Motivation and Cognitive Abilities as Mediators between Polygenic Scores and Psychopathology in Children

Narun Pornpattananangkul¹, Lucy Riglin², Richard Anney², Yue Wang¹, Deanna M. Barch³, Anita Thapar² and Argyris Stringaris⁴

¹Department of Psychology, University of Otago, New Zealand
²MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
³Department of Psychological & Brain Sciences, Washington University, USA
⁴Mood Brain and Development Unit, National Institute of Mental Health, USA

Corresponding author:
Narun Pornpattananangkul, PhD
Department of Psychology, University of Otago
William James Building
275 Leith Walk
Dunedin 9016
New Zealand
Email: narun.pat@otago.ac.nz
Abstract

A fundamental question in psychology and psychiatry concerns the mechanisms that mediate between genetic liability and psychiatric symptoms. Genetic liability for common psychiatric disorders, such as Major Depressive Disorder (MDD) and Attention Deficit Hyperactivity Disorder (ADHD), often confer transdiagnostic risk to develop a wide variety of psychopathological symptoms through yet unknown pathways. Here we examined the three psychological and cognitive pathways that might mediate the relationship between genetic liability and broad psychopathology (as indexed by the P-Factor and its underlying dimensions): punishment sensitivity, reward sensitivity, and cognitive abilities. We applied Structural Equation Modeling (SEM) on the Adolescent Brain Cognitive Development (ABCD) dataset (4439 children, 9-10 years old). The association between MDD polygenic scores (PS) and psychopathology was partially mediated by punishment sensitivity (reflected by Behavioral Inhibition System; BIS) and cognitive abilities (reflected by the G-Factor based on 10 neurocognitive tasks): proportion mediated=13.96%. Particularly, this mediating role of punishment sensitivity was specific to the emotional/internalizing dimension of psychopathology. Conversely, the influence of ADHD PS on psychopathology was partially mediated by reward sensitivity (reflected by Behavioral Activation System; BAS) and cognitive abilities (reflected by the G-Factor): proportion mediated=33.19%. This mediating role of reward sensitivity was focusing on the behavioral/externalizing and neurodevelopmental dimensions of psychopathology. These findings may provide a better understanding of how genetic risks for MDD and ADHD confer risk for psychopathology and suggest potential prevention and intervention targets for children at risk.

Keywords: Polygenic Score, Transdiagnostic Psychopathology, BIS/BAS, Cognitive G-Factor, P-Factor, Adolescent Brain Cognitive Development, MDD, ADHD, RDoC
Introduction

The last decade has seen major advances in psychiatric genetics. However fundamental questions remain about the psychological and cognitive links that associate genes with psychopathology. In this paper, we examined whether three psychological and cognitive mechanisms—similar to those proposed by the National Institute of Mental Health’s Research Domain Criteria (RDoC)—punishment sensitivity, reward sensitivity and cognitive abilities—mediate the relationship between genetic liability and psychiatric symptoms.

Genetic liability to psychiatric disorders, such as major depressive disorder (MDD), attention deficit hyperactivity disorder (ADHD) and schizophrenia, can be captured by a composite of common gene variants identified from genome-wide association studies (GWAS), known as polygenic scores (PS). Multiple gene variants associated with different psychiatric disorders have been identified, and these cut across current diagnostic classification, such that genes contributing to one disorder also influence other phenotypes, not necessarily specific to such disorder. For instance, PSs associated with case-status for MDD, ADHD, and schizophrenia in GWAS discovery studies are associated with covariation among multiple psychiatric symptoms not limited to their respective disorders, assessed through a latent variable known as the Psychopathology-Factor or P-Factor. It is unclear, however, what the mechanisms that explain this link between PSs and the P-Factor might be.

These mechanisms are likely to occur at multiple levels, including molecular, cellular, circuit, but also psychological and cognitive. The RDoc has emerged as a framework to investigate how components of these different levels contribute to psychopathology. Surprisingly little work has been done to examine which psychological and cognitive mechanisms mediate links between genetic risks and psychopathology. This is unfortunate as 1) at least some psychological and cognitive phenotypes can be measured with relatively high precision, and 2) some may also be amenable to interventions. Understanding such mediating mechanisms may provide a foundation for effective early prevention and intervention strategies, an especially important goal in childhood given that most psychiatric disorders originate early in life. For this reason, our study focused on uncovering psychological and cognitive pathways between genetic liability (as indexed by PS), and psychopathology (as indexed by P-Factor as well as more specific latent variables, such as internalizing/emotional, externalizing/behavioral and neurodevelopmental) in children.

