Bayesian investigation of SARS-CoV-2-related mortality in France

Louis Duchemin, Philippe Veber, Bastien Boussau

June 9, 2020

Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France

Contact: bastien.boussau@univ-lyon1.fr

Contents

1 Abstract 2

2 Introduction 2

3 Material and methods 4
  3.1 Models ................................................. 4
    3.1.1 Basic model ........................................ 4
    3.1.2 Model extensions .................................. 5
  3.2 Data .................................................. 7
    3.2.1 Mortality data ...................................... 7
    3.2.2 Infection Fatality Ratios .......................... 8
  3.3 Choice of interventions ............................... 8
  3.4 Simulations to estimate effect sizes .................. 8
  3.5 Implementation ...................................... 9
  3.6 Availability ....................................... 9

4 Results 9
  4.1 Evaluation of Model 1 and of the efficiency of the lockdown ....... 9
    4.1.1 Model fit ........................................... 9
    4.1.2 Significant reduction of viral transmissibility due to the lockdown 13
  4.2 No evidence for heterogeneity between regions in the efficacy of the lockdown .... 15
  4.3 Effect of week-ends .................................. 15
1 Abstract

The SARS-CoV-2 epidemic in France has focused a lot of attention as it has had one of the largest death tolls in Europe. It provides an opportunity to examine the effect of the lockdown and of other events on the dynamics of the epidemic. In particular, it has been suggested that municipal elections held just before lockdown was ordered may have helped spread the virus. In this manuscript we use a Bayesian model of the number of deaths through time to study the epidemic in 13 regions of France. We found that the model accurately predicts the number of deaths 2 to 3 weeks in advance, and recovers estimates that are in agreement with recent models that rely on a different structure and different input data. We found that the lockdown had a similar effect on the reproduction rate in all 13 regions, decreasing it by 80%. Our model predicts that 2.09 (95% CI: 1.69-2.66) million people had been infected by May 11, and that there were 2793 (95% CI: 1761-4543) new infections on May 11. We found no evidence that the reproduction rates differ between week-ends and week days, and no evidence that the reproduction rates increased on the election day. Finally, we evaluated counterfactual scenarios showing that ordering the lockdown 1 to 7 days sooner would have resulted in 18% to 85% fewer deaths, but that ordering it 1 to 7 days later would have resulted in 21% to 262% more deaths. Overall, the predictions of the model indicate that holding the elections on March 15 did not have a detectable impact on the total number of deaths, unless it motivated a delay in imposing the lockdown.

2 Introduction

The World Health Organization (WHO) declared a pandemic of coronavirus disease 2019 (SARS-CoV-2) on March 11, 2020 following its spread to 114 countries[1] with an estimated 118,000 cases at the time. In France, a first patient was diagnosed with the disease on January 24th 2020 [Bernard Stoecklin et al., 2020]. By May 1st, the
number of SARS-CoV-2 related deaths in France was 24,594. On March 17th at noon, a lockdown was enforced that required a self-authorisation to leave home. This lockdown followed a series of less severe measures such as the prohibition of gatherings above 100 people (March 13) and school closures (March 14).

These measures surrounded already planned nation-wide municipal elections on Sunday March 15. With enforced distancing measures in polling stations, they were maintained, which led to criticism as this could have favored the spread of the virus by increasing the number of contacts on a week-end day. It is therefore of interest to investigate whether these elections did have an effect on SARS-CoV-2 related deaths in France.

There has also been suggestions that different parts of France may have adhered to the lockdown requirements with different observance. Behaviours susceptible to favour the spread of the virus may have been more widespread in some regions than in others. In particular, newspapers reported that large numbers of people were not following the strict lockdown rules and instead spent time outside, typically on the banks of the Seine river, in Paris. If such differences between regions were true, one might expect to see an effect on region-wise numbers of SARS-CoV-2 related deaths.

The lockdown was eventually lifted on May 11, when the authorities estimated that the epidemic was sufficiently under control. Given the importance of such a decision, it is important to assess the state of the epidemic on May 11 using several methodological approaches.

