A rapid systematic review and case study on test, contact tracing, testing, and isolation policies for Covid-19 prevention and control

ABSTRACT

Objectives To conduct a rapid review on the efficacy and policy of contact tracing, testing, and isolation (TTI) in Covid-19 prevention and control, including a case study for their delivery.

Method Research articles and reviews on the use of contact tracing, testing, self-isolation and quarantine for Covid-19 management published in English within 1 year (2019 to 28th May, 2020) were eligible to the review. We searched MEDLINE (PubMed), Cochrane Library, SCOPUS and JSTOR with search terms included "contact tracing" or "testing" or "self-isolation" or "quarantine" in the title in combination with "Covid-19" or "COVID-19" or "coronavirus" in the title or abstract. Studies not associated with TTI or Covid-19 or being solely commentary were excluded. A narrative synthesis with a tabulation system was used to analyse studies for their diverse research designs, methods, and implications. Information for the case study was obtained from the Centers for Disease Control Taiwan.

Results Among the 160 initial publications, 30 eligible studies are included in the review. Included studies applied various designs: experiments, clinical studies, Government Documents, systematic reviews, observational studies, surveys, practice guidelines, technical reports. A case study on TTI delivery is summarised based on policy and procedures in Taiwan.

Conclusions The information included in the review may inform the TTI program in the UK.

Keyword: Covid-19, COVID-19, coronavirus, contact tracing, testing, self-isolation, quarantine, systematic review, policy, case study, Taiwan, the United Kingdom
INTRODUCTION

Since the initial Covid-19 cases appeared in November 2019, the pandemic has led to 5,707,163 new cases worldwide and 355,956 deaths (1). In the UK, as of May 27, 2020, there have been 262,240 cases of COVID-19, including 37,460 deaths. (2) To stop the transmission of the disease, non-essential activities have been restricted in the country since 21st of March. The strategy has effectively lessened the spreading of the disease, and in May, there has been a steady decline in Covid-19 incidence and mortality.

To control Covid-19 in the second phase of the pandemic, the UK government launched the National Health System Test and Trace program on May 27th. Contact tracing, testing, self-isolation and quarantine measures are typically used to contain infectious diseases, and countries who have implemented these strategies effectively have reported low to no Covid-19 endemic. However, there are controversy on the legislative, ethical, and human right aspects of the delivery of tracing, testing and isolation (TTI). For example, there have been concerns on personal data protection, privacy, and oversight in contact tracing. Potential unintended consequences (such as discrimination and exclusion) and conflict of interests may also put a stain on the public trust, which is crucial in a collective pandemic response.

Since the first Covid-19 case reported in Taiwan in January 2020, the country has implemented different TTI measures. Taiwan’s experience may inform the pragmatic aspects in the delivery of TTI. The objective of the rapid review is therefore to collate and interpret the existing evidence on firstly, the efficacy of contact tracing, testing, and isolation Covid-19 prevention and control and secondly, policies in their delivery. A case-study of TTI delivery in Taiwan is included in the report. Results of the review may inform towards an effective, evolved and benevolent strategy for test, trace and isolate in the UK.

METHODS

Systematic review

Eligible studies are research articles and reviews evaluating the effectiveness of contact tracing, testing, self-isolation and quarantine on Covid-19 management published in English within 1 year (May, 2019 to May, 2020).

Search We searched MEDLINE (PubMed), Cochrane Library, SCOPUS and JSTOR. The search terms included "contact tracing" or "testing" or "self-isolation" or "quarantine" in the title in combination of "Covid-19" or "COVID-19" or "coronavirus" in the title or text. The date last searched is 28th May 2020. The subject of the study was limited to human. Relevant reports and literature from the reference of the articles or suggested to the review team were included.

Study selection In MEDLINE search, we selected clinical studies, clinical trials, evaluation studies, government Documents, journal articles, meta-analyses, reviews, systematic reviews, multicentre studies, observational studies, practice guidelines, pragmatic clinical trials, technical reports. We selected studies whose subject area were in medicine or social sciences in SCOPUS, and research reports in JSTOR (excluding book chapters). We used title, abstract and content screening to remove studies not related to the TTI or Covid-19.