Here we focus on three psychological and cognitive mechanisms that show promise as potential mediators. The first two are related to motivation: punishment and reward sensitivity, or how easily affected individuals are by aversive and appetitive stimuli, respectively. Decades of work in psychopathology have demonstrated the importance of motivation. Many emotional/internalizing symptoms (such as those that typify MDD and anxiety disorders) are associated with punishment sensitivity, as measured by the Behavioral Inhibition System (BIS) subscale. Conversely, neurodevelopmental and behavioral/externalizing symptoms (such as those observed in ADHD and conduct disorders) are associated with reward sensitivity, as measured by the Behavioral Activation System (BAS) subscale. Accordingly, it is possible, for instance, that the previously found association between MDD PS and the P-Factor might be mediated through punishment sensitivity (the BIS) while the association between the ADHD PS and the P-Factor might be mediated through reward sensitivity (the BAS).
The third mechanism is related to cognitive abilities. Cognitive abilities have many forms, ranging from executive functions\(^23\), verbal aptitude\(^24\), learning and memory\(^25\) to spatial reasoning\(^26\),\(^27\). The shared variance across different forms of cognitive abilities is represented by a latent variable, called the General Intelligence Factor, or G-Factor\(^28\). The G-factor has been associated with multiple different dimensions of psychopathology\(^7\),\(^16\),\(^29\). A recent twin study\(^29\) also demonstrated that the G-factor broadly captures genetic propensity for psychopathology. Accordingly, we hypothesized that the G-Factor may mediate between genetic liability of various PSs and the P-Factor.

Recently the P-Factor has been integrated into a transdiagnostic framework that empirically groups related symptoms together in a hierarchical order of dimensions\(^30\),\(^31\). This framework has advantages over classical diagnostic systems (e.g., DSM or ICD) in terms of predicting clinical outcomes\(^32\), such as new onsets of future diagnoses\(^33\),\(^34\), suicide attempts\(^33\),\(^35\),\(^36\) and psychosocial impairments\(^37\)–\(^39\). This hierarchical structure has the P-Factor at its apex to represent broad severity across different types of psychopathology\(^40\). Moreover, the P-Factor is manifested by lower, specific dimensions. Based on a recent large-scale study in children from the Adolescent Brain Cognitive Development (ABCD) dataset\(^31\), at the lower level of this hierarchical structure are five specific dimensions of behavioral/externalizing, neurodevelopmental, emotional/internalizing, somatoform and detachment items. These lower-level, specific dimensions make it possible to study mediating processes in greater granularity. Researchers can test which of the specific dimensions (in addition to the P-factor) are mediated by each mechanism. For instance, while PS for one disorder and the P-Factor might be jointly mediated by two mechanisms, these two mechanisms might mediate different specific dimensions from the other, suggesting dissocial roles in the pathway from genetic risk to psychopathology.

Our aim here is to provide a missing mechanistic link between genetic risk and clinical symptoms. We do by testing the hypotheses that motivational traits and cognitive abilities mediate between polygenic scores (PSs) for major psychiatric disorders and psychopathology (as indexed by the P-Factor and its underlying dimensions). The first step was to identify which of the common psychiatric PSs were associated with the P-Factor. Here we regressed the P-Factor on PSs for common psychiatric disorders: MDD, ADHD, Anxiety, Bipolar, Schizophrenia and Autism. Once identified, we conducted mediation analyses to formally examine the extent to which the relationship between each identified PS and the P-Factor was accounted for by the proposed mechanisms: punishment sensitivity (the BIS), reward sensitivity (the BAS) and cognitive abilities (the G-Factor). Finally, to further investigate the specific roles of the mediators, we conducted follow-up mediation analyses on the five specific dimensions by which the P-Factor was manifested. This allowed us to demonstrate detailed pathways for each mechanism to mediate specific sets of psychopathology.

Methods

Sample

We used the baseline, cross-sectional data from ABCD Release 2.01, collected at 21 sites across the United States between September 2016 and October 2018 (http://dx.doi.org/10.15154/1504041). While the study recruited over 11,000 children across races and ethnicities\(^41\), we only selected children of European ancestry (assessed by multidimensional scaling analysis of their genotype data and compared with the 1000 Genomes Project phase3) to match with the discovery samples of the PSs. We excluded children whose genetic data had quality control issues (e.g., collected from a problematic plate or having incorrect data input) based on the study’s recommendations (see
After additional quality controls (see below), the final sample included 4439 children (2,081 females; $M_{\text{age}}=9.93$ (SD=.61) years). The ABCD study was approved by the IRB at multiple sites42, and obtained informed consent (parents) and assent (child)43.