Various approaches have been used to monitor the epidemic. Most are compartmental models, which include Susceptible Infected Recovered (SIR) or Susceptible Exposed Infected Recovered (SEIR) models. Such models can be used in a deterministic framework, as in [Massonnaud et al., 2020, Roux et al., 2020, Magal & Webb, 2020, Sofonea et al., 2020], can be used for performing simulations by including stochasticity through resampling steps in an otherwise deterministic framework [Neher et al., 2020], or can be used in a completely stochastic framework, as in [Flaxman et al., 2020, Salje et al., 2020]. Deterministic models have small computational requirements, but probabilistic approaches lend themselves to statistical inference, e.g. Bayesian inference.

In this paper we used Bayesian inference to study SARS-CoV-2 related deaths in France. We build upon work by Flaxman et al. [Flaxman et al., 2020] to investigate heterogeneity of the viral reproduction rate $R_t$ due to both temporal (lockdown, weekends, election day) and spatial variations (inter-regional heterogeneity), and to evaluate the status of the epidemic when the lockdown was lifted on May 11.

Flaxman et al. proposed a Bayesian method to estimate decreases of the reproduction rate ($R_t$) of the virus due to various interventions such as school closures and

---

lockdowns among 11 countries. We adapted this model from its released version 2. Version 2 improves upon version 1 by accounting for the fact that $R_t$ decreases as the pandemic progresses because a larger portion of the population has been infected and can no longer be infected. We applied the model to the 13 French regions and notably computed region-wise Infection Fatality Rates (IFR) by taking into account region-specific demographic data. First, we investigated the ability of the model to predict the progression of the epidemic in France. Second, we examined the effect of the lockdown on the reproduction rate of the disease. Third, we developed a mixture model to study potential heterogeneities among regions. Fourth, we examined the ability of the model to detect two types of temporal heterogeneities: week-ends, during which a smaller portion of workers go to work, and March 15th election day. We used simulations to assess the effect size necessary for the model to detect these heterogeneities, and then applied the model to the empirical data. Fifth, we used our model to assess the total number of infections as of May 11, and the new infections on that day. Finally, we investigated counterfactual scenarios in which the lockdown is imposed 1 to 7 days before or after the actual date.

3 Material and methods

3.1 Models

3.1.1 Basic model

Here we present the version 2 of the model by Flaxman et al. [Flaxman et al., 2020] briefly, and direct the interested reader to the original publication for more details. We have kept the original authors’ symbols for clarity. Version 2 models the evolution of the number of deaths day by day by assuming a discrete renewal process, where portions of the population are susceptible, infected, or recovered/dead. This process describes the evolution of the number of infections over time, and serves as an input to a model of the time between infection and death. In the original model, heterogeneities between countries were induced by different input parameter values. For instance, the different countries had their respective population sizes associated to them. All the countries however shared the same estimated parameter values, apart from parameters setting the number of seed infections, which describe the numbers of infections happening during the first 6 days of the epidemic in a given country, and are necessary to initiate the epidemic. The model accounted for variations in the reproduction rate of the virus due to non-pharmaceutical interventions. It estimated parameter values for each of the interventions, which were shared by all countries.

More specifically, deaths on a given day are the consequence of infections that took place some infection-to-death time in the past. The model allows for variation across individuals in this infection-to-death time by assigning it a probabilistic
distribution $\pi$. In practice $\pi$ is a sum of two gamma distributions with parameters drawn from the literature. The observed daily numbers of deaths $D_{t,m}$ on day $t$ for region $m$ are drawn from a negative binomial distribution with parameters that vary day by day.

$$D_{t,m} \sim \text{NegativeBinomial}(d_{t,m}, d_{t,m} + \frac{d_t m^2}{\psi})$$

where $\psi \sim \text{Normal}^+(0, 5)$ is a half-Normal distribution. $d_{t,m} = \sum_{\tau=0}^{t-1} c_{\tau,m} \pi_{t-\tau,m}$ is the expected number of deaths on day $t$ for region $m$. It is a discrete sum of the number of new infections $c_{\tau,m}$ per day $\tau$ and region $m$ since the first day of data, times the probability $\pi_{t-\tau,m}$ that people infected on that day $\tau$ die on day $t$. The number of new infections on day $\tau$ and region $m$ $c_{\tau,m}$ is the result of a discrete renewal process. This process depends first on a distribution $g$ of time between infection and the ability to infect other individuals, and second on a country-specific reproduction number $R_{t,m}$. $g$ is set to be a Gamma distribution with parameters fixed. $R_{t,m}$ models the average number of secondary infections at time $t$ for country $m$. It depends on:

- the population size of the country: $R_{t,m}$ will tend to be larger in larger populations as there are more people to infect. However, as the number of infected and recovered individuals increases in a country, $R_{t,m}$ decreases because there are fewer individuals to infect. This is handled in the version 2 model deterministically based on population sizes given as input to the model.

