group (307 patients), hypertension dead group (77 patients), non-hypertension discharged group (559 patients) and non-hypertension dead group (88 patients). Demographic data, clinical signs (OOS, HR, SBP, MAP) and laboratory indicators (CRP, D-dimer, LDH, Scr, eGFR) were compared among these four groups, as shown in Table 2. There was no significant difference between discharged and dead
patients in the hypertension and non-hypertension group for age, sex, OOS, and many other laboratory indicators. However, the indicator of eGFR was significantly lower in the hypertension dead group than the non-hypertension dead group (66.9±25.7 vs. 78.3±25.9, P=0.005).

There were 419 patients in the non-hypertension non-senile group, 150 patients in the hypertension non-senile patients, 228 patients in the non-hypertension senile group, and 234 patients in the hypertension senile group, when all patients with hypertension were divided according to age (the age of 65). Demographic data, clinical signs (SBP, DBP, MAP, OOS), laboratory indicators (LDH, eGFR), and CCIR, CFR1, CFR2 were compared among the above four groups (Appendix Table 1). The results showed that the CCIR in the hypertension senile group was significantly higher than the non-hypertension senile group (71% vs. 51%, P < 0.001). Different from non-senile patients, senile patients showed significantly difference in the indicator of CRP and LDH between the hypertension group and non-hypertension group. Further comparing the probability of survival among the four groups above (Figure 3), the probability of survival in the hypertension senile group continuously declined from the start of hospitalization, lowest among the four groups.

Due to various reasons, most of Chinese hypertensive patients insisting on anti-hypertensive therapy were taking long acting calcium channel blockers (CCB), accounting for nearly half (43%) of the total number of patients with hypertension. Hypertensive patients using renin-angiotensin-aldosterone system inhibitors (RASI) were in less severe disease condition, accounting for nearly one eighth (12.7%). The comparison of demographic data, clinical signs (OOS, HR, SBP, DBP, MAP), laboratory indicators (CRP, LDH, eGFR) and CFR between hypertensive patients taking CCB and not were listed in Appendix Table 2. Only age was proved to show significant difference between these two groups. Univariable and Multivariable logistic regression analyses revealed that the odds ratio of death for hypertensive patients taking CCB compared to those not was 0.68 (P = 0.155) (Appendix Table 3).
Figure 1. Comparison of various clinical outcomes among groups with and without chronic comorbidities

Table 1. Comparison of clinical characteristics and prognosis conditions between discharged and dead patients

<table>
<thead>
<tr>
<th>Total (n=1031)</th>
<th>Discharged patients (n=866)</th>
<th>Dead patients (n=165)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>60.3±14.3</td>
<td>58.7±14.2</td>
</tr>
<tr>
<td>Female (%)</td>
<td>493 (47.8)</td>
<td>448 (51.7)</td>
</tr>
<tr>
<td>HR</td>
<td>91.4±16.9</td>
<td>90.5±16.0</td>
</tr>
<tr>
<td>SBP</td>
<td>131.3±19.0</td>
<td>131.0±18.3</td>
</tr>
<tr>
<td>DBP</td>
<td>80.3±12.2</td>
<td>80.4±11.7</td>
</tr>
<tr>
<td>OOS</td>
<td>93.5±7.7</td>
<td>96.1±4.5</td>
</tr>
</tbody>
</table>

Major symptoms (%)

- Fever: 859 (83.3) | 714 (82.4) | 145 (87.8) |
- Cough: 716 (69.4) | 589 (68.0) | 127 (76.9) |
- Dyspnea: 265 (25.7) | 172 (19.8) | 93 (56.3) |
- Myalgia: 137 (13.2) | 123 (14.2) | 14 (8.4) |
- Diarrhea: 177 (17.1) | 142 (16.3) | 35 (21.2) |

Chest congestion: 164 (15.9) | 122 (14.0) | 42 (25.4) |

Concomitant underlying diseases (%)

- COPD: 39 (3.7) | 21 (2.4) | 18 (10.9) |
- HTN: 384 (37.2) | 307 (35.4) | 77 (46.6) |
- DM: 189 (18.3) | 152 (17.5) | 37 (22.4) |
- CHD: 84 (8.1) | 58 (6.6) | 26 (15.7) |
- Stroke: 22 (2.1) | 15 (1.7) | 7 (4.2) |
- Cancer: 29 (2.8) | 15 (1.7) | 14 (8.4) |
- Smoke: 105 (10.1) | 69 (7.9) | 36 (21.8) |