We used a standardised table to synthesise information from the eligible studies in the review (supplementary table 1). It collected background information on study design, method, results, main findings, and limitations according to PICOSt together with the list of policy review questions (supplementary table 1). Summary measures of each participant study, when available, were assessed and the risk of bias in the results of participant studies were assessed by the limitations of the study design and method.
Information for the case study was obtained from the Centers for Disease Control Taiwan (https://www.cdc.gov.tw/en/Disease/SubIndex/), and detailed information from its mandarin page https://www.cdc.gov.tw/Disease/Subindex/N6XvFa1YP9CXyD0kNSA9A).

RESULTS

We identified 60 studies from PUBMED (Medline), 43 studies from SCOPUS, 56 from JSTOR and 1 from Cochrane library and 4 articles from additional sources. Among the 160 initial publications, we removed 30 duplicate studies, 81 items that were not directly focused on Covid-19 or strategy of testing, contract tracing or isolation, or not in a research report format (such as editorial, audio interview). Two studies were further excluded after full text review, and we prioritised 30 studies in qualitative synthesis to answer the following study questions.

1. How would a 24 hr turn-around from sampling to result actually work?

Lagier et al. reported the procedure of SARS-CoV2 RT-PCR testing for repatriated citizens from the epicenter of the virus.(3) All these tests were performed by between three and six trained, qualified technicians who were available 24-7, either during routine working days or on an on-call basis. Time from sample-to-results was 4 h and 50 min (290 min) and 6 h and forty (400 min), for the passengers from the first returning flight. The laboratory thus optimised the testing strategy by prioritising the extraction of RNA from the samples, rather than performing a complete registration of all samples in our laboratory computer system then preparing all aliquots from the samples. The change reduced the time from sample to results to 2 h and 50-55 minutes (170-175 minutes).

The testing of RNA has also been promoted by Yan et al who suggested that a key action would be placing sample in reagents containing guanidine salts, for example TRIZOL, TRIZOL LS, or AVL buffer to inactivate the virus and protect RNA. SARS-CoV-2 RNA could be detected in stool, blood, or urine if undetected in URT specimens.(4)

Pooling of samples, using statistical algorithms was suggested by Abdalhamid et al to reduce the number of tests required and expedite the testing process.(5) The optimal pool sizes were selected based on the prevalence rate. A similar three-stage pooling system was reported by Eberhardt et al to have a 3.8 improvement factor at 12% prevalence.(6)

1-1. infrastructure and procedure of a sampling-to-results process that is 24 hours or less.

Hill et al. reported the high efficiency of drive-through SARS-CoV2 testing from the experience of NHS Lothian(7) with patients being informed of their results within 24 to 36 hours. However, this service was only applicable to individuals with access to a private vehicle and fit to drive.

Alternately, Binniker has outlined a system of setting up testing centres in all available clinics, as deemed safe and trustworthy by a responsible body.(8) These can be used to promote the role of local communities in testing and encourage people to take tests. Similarly, Gupta et al have described the response of labs in universities and clinics in India being converted to testing centres.(9)

1-2. testing during emergency

1-3. minimising false-positive and false-negative results.

The public should be made aware of the statistics behind test results, so that they are made aware of potential false positive or false negative response. Especially in the case of negative test results, repeated testing is often required if symptoms persist.
In a review conducted by Younes et al, the RT-PCR testing kits developed in the US, France and Germany had a high sensitivity of 95% but specificity was unknown.(10) On the other hand, depending on the sampling and the viral shedding at the time of sampling, the sensitivity may have reduced when small to null amounts of virus were sampled.(11) Therefore, for suspected cases, such as contacts of diagnosed Covid-19 patients, countries could have adopted a two-sample diagnoses to reduce the risk of false negative. (case study session 1-3) Point of care testing was also seen to be adopted for testing during emergencies (such as large-scale outbreak). Döhla et al compared the sensitivity of point of care testing to RT-PCR among a small group of Covid-19 patients and reported low sensitivity of point of care testing (36.4%).(11)

Yan et al have suggested that the human RNase P gene could be amplified as an internal control to reduce false-negative results and template volume could be increased to improve the detection sensitivity.(4)