- the age structure of the country to account for the variable susceptibility of the different age classes in a population. $R_{t,m}$ will tend to be larger in countries with older populations. This is handled in the version 2 model deterministically based on infection fatality ratios (IFR) given as input to the model.

- non-pharmaceutical interventions such as a lockdown. By reducing the number of contacts between individuals, these interventions will tend to reduce $R_{t,m}$. The effect of each intervention is estimated in the course of the MCMC, and is assumed to be homogeneous over all days during which it is enforced.

### 3.1.2 Model extensions

Our models reproduce the general structure of the version 2 model. However we applied it to French regions, with changes in the type and number of interventions, and, in one case, allowing for different estimated parameter values for different regions.

We used four models: one model where only the lockdown is included, one model with lockdown and week-ends, one model with lockdown and election day, and one mixture model with lockdown allowing for heterogeneities among regions in the efficiency of the lockdown.

1. Model with lockdown. The model with lockdown is basically the same as in Flaxman et al. [Flaxman et al., 2020] except that a single intervention was considered. Lockdown was considered to have an homogeneous effect throughout all
regions $m$ and from its start to its end. It was assumed to have an effect on the reproduction rate $R_{t,m}$ of the virus according to equation (1).

$$R_{t,m} = \mu_m \times e^{I_d \times \alpha_{\text{lockdown}}}$$ (1)

Where $\mu_m$ stands for an average rate for region $m$ and incorporates demographic parameters, and $I_d$ stands for an indicator function for day $d$ taking value 1 on lockdown days and 0 otherwise.

$\alpha_{\text{lockdown}}$ is distributed according to a Gamma distribution of parameters mean 0.1667 and standard deviation 1.0, shifted to the left to allow for decreasing or increasing effects with about a 50/50 chance. For this intervention, large decreasing effects are expected, so the distribution was mirrored around 0 by taking its negative, leading to the prior shown in (2).

$$\alpha_{\text{lockdown}} \sim -(\Gamma(0.1667, 1) - (\log(1.05)/6.0))$$ (2)

2. Model with lockdown and week-ends. The second model builds upon the first model by including the influence of week-ends. These were modelled as an additional intervention with the same prior as for the lockdown, assuming less work on week-ends compared to weekdays should induce lower reproduction rates (3).

$$R_{t,m} = \mu_m \times e^{I_d,\text{lockdown} \times \alpha_{\text{lockdown}} + I_d,\text{weekends} \times \alpha_{\text{weekends}}}$$ (3)

3. Model with lockdown and election day. The third model builds upon the first model and includes the influence of the election day. On this single day, another intervention is added, with a prior very similar to that used for the two other interventions, except that we expect here an increase of the reproduction rate. Therefore, we used the same prior as for the other interventions except for the negative sign, yielding equation (4).

$$\alpha_{\text{elections}} \sim \Gamma(0.1667, 1) - (\log(1.05)/6.0)$$ (4)

$$R_t = \mu_m \times e^{I_d,\text{lockdown} \times \alpha_{\text{lockdown}} + I_d,\text{elections} \times \alpha_{\text{elections}}}$$ (5)

4. Model with heterogeneity among regions. The fourth model builds upon the first model but allows for heterogeneity among regions with a mixture model on $\alpha$ parameters. We allow for two $\alpha$ parameter values, and include a new $\theta$ simplex parameter giving the respective proportions of the two $\alpha$ among the 13 regions. We draw the two $\alpha$ values from non-overlapping uniform distributions. We tried two versions of the model, one where $\alpha[1] \sim \text{uniform}(-1, 1.5)$ and $\alpha[2] \sim \text{uniform}(1.5, 3)$ and one where $\alpha[1] \sim \text{uniform}(0, 2)$ and $\alpha[2] \sim \text{uniform}(2, 5)$.
3.2 Data

3.2.1 Mortality data

Mortality data per region were downloaded on May 11th 2020 from two sources: OpenCovid \[6\], and Santé Publique France (SPF) \[7\]. OpenCovid is a citizen-based initiative, whose aim is to assemble and provide data sets to study the epidemic in France and abroad. SPF is a governmental agency that provides data related to the epidemic at national and sub-national levels. Both datasets were merged into one, prioritizing data from SPF on the days when observations from both sources were available.