Number of concomitant underlying diseases (excluding smoke) (%)

- 1: 325 (31.5) | 249 (28.7) | 76 (46.0) |
- 2: 148 (14.3) | 115 (13.2) | 33 (20.0) |
- >3: 41 (4.0) | 29 (3.3) | 12 (7.3) |

With any chronic comorbidity: 514 (49.9) | 393 (45.4) | 121 (73.3) |

Without any chronic comorbidity: 517 (50.1) | 473 (54.6) | 44 (26.7) |

Drug therapy (%)

- Antiviral drugs: 902 (87.4) | 777 (89.7) | 125 (75.7) |
- Antibiotics: 770 (74.6) | 609 (70.3) | 161 (97.5) |
- Traditional Chinese medicine: 678 (65.7) | 617 (71.2) | 61 (36.9) |
- CCB: 196 (19.0) | 164 (18.9) | 32 (19.3) |
- RASI: 62 (6.0) | 54 (6.2) | 8 (4.8) |
- Statins: 38 (3.6) | 33 (3.8) | 5 (3.0) |
Figure 2. Comparison of age-adjusted odds ratio of three major prognostic indicators for the HTN group, DM group, and HTN+DM group (compared to Others group)

Table 2. Comparison of illness condition of discharged and dead patients in the hypertension and non-hypertension group

<table>
<thead>
<tr>
<th></th>
<th>Hypertension discharged (n=307)</th>
<th>95% CI</th>
<th>Hypertension dead (n=77)</th>
<th>95% CI</th>
<th>P-value 1</th>
<th>Non-hypertension discharged (n=559)</th>
<th>95% CI</th>
<th>P-value 2</th>
<th>Non-hypertension dead (n=88)</th>
<th>95% CI</th>
<th>P-value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>65.0±11.2</td>
<td>63.7-66.2</td>
<td>71.9±10.2</td>
<td>69.6-74.3</td>
<td><0.001</td>
<td>55.3±14.5</td>
<td>54.1-56.5</td>
<td><0.001</td>
<td>65.3±12.5</td>
<td>62.6-67.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Female</td>
<td>159 (51.8)</td>
<td>46.3-57.4</td>
<td>17 (22.4)</td>
<td>12.8-32.0</td>
<td><0.001</td>
<td>28 (15.1)</td>
<td>47.5-55.9</td>
<td>26 (31.5)</td>
<td>21.6-41.3</td>
<td>0.001</td>
<td>0.191</td>
</tr>
<tr>
<td>DSS</td>
<td>94.3±4.7</td>
<td>93.7-94.8</td>
<td>85.7±12.3</td>
<td>82.9-88.5</td>
<td><0.001</td>
<td>95.6±4.3</td>
<td>95.3-96.0</td>
<td><0.001</td>
<td>83.7±13.4</td>
<td>80.9-86.5</td>
<td><0.001</td>
</tr>
<tr>
<td>HR</td>
<td>90.2±17.2</td>
<td>88.2-92.1</td>
<td>95.9±16.9</td>
<td>92.0-99.8</td>
<td>0.011</td>
<td>90.7±15.3</td>
<td>89.4-92.0</td>
<td>96.1±23.7</td>
<td>91.1-101.2</td>
<td>0.039</td>
<td>0.933</td>
</tr>
<tr>
<td>SBP</td>
<td>136.9±17.9</td>
<td>134.9-138.9</td>
<td>137.8±24.7</td>
<td>132.1-143.5</td>
<td>0.779</td>
<td>127.9±17.7</td>
<td>126.2-129.2</td>
<td>128.9±19.1</td>
<td>124.7-132.8</td>
<td>0.608</td>
<td>0.012</td>
</tr>
<tr>
<td>MAP</td>
<td>100.2±12.1</td>
<td>98.8-101.6</td>
<td>100.3±17.4</td>
<td>96.3-104.3</td>
<td>0.963</td>
<td>95.7±12.4</td>
<td>94.6-98.7</td>
<td>95.3±13.7</td>
<td>92.4-99.2</td>
<td>0.778</td>
<td>0.041</td>
</tr>
<tr>
<td>CRP</td>
<td>41.2±62.3</td>
<td>35.1-47.2</td>
<td>114.0±70.9</td>
<td>97.8-130.3</td>
<td><0.001</td>
<td>32.2±46.9</td>
<td>28.3-36.2</td>
<td>102.0±69.1</td>
<td>88.7-115.4</td>
<td><0.001</td>
<td>0.256</td>
</tr>
<tr>
<td>D-dimer</td>
<td>2.03±4.01</td>
<td>1.58-2.49</td>
<td>8.96±8.01</td>
<td>6.93-10.98</td>
<td><0.001</td>
<td>1.57±3.59</td>
<td>1.27-1.97</td>
<td>9.84±6.03</td>
<td>7.92-11.77</td>
<td><0.001</td>
<td>0.528</td>
</tr>
<tr>
<td>LDH</td>
<td>297.1±137.8</td>
<td>281.6-312.7</td>
<td>559.4±252.2</td>
<td>492.6-626.1</td>
<td><0.001</td>
<td>272.0±128.9</td>
<td>261.3-282.8</td>
<td>532.4±280.4</td>
<td>473.3-594.1</td>
<td><0.001</td>
<td>0.546</td>
</tr>
<tr>
<td>Scr</td>
<td>87.7±10.1</td>
<td>74.2-81.1</td>
<td>107.3±60.1</td>
<td>93.5-121.0</td>
<td><0.001</td>
<td>88.3±19.6</td>
<td>68.7-70.0</td>
<td>90.8±47.3</td>
<td>80.8-100.8</td>
<td><0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>eGFR</td>
<td>83.3±18.7</td>
<td>81.1-85.6</td>
<td>66.9±25.7</td>
<td>61.1-72.8</td>
<td><0.001</td>
<td>65.6±17.8</td>
<td>94.1-97.0</td>
<td>78.3±25.9</td>
<td>72.8-83.8</td>
<td><0.001</td>
<td>0.005</td>
</tr>
</tbody>
</table>