The test statistics as of March 2020 in India, as reported by Gupta et al, revealed 100% accuracy in negative tests while only 5 in 7 positive tests were verified as true.(9) The reconfirmation of positive tests were therefore outsourced to a centralised agency, namely; the National Institute of Virology (NIV), which reprocessed positive tests to quantify the accuracy of testing. In addition, the importance of continued testing of relevant markers in serious cases was stressed by Favalaro et al, arguing that more accurate markers could be found to indicate the presence of the disease or the degree of severity. Suggested markers are D-dimer and PT, APTT, fibrinogen and platelet counted to gauge the chances of a high risk patient.(12)

1-4. Linked data to facilitate active case finding

In order to identify cases from individuals at high risk of infection, such as those in contact with Covid-19 cases, information of the contacts can further linked to clinical data or claim data to track the health status of all potential contact.(13) Those who were hospitalized due to pneumonia can be identified. For those who remained hospitalized but had not been tested for SARS-CoV-2, the health care providers can be informed of the potential exposure of the patient and sampling for SARS-CoV-2 suggested. In principle, it is similar to screening for cases in the high-risk population.

2. What local governance and partnership structures are required, and what would a local “outbreak team” look like?

An example of sectors involved in outbreak control and the members in the local outbreak team is described in the case study.

7. Adherence to isolation and local support needs

Timely identification of contacts

Ferretti et al. described the basic reproduction number R0 of SARS-CoV2 was estimated to be 2.0, of which 0.9 was infection occurred during the pre-symptomatic stage, suggesting about half cases were infected by non-symptomatic individuals.(14) The speed is important. Instantaneously finding cases, their contacts for self-isolation or quarantine to intercept viral transmission determine the course of epidemic. However, the conventional epidemiological contact tracing, which relies on personal interviews is labor-intensive and time-consuming, and may not be feasible when dealing with a pandemic with rapid propagation such as COVID-19.(13)

Digital tools to facilitate TTI

Telecommunication provider-based measures are more efficient than voluntary-based (such as App), and democratic nations adopt provider-based measures openly discussing its surveillance architectures, while less democratic nations tend not to or choose to hide them completely.(15)
Types of telecommunication provider-based measures:

1. mapping the amount of anonymized cell phone movement in a particular area (Germany, Austria, Italy)
2. Base station triangulation to approximate cell phone location. (Taiwan)
3. Access the A-GPS data generated by the phone (Israel)

Voluntary provision of data including

1. App recording device within a contact range via Bluetooth technique. (Singapore, Austria),
2. App recording daily symptoms (Taiwan, South Korea, Poland) to ease the workload of local authority.
3. QR code for entry or exit places (China).

Case studies for details in digital TTI tools in Taiwan, South Korea, Singapore, China, and Israel and how they are used in Covid-19 prevention and control can be accessed in the Appendix A of the report “Pandemic Mitigation in the Digital Age: Digital Epidemiological Measures to Combat the Coronavirus Pandemic.” (15)

Support for individuals to comply with self-isolation

Webster et al. identified the main factors associated with adherence were the knowledge people had about the disease and quarantine procedure, social norms, perceived benefits of quarantine and perceived risk of the disease, as well as practical issues such as running out of supplies or the financial consequences of being out of work. (16)

4. How would real-time data management, linkage of datasets, and dashboards be developed, and who would “own this”

APP and GPS

In South Korean, the government leverages several digital databases such as electronic health records, phone-based GPS, card transaction records, and closed-circuit television to facilitate contact tracing. (17) Yasaka et al. have proposed the use of an app with three guides, requiring users to create checkpoints (e.g. public spaces or shops with a QR code that can be scanned to the app), check risk level and report positive status. (18) Likewise, in China, QR code-based App are used for limiting the movement of suspected Covid-19 patients and displays a green, amber, or red code that is required for existing or entering places such as grocery stores or pharmacies; it remains unclear data protection mechanisms of the personal data being collected by the App and the digital surveillance architecture. (19) Public scrutiny for data protection and privacy have been raised for both the Chinese and South Korean Apps.

The efficacy of mobile positioning data (except in the case of 2G phones) was studied for use in Nigeria by Ekong et al. based on the systems used in South Korea, Singapore and China. (20) A legal framework for data protection was suggested when implementing these systems and a third-party agreement for data use.