Data for regions Guadeloupe, Guyane, La Réunion, Martinique, and Mayotte, which have low mortality numbers, were not included in this analysis. The first day for which we have data in all regions is February 15. The amount of missing data from this day onward is low: 14 days at most for regions Île-de-France, Occitanie and Pays de la Loire, and 10.92 days on average (fig. 1).

![Mortality data for 13 regions in France, from the first day when all regions have data. Gray tiles indicate missing data. All data from March 19th onwards originate from the SPF dataset.](https://github.com/opencovid19-fr/data)

![Mortality data for 13 regions in France, from the first day when all regions have data. Gray tiles indicate missing data. All data from March 19th onwards originate from the SPF dataset.](https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/)
3.2.2 Infection Fatality Ratios

Infection Fatality Ratios (IFRs) provide the probability of death given infection, and vary depending on the age of the infected individual. Based on data from China, IFRs were estimated for 9 age classes: $0-9$, $10-19$, ..., $70-79$, $80+$ by [Verity et al., 2020]. Those estimates cannot be used directly for French regions as many parameters susceptible to affect IFRs differ between the two countries. However Flaxman et al. [Flaxman et al., 2020] estimated country-specific Case Fatality Rates (CFRs), providing the probability of death given a diagnosed infection. We used the country-wise CFRs for China ($0.0138$) and France ($0.011526$) to scale the Chinese age-specific IFRs. More specifically, we use proportionality to scale all Chinese age-specific IFRs by $0.011526/0.0138$ to obtain French age-specific IFRs. Finally, we obtain region-wise IFRs by computing the sum of the French age-specific IFRs weighted by the population size of the corresponding age class.

3.3 Choice of interventions

In [Flaxman et al., 2020], different interventions had been used: school closure ordered, case-based measures such as self-isolation, public events banned, social distancing encouraged, lockdown decreed. In France, these different interventions happen in close temporal proximity, at the same time in all regions, between March 13 and March 17. This makes identifying their individual contributions very challenging. Therefore we chose to only use one intervention, the full lockdown, on March 17. We also considered two additional events, that were treated in the model as additional interventions: week-ends and the election day, as each could have an effect on the viral reproduction rate. In particular, week-ends may decrease $R_t$ because more businesses are closed on week-ends, and the election day may increase $R_t$ by gathering many voters in polling stations.

3.4 Simulations to estimate effect sizes

We investigated the ability of the model to detect the effect of one-day events, like the elections, or of week-ends, depending on the size of the effect.

To do so, we relied on simulations reproducing the model’s dynamics, and accounting for the effect of the events to be investigated (elections or week-ends) as described in section 3.1.2. Each simulation was initialized with parameters sampled from a previous fit of the model. The reference model used to sample these parameters accounted for the lockdown effect, and fitted on mortality data up to May 11th, yielding 2000 samples of parameter values. 500 sets of parameters were randomly sampled from this pool in order to run 500 simulations per conditions.

Conditions were defined as a fold-change applied to the adjusted $R_t$ during the elections or week-end days. With our prior hypotheses that week-ends would cause a decrease in $R_t$, we ran simulations assuming fold-changes : $1$ (no change), $0.9$, $0.75$, $0.5$. 

8
Similarly, to evaluate the consequences of a putative $R_t$ spike during the elections, we ran simulations with fold-changes: 1, 1.25, 1.5, 2. We then compared the simulated mortality between conditions to evaluate the possibility to retrieve such a change in $R_t$ from mortality observations.

