Abstract
This study aims to investigate if applying machine learning and deep learning approaches on chest X-ray images can detect cases of coronavirus. The chest X-ray datasets were obtained from Kaggle and Github and pre-processed into a single dataset using random sampling. We applied several machine learning and deep learning methods including Convolutional Neural Networks (CNN) along with classical machine learners. In deep learning procedure, several pre-trained models were also employed transfer learning in this dataset. Our proposed CNN model showed the highest accuracy (94.03%), AUC (95.52%), f-measure (94.03%), sensitivity (94.03%) and specificity (97.01%) as well as the lowest fall out (4.48%) and miss rate (2.98%) respectively. We also evaluated specificity and fall out rate along with accuracy to identify non-COVID-19 individuals more accurately. As a result, our new models might help to early detect COVID-19 patients and prevent community transmission compared to traditional methods.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
We have not got any fund to do this project
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
1) this material has not been published in whole or in part elsewhere; 2) the manuscript is not currently being considered for publication in another journal; 3) All authors have been personally and actively involved in substantive work leading to the manuscript, and will hold themselves jointly and individually responsible for its content.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, The University of Edinburgh, University of Washington, and Vrije Universiteit Amsterdam.