Mobile geopositioning data

The mobile geopositioning method has also been used in studying the mobility, disease connectivity, and health risk in travellers. (21) The mobile positioning measurements are up to 150 meters from the actual location, thus significantly reduce the risk of undermining individual privacy. (13) (One of the major concerns of using methods with high precision, such as GPS data, is the risk of breaching personal confidentiality.)

Taiwan has applied a geopositioning method to facilitate the compliance of home isolation or quarantine (case study session 7.1) and rapid identifying contacts of large number of suspected Covid-19 cases. An example is the identification of potential contacts of the 3,000 Diamond Princess passengers touring in Taiwan during Covid-19 outbreak. (13) The method first identified numerous locations where the 3000 cruise
ship passengers may have visited and then 627,386 potential contacts within a day. Text messages for self-health management were sent to all contacts, with the data were subsequently linked to healthcare administrative system to inform the health authorities and hospitals, and subsequently linked to the nationwide health database for case finding.

In the Covid-19 epidemic, the geopositioning method has lessen the pressure of resource-intensive epidemiological contact investigations on health authorities and care system, and made it possible for timely large-scale contact tracing, while protecting individual confidentiality. The resources leveraged by the technology can be used for taking care of vulnerable populations and those without access to a mobile phone.

5. How would a “rapid response” occur, and what would precipitate such a response?- e.g. schools, care homes, other localities?

Hong Kong - On January 22nd, an individual from Wuhan reported respiratory symptoms, with another case reported the next day. Both cases received medical care and were placed in isolation, later being tested positive for Covid-19. Contact tracing starts immediately. Travel history of patients, including travel date, train/flight number and seat number, with the results of the investigation published online. All their close contacts, such as passengers seated close by, taxi drivers, are subject to quarantine at the Lady MacLehose Holiday Village, converted as a quarantine centre to host close contacts of confirmed cases. Passengers in the same carriage or cabin were regarded as “contacts” and subject to medical surveillance. A hotline was set up to answer public enquiries, especially for passengers on the same train/flight.(22)

Singapore - proactive contact tracing and cluster identification are two of features of the country’s Covid-19 management. Health professionals in the field are trained to ask Covid-19 patients to identify potential clusters. The Ministry of Health works with hotels and companies for information such as CCTV footage track cases.(22)

Hospital

Appropriate infectious control is essential to effective quarantine or isolation, or one risks further fuelling the infection. Prevention of transmission is limited to using close quarter isolation, as proven by the Xu et al(23) study of the Diamond Princess. The virus spread to 634 passengers despite the safety measures adopted, leading the authors to believe that aerosol contamination was possible in confined complexes. This was contradicted by Wang et al in a hospital study of transmission through air, sewage, surfaces and personal protective equipment in which swabs tested positive only for sewage with virus cultures not being found.(24)

Nosocomial infection, cross infection of doctors. At the Sheffield Teaching Hospitals NHS Foundation Trust, of 1,533 symptomatic healthcare workers, 18% were positive for SARS-CoV-2.(25) It was estimated that a third of staff had completed a shift while symptomatic, emphasising the need for regular and efficient testing for healthcare workers, who have a high risk of infection, for the protection of vulnerable patients and civilians.

Taiwan implemented nationwide enhanced Traffic Control Bundling (eTCB) in hospitals whereby infection was controlled with a combination of triage prior to hospitalisation, separation between risk zones, strict PPE use and hand disinfection checkpoints.(26) Risk zones were divided into contamination, intermediate and finally, clean. As droplet and fomite transmission has been observed for COVID-19 inside and outside hospitals, containment of nosocomial transmissions with eTCB. This finding was built on research by Yen et al in which SARS infection among HCWs was transmitted to 2HCWs (0.03 cases per bed) in the eTCB hospital.
compared with 50 probable cases (0.13 cases per bed) in the control group. (27) This strategy was implemented across Taiwan on the 21st May, 2003 and within two weeks the epidemic was under control.

6. How would an app be assimilated in light of the above?

The Singaporean government has developed the app “Trace together”, which records, through Bluetooth, other users who have been in proximity to a smartphone user. After that user is found to be positive, individuals at risk are contacted directly. (15, 28) The EU PEPP-PT coalition proposes the use of matching Bluetooth signals, based on the Singaporean “TraceTogether” app to develop a privacy-friendly contact tracing apps.