### 3.5 Implementation

The models were implemented in rstan [Stan Development Team, 2019]. 2000 iterations of burnin and 4000 iterations of sampling with 4 chains were used. Convergence of the runs was assessed by checking the Rhat statistic which is based on comparing inter-chain to intra-chain variance. Mixture models proved difficult to fit. We increased adapt_delta to 0.99 and max_treedepth to 15 but still experienced poor mixing. We interpret this poor mixing as evidence for a flat posterior surface, which is expected if only one category is enough to fit the data instead of two mixture categories.

### 3.6 Availability

The code used for the experiments is available at [https://gitlab.in2p3.fr/boussau/corona_french_regions](https://gitlab.in2p3.fr/boussau/corona_french_regions)

### 4 Results

We first investigate whether model 1 can capture the major trends of the epidemic in the French regions. Second, we use it to evaluate the efficiency of the lockdown. Third, we investigate potential differences among regions in the efficiency of the lockdown. Fourth, we study the ability of models 2 and 3 (section 3.1.2) to identify changes in the reproduction number due to the elections or to week-ends, both on simulated and empirical data. Fifth, we study counterfactual scenarios where the lockdown is enforced a few days before or after March 17 to evaluate the effect on the total number of deaths.

#### 4.1 Evaluation of Model 1 and of the efficiency of the lockdown

##### 4.1.1 Model fit

[Flaxman et al., 2020] investigated the fit of their model by cross validation. To do so, they pruned from their data set 3 days for which they have data and compared the inferred numbers of deaths to the empirical numbers of deaths. They repeated this procedure several times. The model was found to behave well, with a correlation of 93% between the inferred and empirical country-wise numbers of deaths. We challenged our model a bit further by predicting the number of deaths in the 13 regions of France after hiding large parts of the data. Each run was performed by removing the $k$ last weeks of data, with $k$ ranging from 0 to 11, and comparing the inferred and empirical numbers of deaths up to May 11 when the lockdown was lifted.
Figure 2: Model fits using prefixes of data for region Île-de-France. The dashed vertical line corresponds to March 17, when the lockdown was enforced. Data right of the plain vertical line were hidden from the model. The observed numbers of deaths are represented with a brown histogram, and the predictions of the model are in blue. Dark blue ribbons correspond to the 50% credibility intervals and light blue ribbons to the 95% credibility intervals of the expected numbers of death. Dashed lines represent the 95% credibility interval of the predicted numbers of deaths.

Fig. 2 shows the results when different numbers of days are given as input for region "Île de France". Data for other regions are presented in Supp. Mat. and show the same trends. The model both predicts the expected numbers of deaths per day and the actual numbers of deaths, which are simulated thanks to a negative binomial distribution around the expected numbers of deaths. The model performs poorly when the last 8 weeks of data were held out (upper left panel), and vastly overestimates the numbers of deaths. This is likely due to the fact that with such an early censoring of the data, no information about the lockdown is given to the model. The three other panels show that when 4 or more additional weeks of data are provided, the model does a good job at predicting the dynamics of the epidemic. These 4 additional weeks provide the data necessary for the model to estimate the effect of the lockdown on the reproduction rate.

For instance, on May 11, the model predicts that in total there had been 6231 deaths [CI: 5456-7160] in region "Île de France" when all the data up to May 11 is used, 6502 deaths [CI: 5698-7403] when the data stops one week before May 11 (bottom right
panel), 6829 deaths [CI: 5908-7882] when the data stops two weeks before May 11 (bottom left panel), and 5894 deaths [CI: 4854-7443] when the data stops four weeks before May 11 (top right panel). This shows that the model is not biased since the actual total number of deaths on May 11 is 6643, and that it can accurately predict the number of deaths several weeks in advance.

The data shows weekly trends of low numbers of deaths on week-ends compared to high numbers just after the week-ends. This likely results from under-reporting on week-end days, and is not handled explicitly in the model. As a result, the model smoothes these irregularities out.
Figure 3: Model fit on complete dataset for three different regions.
If we focus on the total number of deaths in France using data up to May 11, we observe that the model is able to reproduce the trends in the observed number very accurately, making errors between XX and YY% (Fig. 4). This shows that the inability of the model to capture weekly irregularities has not had an effect on the estimation of the total numbers of deaths through time.

![Cumulated mortality over time, fitting data up to May 11.](image)

Overall, the model appears to capture well the dynamics of the epidemic in French regions. In the following, we use the model to investigate whether particular events in the pandemics in France have left a footprint in the number of deaths.