Polygenic Scores (PS)

Full details of genotyping has been published elsewhere44. Briefly, the study used the Smokescreen™ array, containing 733,293 SNPs45. The ABCD applied minimal quality control using the Ricopili pipeline. We further quality controlled and excluded children with high genetic relatedness, gender mismatches, minimal or excessive heterozygosity, disproportionate levels of individual missingness (>2%), insufficient sample replication (IBD <0.8) and cryptic relatedness (IBD ≥0.0422). We excluded SNPs based on minor allele frequency (<5% or >4SD discrepancy from the 1000 Genomes Project Reference panel), call rate (<98%) or evidence for violations of Hardy-Weinberg equilibrium (P < 1E-10). Using PRSice46, we computed each PS as the Z-scored, weighted mean number of risk alleles in approximate linkage equilibrium, derived from imputed autosomal SNPs. We defined these risk alleles as those associated with case-status in large-scale discovery GWASs of six major psychiatric disorders: MDD47, ADHD48, Anxiety49, Bipolar50, Schizophrenia51 and Autism52. In the main analysis, we focused on risk alleles that passed the p<.05 threshold in the discovery GWASs (see Supplementary for the analyses at other thresholds from p<.5 to .0001). Overall, the effects shown at the p<.05 threshold were also found at multiple thresholds. In our SEM that involved PSs, we also included control variables: (i) the number of SNP included to generate each PS, (ii) ten principal components (to control for population stratification).

Psychopathology: P-Factor and Five Specific Dimensions

We assessed children’s psychopathology using the Child Behavior Checklist (CBCL),53 reported by parents as detailed previously54. The CBCL included 119 items on a scale of 0 (Not True) to 2 (Very True or Often True) that reflected emotional, behavioural and ADHD problems occurring in the past 6 months. Following previous work31, we removed low-frequency items and created composites for items that were highly correlated with each other. We captured the P-Factor and its lower, specific dimensions as latent variables in two confirmatory factor analysis (CFA) models.

First, the higher-order P-Factor model (Fig.1A) allowed us to model the P-Factor in the mediation analyses. Here we had the P-Factor as the 2nd-order latent variable and the five specific dimensions (behavioral/externalizing, neurodevelopmental, emotional/internalizing, somatoform and detachment; as defined previously31) as the 1st-order latent variables. In other words, the P-Factor was manifested by the five specific dimensions.

Second, the first-order model (Fig.1B) allowed us to model the five specific dimensions as correlated latent variables in the follow-up mediation analyses. We had the five specific dimensions as the 1st-order, correlated latent variables without the P-Factor. Using this model, we could test associations between variables (PSs and mediators) and each of the five specific dimensions while controlling for the correlations among the specific dimensions.

Motivation: Punishment (BIS) and Reward (BAS) Sensitivity

We assessed children’s motivation through the Behavioral Inhibition System and Behavioral Activation System (BIS/BAS) scale22 modified from PhenX, reported by children as detailed previously54. The scale included 20 items (7 for BIS) on 4-point Likert options (0=Not true; 3=Very true) that reflected punishment (BIS) and reward (BAS) sensitivity. The scale has been developed to
have a 4-factor structure: one BIS and three BAS subscales (Fun, Drive, Reward Responsiveness)22. Following a recent factor analysis in children55, we dropped four problematic items: three from the BIS and one from the BAS-Reward-Responsiveness. This resulted in four items per subscale. To evaluate the latent structure of the BIS/BAS, we ran a CFA model, similar to the classical22 and revised55 4-factor models. In this model (Fig.1C), BAS (as the higher-order variable) underlined the three BAS subscales (as the 1st-order variables). We then allowed the BIS and BAS to covary. We treated The BIS and BAS as latent mediators for the mediation analyses.

Cognitive Abilities: G-Factor

We assessed children’s cognitive abilities through various cognitive tasks as detailed previously56,16. Children completed these tasks on an iPad during a 70-min in-session visit. We included 10 tasks in our model (including seven tasks from the NIH Toolbox17). First, the Flanker task measured inhibitory control57. Second, the Card Sort task measured cognitive flexibility58. Third, the Pattern Comparison Processing task measured processing speed59. Fourth, the Picture Vocabulary task measured language and vocabulary comprehension24. Fifth, the Oral Reading Recognition task measured language decoding and reading17. Sixth, the Picture Sequence Memory task measured episodic memory60. Seventh, the Rey-Auditory Verbal Learning task measured auditory learning, recall and recognition25. Eight, the List Sorting Working Memory task measured working-memory17. Ninth, the Little Man task measured visuospatial processing via mental rotation27. Tenth, the Matrix Reasoning task measured visuospatial problem solving and inductive reasoning25.