The Korean Ministry of the Interior and Safety has developed a mobile phone application named “self-quarantine safety protection” App that monitors the location of the quarantined user, informs health authorities, and allows the user to report on their symptoms. Health officials can evaluate if a test is needed during at a later stage of a quarantine. (15)

9. What are the barriers to & enablers of being tested, reporting contacts & isolating as a result of being contacted?

9-2 barriers

Testing

Mark et al. reviewed the feasibility of a mobile community testing team in Scotland and reported a barrier of a relative lack of guidance in infection prevention and control for donning and doffing PPE in the community. The team took a pragmatic approach and carried out a risk assessment; however, details infectious disease control and disinfect procedures of the mobile testing team to minimise cross infection were not described in the report. Shortage of staff and long travel times were also barriers identified. (29)

Digital tracking

The access and ability to use mobile phones limited the digital tracking, especially as those who have no mobile phone are more likely to be vulnerable. It is essential for the central and local outbreak control teams to cater to their needs.

A high coverage is needed for a voluntary app to be effective (a coverage of 60% - 75%), which may be difficult to reach on a voluntary basis. Issues such as mobile storage data, operating system, battery power to support constant Bluetooth activation, kids and senior citizens (in the highest-risk group) may not be carrying or even own a personal smart device owing to personal preference. Validity and reliability of information recorded by the app may not be accurate or precise due to technological limitations. (28)

Lack of Awareness and Communication about Testing Facilities and Procedures

With the United States in mind, Parmet et al. encouraged the promotion of “free testing” in order to reach poorer communities and eradicate the infection. (30) Although the UK already has free testing for adults, few are aware of their availability and necessity in combatting COVID-19. The number of tests carried out during an emergency will depend on the public perception of the reliability of testing services and the effectiveness of communication of actions that can be taken. It is also necessary to make the availability of kits and location of testing stations accessible to under-privileged members of the public who may not have access to a smart phone or basic supplies. Ethnic minorities should be made aware of the higher death rates statistically observed in members and encouraged to test early.

9-1. Enablers
Social Media

The internet and social media have a strong impact on isolation behaviour which has grown with increased internet use since the COVID-19 lockdown. Farooq et al. tracked the effects of social media, news websites and emails as well as the living situation on the individual-level intention of self-isolation during the pandemic, using a 225-member survey. (31) It was found that while frequent social media use contributed to information overload and cyberchondria, it increased propensity for self-isolation. McNeill et al similarly studied the effects of tweets and found that social media played a role in the motivation to conform to health measures. (32) To motivate members of the public to self-isolate in a healthy way, a combination of lowering perceived response costs and clear information about the severity of risks should be implemented. (31) It is also suggested that messages of severity of disease be disseminated via reliable official networks such as news, journalism and government outreach while social media focuses on hopeful messages and recommended health measures.

Towards an effective collective Covid-19 control

In the rapid literature review, Nussbaumer-Streit B et al. summarised a combination of quarantine and other prevention and control measures showing the greatest effects to reduce transmissions, incident cases, and mortality. (33) Similarly, Chen et al. described elements to effectively contain SARS-Cov2 transmission include quarantine, isolation, and surveillance of disease progression after contact tracing. (13) An effective TTI and Covid-19 response required the whole population to work together as a whole. The smooth collaboration of these essential components, linkage between data obtained via digital technology, sensor data, to health records, truthful and easily accessible information and protection of individual safety and privacy may strengthen the case identification, contact tracing, and the following control measures or mitigation plan.
A case study on test, contact tracing, testing, and isolation policies for Covid-19 prevention and control in Taiwan

Since the first Covid-19 case reported in Taiwan in January 21st 2020, as of June 2nd, Taiwan has 443 Covid-19 cases and 7 of them died. The case study used the Covid-19 response in Taiwan to answer the questions raised by the independent Sage committee, supplementing the literature review. Comparison of these two countries is facilitated by the similarity of their universal health care (single-payment systems, tax-based and full-country coverage) and practice (clinical guidelines, prevention and quality of care initiatives) (Table S1).

1. How would a 24 hr turn-around from sampling to result actually work?

1-1. infrastructure and procedure of a sampling-to-results process that is 24 hours or less.