4.1.2 Significant reduction of viral transmissibility due to the lockdown

Model 1 allows estimating the effect of the lockdown on the reproduction rate of the virus. This is done through a parameter $\alpha_{\text{lockdown}}$ whose prior distribution is a shifted Gamma (see section 3.1). Figure 5 shows that the posterior distribution clearly differs from the prior distribution meaning that there is information in the data to estimate the $\alpha_{\text{lockdown}}$ parameter value.
Figure 5: The posterior distribution of $\alpha_{\text{lockdown}}$ differs from its shifted Gamma prior. Left: Quantile-quantile plot between the prior and the posterior distributions; the line $y = x$ is in red. Right: Density plots of the prior (red line) and posterior distributions (black histogram).

The $\alpha_{\text{lockdown}}$ parameter is used to compute the reproduction number during the days when the lockdown is in place. As shown Fig. 6, the reproduction number in Île-de-France decreases markedly with the lockdown, shifting from about 3.58 (95% CI: 3.34 - 3.86) before the lockdown to 0.69 (95% CI: 0.65 - 0.73) after the lockdown, i.e. a reduction of 80.78%.

At the national level, average $R_t$ among regions weighted by their population size is 3.34 (95% CI: 3.19 - 3.51) before lockdown and decreasing to 0.65 (95% CI: 0.62, 0.67) after.
4.2 No evidence for heterogeneity between regions in the efficacy of the lockdown

It has been suggested that the lockdown may not be applied as severely in different French regions. To investigate this, we used a mixture model to allow for two categories of reduction of the transmissibility due to the lockdown. We estimated two $\alpha$ values, one for each category of the mixture, and estimated a proportion $\theta$ associated to each category. We found that one category overly dominates, with an associated $\theta > 0.99$. Since there are 13 regions in the dataset, this means that no region is better fit with an $\alpha$ value different from the other regions ($1 - 0.99 = 0.01 < 0.077 \approx 1/13$). This shows that there is no evidence that the lockdown has been applied with different intensities in French regions.

4.3 Effect of week-ends

Model 2 combines the effects of the lockdown and of week-ends. First we investigated what effect size would be necessary to detect an effect of week-ends on viral transmissibility, and then we assessed whether week-ends had had a detectable impact on viral transmissibility.
4.3.1 Effect size required to observe an effect of week-ends

Figure 7: Simulated distribution of total deaths count, assuming different effect sizes of week-ends on $R_t$.

Figure 8: Simulated distribution of deaths, assuming different effect sizes of week-ends on $R_t$. Median values are represented with a solid line, and shaded areas correspond to 95% credibility intervals.
Fig. 7 and Fig. 8 show the effect on mortality through time and total mortality of decreases in $R_t$ due to a reduction of contacts between individuals on week-ends, when fewer workers are active. They reveal that a $R_t$ fold change of 0.75 seems necessary for it to have a detectable impact on the number of deaths. In terms of contacts, this would mean that there should be 25% fewer contacts during week-ends than during a week-day for the effect to be detectable.

4.3.2 No detectable effect of week-ends on viral spread

Fig. 9 shows that the posterior distribution on the $\alpha_{\text{weekend}}$ is shifted towards values close to 0 compared to the prior distribution. This means that the model finds little effect of changes of individual behaviour on week-ends on the dynamics of the number of deaths through time. Expectedly, Fig. 10 shows that the resulting posterior looks very similar to the posterior obtained without accounting for behavioural changes on week-ends.

Figure 9: Posterior distribution of $\alpha_{\text{weekend}}$
4.4 Effect of the elections

Model 3 combines the effects of the lockdown and of the election day. First we investigated what effect size would be necessary to detect an effect of the election day on viral transmissibility. Election day is expected to increase the number of contacts that occurred on Sunday March 15, and hence the $R_t$ for that day. Using simulations, we investigated different fold change values for the $R_t$ parameter. Second, we assessed whether the election day had had a detectable impact on viral transmissibility using the French mortality data.
4.4.1 Effect size required to observe an effect of the election day

Figure 11: Simulated distribution of deaths in region Île-de-France, assuming different effect sizes of the election day on \( R_t \).