P-value 1: P (hypertension discharged vs. non-hypertension discharged)

P-value 2: P (non-hypertension discharged vs. non-hypertension dead)

P-value 3: P (hypertension dead vs. non-hypertension dead)
Discussion

The clinical manifestations of COVID-19 patients can range from asymptomatic infection to mild, and to critical illness requiring ventilators and even ECMO to sustain lives [1, 2]. Wuhan scholars in China first reported that about half of the patients with severe infection were complicated with chronic comorbidities such as hypertension, diabetes mellitus or coronary heart disease [7]. Among those infected with underlying diseases, about 38% progressed to severe cases [7]. About 60% of severe cases with chronic comorbidities died in hospital [7]. However, whether chronic comorbidities can be regarded as a risk factor affecting the severity of COVID-19 remains controversial at that time.

Recently, there were many reports that age and concomitant diseases might aggravate the disease progression and affect clinical outcomes among COVID-19 patients. COVID-19 patients with pre-existing complications were observed to show higher CFR-10.5%, 7.3%, 6.3%, 6.0%, 5.6% for patients with cardiovascular disease, diabetes mellitus, chronic respiratory disease, hypertension, and cancer respectively [6]. It has been reported that the greater the number of underlying diseases is combined, the greater the severity of COVID-19 [3]. The retrospective analyses of COVID-19 patients in Zhejiang Province and in 31 province across mainland China revealed that underlying hypertension was an independent risk factor for severe cases, even after adjustment for age [3, 8]. Among 1043 COVID-19 patients admitted to ICU with available data in Italy, 49% had underlying hypertension. After excluding patients still in ICU as of the deadline of the study, the CFR
for patients with and without hypertension was 70% and 47% [9]. The result of the population-based cohort study in England supported that patients with hypertension should be included in the high-risk group [10].

In our retrospective study, it was found that the determinants of the severity of COVID-19 were closely related to the age and chronic comorbidities. Chronic comorbidities, such as hypertension and diabetes mellitus, are major risk factors affecting disease progression and prognosis. Patients with simple hypertension may be at higher risk than those with simple diabetes mellitus, and senile hypertensive patients are at highest risk for progression and its prognosis of COVID-19.