As a preliminary analysis, we followed previous work16 by applying principal component analysis (PCA) to evaluate the structure of cognitive abilities. As we assume some similarity among the tasks, we used oblique (oblimin) rotations. The 4-component solution appeared to capture the cognitive tasks well, given minimal cross-loading. From this preliminary analysis, we then used CFA to capture the latent variable, the G-factor, the underlying cognitive abilities. In our higher-order G-Factor model (Fig.1D), we had the G-Factor as the 2nd-order latent variable. We also had four 1st-order latent variables in the model: executive functions (capturing the Flanker, Card Sort and Pattern Comparison Processing tasks), verbal (capturing the Picture Vocabulary and Oral Reading Recognition tasks), memory (capturing the Picture Sequence Memory, Rey-Auditory Verbal Learning and List Sorting Working Memory tasks) and spatial (capturing the Little Man and Matrix Reasoning tasks). We treated the G-Factor as a latent mediator for the mediation analyses.

Latent Variable Modelling Configurations

For each CFA structure, we fixed latent factor variances to one, so that we could estimate all factor loadings. We used robust estimators to deal with non-normality of psychopathological phenotypes in this population-based study. To this end, we first used robust maximum likelihood estimation (MLR) with robust (Huber-White) standard errors and scaled test statistics that also dealt with missing values via the Full Information Maximum Likelihood algorithm. However, if we encountered a non-convergent problem with the MLR, we treated data as ordinal and used WLSMV as an estimator instead. The WLSMV uses diagonally weighted least squares to estimate model parameters. To demonstrate model fit, we used scaled comparative fit index (CFI), Tucker-Lewis Index (TLI) and root mean squared error of approximation (RMSEA) with 90% CI. We reported the robust versions of these indicators for the MLR. For CFA, we also reported reliability of the latent variables: OmegaL261 for 2nd-order variables and OmegaL362 for 1st-order variables. These reliability indices reflect the internal consistency of the latent variables of interest. Model fits and reliability indices are shown in the figure captions. We ran the analyses in R4.0 on the standardized data.
using lavaan63 (version=.6-6) and semTools61 along with semPlot64 and qgraph65 for visualization (see Supplementary for the script and detailed outputs).

Mediation Analyses with Structural Equation Modeling Steps
In our mediation analyses, we fit a series of latent variable models in successive steps. First, to identify which of the PSs are associated with the P-Factor, we treated the P-Factor from the higher-order P-Factor model as an outcome variable and the six PSs (MDD, ADHD, Anxiety, Bipolar, Schizophrenia and Autism) as explanatory variables. In this regression SEM model, the association between each PS and P-Factor was already controlled for other PSs. Second, to ensure that the proposed mediators were related to the P-Factor, we treated the P-factor as an outcome variable and the three proposed mechanisms (the BIS, the BAS and the G-Factor) as explanatory variables. Third, to demonstrate which of the three mediators were related to the PSs implicated by the first step, we treated the three proposed mediators as outcome variables and each of the selected PSs as an explanatory variable. Fourth, we examined the extent to which the relationship between each of the selected PS and the P-Factor was accounted for by the mediators implicated by steps two and three. Here we treated each implicated PS (step one) as an independent variable, mechanisms (steps two and three) as mediators and the P-Factor as a dependent variable. We then conducted follow-up analyses to further examine the role of the mediators by exploring associations with the five specific dimensions from the first-order model. For these follow-up mediation analyses, we started by examining the association between the five specific dimensions (as outcome variables) and each of the PS that was significantly associated with the P-factor (as an explanatory variable). Because the first-order model separately estimated correlations among the five specific dimensions, here we captured the unique associations between each specific dimension and PS (i.e., controlling for the correlations among the dimensions). Only the five specific dimensions of psychopathology that were associated with each PS were used in the final follow-up mediation analyses. Finally, we tested the extent to which the relationship between each significant PS and the specific dimensions of psychopathology was accounted for by the mediators.
Results

How Well Do the Proposed Latent Variable Models Fit the Data?
Fig. 1 shows the results of Confirmatory Factor Analysis (CFA). All of the four proposed latent variable models had adequate model fit indices. Overall, the proposed latent variables (including the P-Factor, five specific dimensions, BIS, BAS, G-Factor) had good reliability.