Figure 12: Simulated distribution of total deaths count, assuming different effect sizes of the election day on \( R_t \).

Fig. 11 and fig. 12 suggest that in order to detect an increase of the transmission rate \( R_t \) on the election day based on mortality data, this effect would have to be a change
in $R_t$ of at least a factor 2. This suggests that a model based of the number of deaths through time could only detect strong increases of $R_t$ during the election day.

### 4.4.2 No detectable effect of the election day on viral spread

![Figure 13: Posterior distribution of $\alpha_{elections}$](image1)

![Figure 14: Prior and posterior samples of $R_t$ in region Île-de-France](image2)
Fig. 13 shows that the posterior distribution on the $\alpha_{elections}$ is shifted towards values close to 0 compared to the prior distribution. This means that the model finds no evidence for an increase in the number of contacts during election day on the dynamics of the number of deaths through time. Expectedly, Fig. 14 shows that the resulting posterior on the $R_t$ value is much flatter on March 15 than the prior.

### 4.5 Status of the epidemic on May 11

Our model estimates that on May 11, when the lockdown was lifted, 2.09 (95% CI: 1.69-2.66) million people have been infected. This represents 3.22% (95% CI: 2.61-4.09) of the population. Further, the model estimates that there were 2793 (95% CI: 1761-4543) new infections on May 11.

### 4.6 Counterfactual investigation of alternative lockdown enforcements

We used the model to investigate the effect of putting the lockdown in place either earlier or later than the actual lockdown date on March 17. To do so, we assessed the total number of deaths predicted by the model as of May 11, a quantity that is well estimated by the model based on the empirical data as seen on Fig. 4. Fig. 15 shows that delays in starting the lockdown result in excess deaths: from 21% (3675) additional deaths for one day of delay to 262% (45,162) for 7 days of delay. Conversely, an earlier lockdown results in lower numbers of deaths, 75% (12,937) fewer deaths for 7 days, and 18% (3117) for one day.
Figure 15: Effect of different lockdown dates in counterfactual scenarios. The model was used to predict the total number of deaths on May 11 if the lockdown was put in place up to 7 days before or 7 days after the actual lockdown date on March 17.

5 Discussion

In this manuscript, we studied the ability of a Bayesian model to fit the mortality data of the SARS-CoV-2 epidemic in France. These mortality data are incomplete, as they only include the numbers of deaths in hospitals of patients positive for the virus. In particular, they do not include deaths at home, or deaths in retirement facilities. Such input data also neglect other potentially useful sources of information, such as the number of cases, or the number of hospitalizations. Despite their shortcomings, numbers of deaths in hospitals have been widely used to study the epidemic in France and in other countries as it unfolded, notably because they were more readily available than other statistics.

We assessed the ability of our model to predict the number of deaths based on censoring of the data, and found that the model was able to accurately predict the number of deaths weeks in advance (Fig. 2).

We then used our model to estimate the efficacy of the lockdown. Our estimates of the reproduction rate (3.34 (95% CI : 3.19 - 3.51) before lockdown and decreasing to 0.65 (95% CI : 0.62, 0.67) after) can be compared to the values estimated by other groups. We focus on three works: those of Salje et al., 2020, Solonea et al., 2020,
and [Roques et al., 2020].

The latter only estimated the reproduction rate before lockdown, and found 3.2 (95%-CI: 3.1-3.3), in good agreement with our estimate. [Salje et al., 2020] and [Sofonea et al., 2020] found results that are a bit different, in particular for the reproduction rate before the lockdown. The former estimated a reproduction rate of 2.90 (95% CI:2.80-2.99) before the lockdown, and of 0.67 (95% CI:0.65-0.68) after the lockdown, and the latter a reproduction rate of 2.99 (95% likelihood interval 2.59-3.39), and "between 21.3 and 27.1% of its value after the lockdown", i.e. between 0.64 and 0.81. Our credibility intervals thus overlap with the intervals of [Sofonea et al., 2020]. This is interesting as [Sofonea et al., 2020] used a different model from ours, that did not take into account heterogeneities between regions, but that is based on a probabilistic fine-grain compartmental model. [Salje et al., 2020] used a Bayesian model similar to ours, except that they used both hospitalization and deaths data, but did not model the saturation of the population as the epidemic progresses and the proportion of susceptible individuals decreases in the population. A source of difference between our model, the model of [Sofonea et al., 2020], and theirs is the values of the Infection Fatality Ratios that were used. They based their IFR on the data from the Diamond Princess cruise ship, while [Sofonea et al., 2020] and we based ours on data from Wuhan, in China. As a result, their average IFR, nation-wide, is 0.7, while ours is 0.99. We performed a test by scaling down our IFRs by multiplying them by 0.7/0.99. We find that our results are robust to this scaling of the IFR, with reproduction rates virtually unchanged. With data only up to March 17th only, a smaller value of the IFR of 0.5 (95%-CI: 0.3 0.8) for France has been suggested in [Roques et al., 2020]. Such a work would need to be repeated with updated data, but it seems our model is robust to variations in the IFR.