Why do chronic comorbidities, such as hypertension, increase the risk of the disease progression and its prognosis? It was very important and should be investigated. Now, an article named “Viral and host factors related to the clinical outcome of COVID-19 was published online [11], to analyze viral genome variation from sample collection of 326 patients in Shanghai Public Health Center. No significant variation of viral sequences was observed in severe cases of COVID-19, therefore ruling out the possibility of mutation of SARS-CoV2 itself. Multiple major laboratory indicators were compared among discharged and dead patients with and without hypertension, there was no significant difference observed in general. There was also no significant difference found in SBP and MAP among these four groups. The results suggest that it is likely due to the pathophysiological status and target organ damage in patients with hypertension, such as RAS system and the laboratory indicator of eGFR, rather than the blood pressure itself that makes hypertension as a risk factor of illness development and prognosis.

It is now known that the infection of SARS-CoV2 needs its combination with ACE2 and TMPRSS2 of human alveolar epithelial cells type 2 or other tissues and subsequent replication and multiplication. The amount of virus leads to increased expression of ACE2 in neighboring cells, and then affects macrophages with inflammatory cytokines released [12]. Consequently, the increased expression and activity of ACE2 in tissue could be identified as the critical factor of patients susceptibility and disease progression. The Huanggang study, published online, conducted serological tests of ACE2 in 20 COVID-19 patients and 20 non-COVID-19 patients, revealing that the serum level of ACE2 increased 12 hours after infection and remained high 48 hours after infection [13]. The expression of ACE2 is only mildly expressed in lung tissue of healthy human, however, Brazilian researchers recently found that the expression of ACE2 in lung tissue was up-regulated in COVID-19 patients with underlying diseases [14], including hypertension, which might provide a reasonable explanation for the increased severity in some COVID-19 patients with underlying complications.

To our knowledge, this study is a retrospective report mainly focusing on patients with hypertension, which accounts for the highest proportion of COVID-19 patients at risk. Because early targeted interventions will prevent the disease from further progressing, so
that reasonable management strategy of hypertension should be necessary, and might help to improve clinical outcomes in hospitalized COVID-19 patients at high risk.

Our retrospective cohort study has some limitations. Firstly, only admission examination for the indicator of eGFR was captured in the collected data, and the overall level of AKI might therefore be underestimated. Secondly, the information of patients prior to admission was not put into the medical history, so it could not be determined whether the patients continued to take or changed the medication during hospitalization. Thirdly, there was no national unified standard for the normal reference values of some laboratory indicators, thus we followed the standards set by the hospital. Finally, the data entry of underlying diseases was based on the inquiries of patients enrolled in the hospital and might be underestimated due to the influence of awareness rate.

Conclusion

The retrospective cohort study revealed that of the 1031 COVID-19 inpatients, 50% were combined with chronic comorbidities, and showed CFR 2.8 times as that of patients without any underlying disease. 73% of 165 dead patients were complicated with chronic comorbidities, and the number of patients with hypertension accounted for three fourths of those with comitant underlying diseases. The odds ratio of occurrence of composite endpoint for COVID-19 inpatients with simple hypertension was 1.53 (P=0.019), indicating that the overall risk was higher in the simple hypertension group than the simple diabetes mellitus group. According to the age-grouped research, we found that the hypertension senile group was at the highest risk. It suggests that hypertension management in patients with COVID-19 would be a major challenge in the therapeutic strategies, including optimal management of blood pressure and pathophysiological status, so that it might help to improve clinical outcomes in hospitalized COVID-19 patients at high risk.

Authors’ Contributors
Hesong Zeng, Weizhong Zhang, and Yin shen conceived the study and its design, had full access to the data, and take responsibility for the integrity of the data and accuracy of the analysis. Xingwei He, Yuxin Du, and Yan Tong organised and entered data. Tianlu Zhang, Yuxin Du, and Xueli Wang contributed to data analyses. Hesong Zeng, Weizhong Zhang, Yin Shen, Xingwei He, and Tianlu Zhang participated in discussion and made crucial suggestions for interpreting the findings. Weizhong Zhang and Tianlu Zhang drafted the manuscript. All authors approved the final version of the article.

Declaration of interests
We declare no competing interests.

Funding
The study was supported by COVID-19 Emergency Response Project of Wuhan Science and Technology Department (2020020201010018).
Acknowledgements

We thank all COVID-19 patients for their participation, our colleagues for their assistance, and the funding source for their involvement and support.

References