![Figure 1. Confirmatory Factor Analysis for latent variables of interest. Line thickness reflects the magnitude of standardized parameter estimates. The dotted lines indicate marker variables that were fixed to 1. Numbers in square indicate the item number from each scale. 1A and 1B show the higher-order P-Factor and first-order models for psychopathological phenotypes, respectively. The higher-order P-Factor showed good fit: scaled CFI=.923, TLI=.921 and RMSE=.028 (90%CI=.027-.028). The P-Factor in this model also had good reliability: OmegaL2=.875. The first-order model also showed good fit: scaled CFI=.927, TLI=.925 and RMSE=.027 (90%CI=.027-.028). Overall its 1st-order variables had good reliability (total Omega3=.962) while reliability for specific dimensions varied: externalizing (Omega3=.926), neurodevelopmental (Omega3=.874), internalizing (Omega3=.842), somatoform (Omega3=.730) and detachment (Omega3=.657). 1C shows the BIS/BAS model. This model showed good fit: robust, scaled CFI=.939, TLI=.927 and RMSE=.049 (90%CI=.046-.051). The latent variables had good reliability: 1st-order variables (total Omega3=.87) and the BAS (OmegaL2=.825). 1D shows the higher-order G-Factor model. This model showed good fit: robust, scaled CFI=.968, TLI=.953 and RMSE=.044 (90%CI=.039-.049). The G-Factor had good reliability (OmegaL2=.866). P = P-Factor; Ext = Externalizing; Neuro Dev = Neurodevelopmental; Int = Internalizing; Somatic = Somatoform; Detach = Detachment; Rew Res = Reward Responsiveness; G = the G-Factor; EF = Executive Functions; Car Sort = Card Sort; Pattern = Pattern Comparison Processing; Vocab = Picture Vocabulary; Read = Oral Reading Recognition; Pic = Picture Sequence Memory; Rey = Rey-Auditory Verbal Learning; List = List Sorting Working Memory; Matrix = Matrix Reasoning.]

P = P-Factor; Ext = Externalizing; Neuro Dev = Neurodevelopmental; Int = Internalizing; Somatic = Somatoform; Detach = Detachment; Rew Res = Reward Responsiveness; G = the G-Factor; EF = Executive Functions; Car Sort = Card Sort; Pattern = Pattern Comparison Processing; Vocab = Picture Vocabulary; Read = Oral Reading Recognition; Pic = Picture Sequence Memory; Rey = Rey-Auditory Verbal Learning; List = List Sorting Working Memory; Matrix = Matrix Reasoning.
Which PSs are Associated with the P-Factor?
Our first Structural Equation Modelling (SEM) tested the relationship between the six psychiatric PSs and the P-Factor from the higher-order P-Factor model (Fig.2A, Fig.S1). Only the MDD (β=.080, SE=.016, z=4.863, p<.001) and ADHD PSs (β=.074, SE=.017, z=4.375, p<.001) showed unique associations with the P-Factor. Accordingly we treated the MDD and ADHD PSs as independent variables in our subsequent mediation analyses.

Are the Proposed Mechanisms Related to the P-Factor?
Next, we evaluated whether the proposed mediators were related to the main dependent variable, P-Factor (Fig.2B). Here, we examined the P-Factor in relationship to the BIS, BAS and G-Factor simultaneously, again allowing for the assessment of unique relationships. The P-Factor was significantly associated with all proposed mediators: the BIS (β=.061, SE=.026, z=2.413, p=.016), BAS (β=.106, SE=.025, z=4.231, p<.001) and G-Factor (β=-.222, SE=.023, z=-9.757, p<.001).

Are the Proposed Mechanisms Related to MDD and ADHD PSs?
We then separately evaluated whether each of the PSs that were associated with the P-Factor (MDD and ADHD PSs) were also related to each of the proposed mediators. MDD PS (Fig.2C, Fig.S2) was significantly related to the BIS (β=.041, SE=.019, z=2.232, p=.026) and the G-Factor (β=-.046, SE=.019, z=-2.407, p=.016), but not the BAS (β=.01, SE=.028, z=.566, p=.57). The BIS and the G-Factor were therefore included as mediators for MDD PS mediation analyses. ADHD PS (Fig.2D, Fig.S3) was significantly related to the BAS (β=.075, SE=.018, z=4.063, p<.001) and the G-Factor (β=-.09, SE=.018, z=-4.897, p<.001), but not the BIS (β=.014, SE=.02, z=.723, p=.47). The BAS and the G-Factor were therefore included as mediators for the ADHD PS mediation analyses.
Do the Proposed Mechanisms Mediate between Each PS and the P-Factor?