Values of the reproduction rate in turn affect the estimates of the total number of infected people and the total number of new infections on May 11. [Salje et al., 2020] estimate that 2.8 (range : 1.8-4.7) million people have been infected by May 11, when the lockdown was lifted, and that there were 3900 (range 2600-6300) new infections on May 11. A series of sensitivity analyses yielded a larger range of values, notably between 1700 and 9600 new infections on May 11. Our model predicts that fewer people have been infected: 2.09 (95% CI : 1.69-2.66) million, and fewer infections on May 11: 2793 (95% CI : 1761-4543). This is likely explained by our higher IFR: fewer infections are required to explain a given number of deaths. However, our estimates fall within the intervals they found during their sensitivity analyses. Overall, this comparison with [Salje et al., 2020], [Sofonea et al., 2020], and [Roques et al., 2020] suggests that the estimates of key parameters of the epidemic are similar across a range of models and data sources.

We further explored the ability of our model using solely the number of deaths through time to detect the effect of week-ends or of single-day events, such as the election day. Week-ends would need to incur a decrease of about 20% in e.g. the number of contacts to be detectable by the model. This was not found in the empirical data. The difference between week days and week-end days is probably weaker during lockdown, because fewer people go to work on any day during the lockdown. A single-
day event would need to e.g. multiply the number of contacts on that day by a factor of 2 to be detectable; expectedly, the model found no evidence for such a large effect of the elections on the number of deaths. Accordingly, another study using admissions and deaths together has also found an absence of evidence that the elections had had a detectable impact on viral spread \cite{zeitoun2020}.

Our study of counterfactual scenarios suggests that imposing the lockdown early results in fewer deaths, and imposing the lockdown late results in more deaths, which is unsurprising given the dynamics of any epidemic. It can be put in perspective with our study of the effect of the elections on the French epidemic. Although holding the elections on Sunday March 15th did not leave a noticeable footprint in the number of deaths, it may have caused a delay in imposing the lockdown. For instance, and according to the projections of our model, setting up the lockdown on Friday March 13 instead of Tuesday March 17 would have resulted in 32\% fewer deaths nationwide (5556 fewer deaths as of May 11).

6 Conclusion

We used a Bayesian model of the number of SARS-CoV-2 related deaths through time to study the epidemic, assess the influence of various events, and evaluate counterfactual scenarios. We found that the model accurately predicts the number of deaths 2 to 3 weeks in advance, and recovers estimates that are in agreement with recent models that rely on a different structure and different input data. The predictions of the model indicate that holding the elections on March 15 did not have a detectable impact on the total number of deaths, unless it motivated a delay in imposing the lockdown.

References


\cite{flaxman2020} Flaxman, Seth, Mishra, Swapnil, Gandy, Axel, Unwin, H Juliette T, Coupland, Helen, Mellan, Thomas A, Berah, Tresnia, Eaton, Jeffrey W, Guzman, Pablo N P, Schmit, Nora, Cilloni, Lucia, Ainslie, Kylie E C, Blake, Isabel, Boonyasiri, Adhiratha, Boyd, Olivia, Cattarino, Lorenzo, Ciavarella, Constanze, Cooper, Laura, Cucunubá, Zulma, Cuomo-Dannenburg, Gina, Dighe, Amy, Djcaffara, Bimandra, Dorigatti, Ilaria, van Elsland, Sabine, FitzJohn, Rich, Fu, Han,