We then conducted the mediation SEM separately for MDD and ADHD PSs. For the MDD PS mediation model, the BIS and G-Factor were included as mediators (Fig.3A, Fig.S4, S5). The association between MDD PS and the P-Factor was partially mediated by both the BIS (proportion mediated=4.33\%, Indirect $\beta=.004$, SE=.002, $z=-1.984$, $p=.047$) and the G-Factor (proportion mediated=9.62\%, Indirect $\beta=.009$, SE=.004, $z=2.318$, $p=.020$), together explaining 13.96\% of the association.

The ADHD PS mediation model included the BAS and G-Factor as mediators (Fig.3B, Fig.S6, S7). The association between the ADHD PS and P-Factor was partially mediated by both the BAS (proportion mediated=7.716 \%, Indirect $\beta=.008$, SE=.003, $z=3.008$, $p=.003$ and G-Factor (proportion mediated=17.544\%, Indirect $\beta=.017$, SE=.004, $z=4.182$, $p<.001$). Thus, the two mediators together explained 25.260\% of the association between the ADHD PS and P-Factor.
Figure 3. The mediations between the PSs (MDD and ADHD) and the P-Factor. 3A shows SEM testing the mediation between MDD PS and the P-Factor with the BIS and G-Factor as mediators. This model showed good fit: robust, scaled CFI=.911, TLI=.908 and RMSE=.032 (90%CI=.031-.032). 3B shows SEM testing the mediation between the ADHD PS and the P-Factor with BAS and G-Factor as mediators. This model showed good fit: robust, scaled CFI=.904, TLI=.901 and RMSE=.030 (90%CI=.029-.030). The numbers indicate standardized parameter estimates. The parenthesis indicates the direct effect between each of the PS and the P-Factor after accounted for by the mediators. Yellow indicates independent variables. Blue indicates mediators. Green indicates dependent variables. Con Vars = PS control variables (SNP included in each PS and ten principal components) *p<.05; **p<.01; ***p<.001.
Which of the Five Specific Dimensions are Associated with Each PS?

We then conducted follow-up mediation analyses to investigate the distinct roles of the mediators at the level of five specific dimensions for both the MDD and ADHD PSs. We first tested the relationship between each of the two PSs and the five dimensions. MDD PS was significantly associated with all five specific dimensions (see βs in Fig. 4A, Fig. S8): all dimensions were therefore included in the follow-up mediation analyses for MDD PS.

The ADHD PS was statistically associated with externalizing, neurodevelopmental, internalizing and somatoform but not detachment (see βs in Fig. 4B, Fig. S9): these four dimensions were therefore included in the follow-up mediation analyses for the ADHD PS.

Do the Proposed Mechanisms Mediate between Each PS and Specific Dimensions?

For the MDD PS follow-up mediation model (Fig. 5A, Fig. S10, S11), the BIS specifically mediated the influence of MDD PS on internalizing (proportion mediated=10.80%, Indirect β=.008, SE=.004, z=2.146, p=.032), whereas the G-Factor specifically mediated the influence of MDD PS on externalizing (proportion mediated=13.30%, Indirect β=.009, SE=.004, z=2.327, p=.02) and neurodevelopmental (proportion mediated=15.38%, Indirect β=.012, SE=.005, z=2.353, p=.019) dimensions.

For the ADHD PS follow-up mediation model (Fig. 5B, Fig. S12, S13), the BAS specifically mediated the influence of the ADHD PS on externalizing (proportion mediated=11.41%, Indirect β=.011, SE=0.003, z=3.55, p<0.001) and neurodevelopmental (proportion mediated=8.65%, Indirect β=.009,
SE=0.003, z=3.26, p=0.001), whereas the G-Factor mediated the influence of the ADHD PS on all four dimensions: externalizing (proportion mediated=16.10%, Indirect β=0.015, SE=0.004, z=4.124, p=<0.001), neurodevelopmental (proportion mediated=20.38%, Indirect β=0.021, SE=0.004, z=4.372, p=<0.001), internalizing (proportion mediated=13.10%, Indirect β=0.005, SE=0.002, z=2.257, p=.023) and somatoform (proportion mediated=11.30%, Indirect β=0.005, SE=0.002, z=2.182, p=.029).

Figure 5. The mediation between Polygenic Scores (MDD and ADHD) and specific dimensions of psychopathology. 5A shows SEM testing the mediation between MDD PS and the five specific dimensions of psychopathology with the BIS and G-Factor as mediators. This model showed good fit: robust, scaled CFI=.913, TLI=.909 and RMSE=.031 (90%CI=.031-.032). 5B shows SEM testing the mediation between ADHD PS and the four specific dimensions of psychopathology with BAS and G-Factor as mediators. This model showed adequate fit: robust, scaled CFI=.899, TLI=.895 and RMSE=.030 (90%CI=.030-.031). The numbers overlaid black lines indicate standardized parameter estimates. The numbers on the right side next to each specific dimension of psychopathology indicate proportion mediated for the mediation paths with significant indirect effects. Dotted lines indicate mediation paths with non-significant (p<.05) indirect effects. Yellow indicates independent variables. Blue indicates mediators. Green indicates dependent variables. Con Vars = PS control variables (SNP included in each PS and ten principal components) *p<.05; **p<.01; ***p<.001.
Discussion

Here we aimed to uncover the psychological and cognitive mechanisms mediating the relationship between genetics and psychopathology. In particular, we tested whether three RDoC-based psychological and cognitive mechanisms, namely punishment sensitivity (BIS), reward sensitivity (BAS) and cognitive abilities (G-Factor), mediated the relationship between polygenic scores (PSs) for different psychiatric disorders and psychiatric symptoms across disorders (the P-Factor and its specific dimensions). We first identified that, among the six common psychiatric PSs, MDD and ADHD PSs were associated with the P-Factor in children, consistent with the previous reports4,5. Moreover, these two PSs were related to our proposed mediation mechanisms. Importantly, the proposed mechanisms partially mediated the relationship of the two PSs to the P-Factor and its specific dimensions.

The relationship of MDD PS to the P-factor was mediated by the BIS and G-Factor, whereas the relationship of ADHD PS to the P-Factor was mediated by the BAS and G-Factor. Thus, the influence of MDD and ADHD PSs on psychopathology may be acting through both shared (G-Factor) and unique (BIS versus BAS) routes. Here we demonstrated two routes for MDD PS (punishment sensitivity and cognitive abilities) and two routes for ADHD PS that are partially dissociable from MDD PS (reward sensitivity and cognitive abilities). To further investigate the specificity of these pathways, we conducted follow-up mediation analyses on the five specific dimensions of psychopathology by which the P-Factor was manifested. As discussed in more detail below, our results showed that the proposed psychological and cognitive mechanisms differently mediated each of the five specific dimensions. Thus, together these data are consistent with the hypothesis that dissociable but complementary pathways mediate the influence of the MDD and ADHD PSs on the P-Factor.

The mediating role of the BIS from MDD PS to the P-Factor is consistent with studies associating the BIS with emotional/internalizing symptoms23. When examining its detailed mediating pathways using specific dimensions of psychopathology, we found a high level of specificity in the mediation: the BIS was only significantly related to one PS (MDD PS) and one specific dimension of psychopathology (internalizing). Conversely, the mediating role of the BAS to ADHD PS and the P-Factor is consistent with associating the BAS with neurodevelopmental and behavioral/externalizing symptoms13,14. Similar to the BIS, the BAS also showed a high level of specificity in its mediation: it was only significantly related to one PS (ADHD PS) and two specific dimensions (neurodevelopmental and behavioral/externalizing symptoms). Together, these findings suggest that motivation-related mechanisms, punishment and reward sensitivity, mediated the influences of genetics in a specific manner.

The mediating role of the G-Factor to both MDD and ADHD PSs is in line with previous work showing relationships between cognitive abilities and broad psychopathology7,16. Unlike the two motivation-related mediators, the G-Factor showed a broader role. That is, the G-Factor mediated the influences between 1) both MDD and ADHD PSs and 2) various specific dimensions of psychopathology. For both MDD and ADHD PS, the G-Factor mediated the contribution of genetic influences to the externalizing and neurodevelopmental dimensions. For ADHD PS, cognitive abilities additionally mediated the link with internalising and somatic dimensions. Accordingly, we found that having genetic liability for MDD and/or ADHD had negative associations with cognitive abilities, which in turn, may enhance the general risk to develop psychopathology. As such,
cognitive abilities played a key role as a non-specific factor that linked genetic liability with broad psychopathology, consistent with previous findings and theoretical perspectives of the P-Factor7,40.

We believe understanding the roles of the proposed psychological and cognitive mechanisms have research and clinical implications. As we showed here, the model fit indices and reliability (i.e., internal consistency) indices of the proposed mechanisms were relatively high. This means that we can measure these mechanisms in children with precision using latent variable modeling. Moreover, punishment and reward sensitivity and cognitive abilities are shown to be altered via psychotherapy and other environment-altering interventions18–20. Accordingly, they can be targeted for effective early prevention and intervention strategies for children at risk.

This study is not without limitations. First, as highlighted previously66, while using PSs derived from GWAS are more reliable than using only a few common SNPs from selected genes (the candidate-gene approach), PSs still explain only a small proportion of genetic liability to psychiatric disorders. The relatively small effect sizes of our results confirm this notion. Next, in the original studies of the P-Factor that were done in adults7,40, psychosis experiences were considered as another separate dimension. Our use of CBCL31, however, did not allow us to investigate psychosis as another dimension. Thus, our definition of the P-Factor may not totally align with the original definition. Previous research cast doubt on the ability to detect psychosis experiences in 9-10 years old67, and internalizing and externalizing are usually the focus in children studies68,69,31. Nonetheless, the difference in definitions of the P-Factor should be noted. Finally, we measured the mediators and psychopathology at the same time, making it difficult to empirically test the directionality of their relationships. Fortunately, the ABCD is an ongoing longitudinal study that will provide additional data from the same children until they are 20 years old70. Thus, we believe that our study will lay a foundation for future research to further empirically test the directionality of the effects found here, for instance, using the cross-lagged panel model.

In summary, in a large sample of children, the influences of genetic predispositions for MDD and ADHD on psychopathology were mediated by three RDoC mechanisms: punishment sensitivity, reward sensitivity and cognitive abilities. Therefore, these findings further our understanding of the structure of psychopathology and the pathways through which it relates to genetic architecture.
Acknowledgment

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive Development (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041022, U01DA041028, U01DA041048, U01DA041089, U01DA041106, U01DA041117, U01DA041120, U01DA041134, U01DA041148, U01DA041156, U01DA041174, U24DA041123, U24DA041147, U01DA041093, and U01DA041025. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/scientists/workgroups/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators. NP, YW and AS were supported by Otago Medical Research Foundation Grant though M Begg Charitable. Declaration of Interest: The authors declare no competing interests.
References

Supplementary Information for Motivation and Cognitive Abilities as Mediators between Polygenic Scores and Psychopathology in Children

Figures below show the results from analyses done using risk alleles at different thresholds from p<.5 to .0001.
Figure S1. Standardized coefficients from the SEM (Figure 2A) testing the relationship between the six polygenic scores (PSs) across PS thresholds and the P-Factor.
Figure S2. Standardized coefficients from the SEM (Figure 2C) testing the relationship between MDD PS across PS thresholds and the proposed mediators.
Figure S3. Standardized coefficients from the SEM (Figure 2D) testing the relationship between ADHD PS across PS thresholds and the proposed mediators.
Figure S4. Standardized coefficients of the indirect effects from the SEM (Figure 3A) testing the mediation between MDD PS across PS thresholds and the P-Factor with the BIS and G-Factor as mediators.
Figure S5. Proportion Mediated (%) from the SEM (Figure 3A) testing the mediation between ADHD PS across PS thresholds and the P-Factor with the BIS and G-Factor as mediators.
Figure S6. Standardized coefficients of the indirect effects from the SEM (Figure 3B) testing the mediation between MDD PS across PS thresholds and the P-Factor with the BIS and G-Factor as mediators.
Figure S7. Proportion Mediated (%) from the SEM (Figure 3B) testing the mediation between ADHD PS across PS thresholds and the P-Factor with the BIS and G-Factor as mediators.
Figure S8. Standardized coefficients from the SEM (Figure 4A) testing the relationship between MDD PS across PS thresholds and the five specific dimensions from the first-order model of psychopathology.
Figure S9. Standardized coefficients from the SEM (Figure 4B) testing the relationship between ADHD PS across PS thresholds and the five specific dimensions from the first-order model of psychopathology.
Figure S10. Standardized coefficients of the indirect effects from the SEM (Figure 5A) testing the mediation between MDD PS across PS thresholds and the specific dimensions with the BIS and G-Factor as mediators.
Figure S11. Proportion Mediated (%) from the SEM (Figure 5A) testing the mediation between MDD PS across PS thresholds and the specific dimensions with the BIS and G-Factor as mediators.
Figure S12. Standardized coefficients of the indirect effects from the SEM (Figure 5B) testing the mediation between ADHD PS across PS thresholds and the specific dimensions with the BAS and G-Factor as mediators.
Figure S13. Proportion Mediated (%) from the SEM (Figure 5B) testing the mediation between ADHD PS across PS thresholds and the specific dimensions with the BAS and G-Factor as mediators.
Markdown File S1. MovCogMedPSPFactor_SEM.html shows R scripts for data pre-processing and latent variable modelling and their detailed outputs.