The laboratory assay time from receiving the sample to obtaining the result is about 4 hours. Therefore, the 24 hours turnover includes the delivery time of the sample to the certified laboratories. In January, there were 15 laboratories certified for Covid-19 RT-PCR test, covering different administrative areas in Taiwan. Each laboratory has specific time slots to receive and perform the tests and release the results twice daily. The frequency can increase or decrease according to the need of testing. There has been a gradual increase in the number of certified laboratories. As of today (2nd of June), there are 45 laboratories and 19 of them can perform tests at any time.

The government recently expanded the testing scheme and members of the public can pay to have their samples taken at 162 designated community collection and inspection centres (the CDC Taiwan testing centre map for the public https://antiflu.cdc.gov.tw/ExaminationCounter).

1-2. testing during emergency

In case of a large-scale outbreak when mass testing is required with rapid turnaround, the point of care testing, (POCT) system can be implemented. The equipment is portable and can perform the test on site, it can further shorten the turnaround time to 1–2 hours.

1-3. minimising false-positive and false-negative results.

The CDC, Taiwan designs and provides a primer for RT-PCR according to the guideline of WHO or US CDC.\cite{1} The assay is highly sensitivity (E-gene results: 3.7–9.6 RNA copies/xn).\cite{2} Two-sample diagnosis: as at the initial stage of the infection the viral shedding can be too low to be sampled, for susceptible cases, after the first sample (nasal or throat swab), the second sample is taken after 24 hours to ensure accuracy.

2. What local governance and partnership structures are required, and what would a local “outbreak team” look like?

2-1. sectors involved in outbreak control include

Central government

- Central Epidemics Command Center\cite{3}
- Ministries and minister without portfolio in the central government.

\begin{thebibliography}{9}
\bibitem{1} WHO. Diagnostic detection of 2019 nCoV by real time RT PCR. https://www.who.int/docs/default-source/coronaviruse/protocol v2 1.pdf?sfvrsn=e9ef6c18c_2
\bibitem{4} Enforcement Regulations Governing the Central Epidemics Command Center https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=L0050025
\end{thebibliography}
Local government

The roles and coordination of the sectors are defined in the articles 5 and 6 of the Communicable Disease Control Act. The following table summarises the members of the case management team, their roles, procedures and how they work together in home isolation, home quarantine, and self-health management (Table 1). It is notable that individuals undergoing home isolation or quarantine require an additional 7-day self-health management at the end of their two-week isolation or quarantine period.

7. Adherence to isolation and local support needs

7-1 the ways to know if a suspected case is adhering to isolation.

Normally within the first few hours of the self-isolation or quarantine period, staff from local health authority or borough will phone the suspected case to communicate the necessary steps. Subsequently, the staff rings the individual twice daily (home isolation) or once per day (home quarantine). If the call is unanswered, a home visit will be arranged to check if the individual needs further medical care.

Electronic fencing

"Electronic Fencing" uses base station triangulation technology to approximate the holder of the mobile phone and automatically issue a reminder when it is beyond the designated isolation or quarantine area. When a mobile phone is switched on, the SIM card will connect with the base station, and the device actively searches for several base stations in the vicinity to connect with the closest one with the strongest signal. The signal strength of different base stations will change according to the location of the mobile phone. Thus, by selecting three base stations, the location of the phone can be triangulated and approximated.

The mobile phones retained by individuals undergoing home isolation or quarantine is registered within the range. Once they leave the range, it will automatically issue an alert to the holder (much like receiving roaming text messages automatically when going abroad), as well as the health authority and local police. Based on the information, the responsible staff can visit the roaming case. Currently, the electronic fencing system retains the information only for one day.

The electronic fencing effectively improves the adherence to home isolation or quarantine, as the probability of going beyond the range dropped from one-third to 0.3% from its initial launch to the present.

7-2 support for individuals in self-isolation

1) At the beginning of the 14 days, local government prepares a package with food, face masks, nutritional supplements, entertainments (book, prepaid movie account, plants).

2) There is a daily phone call from the local health authority and borough to make sure if the individual undergoing home quarantine or isolation is doing okay. They speak to practically all suspect cases, including small children who can talk.

3) There is an allocation of 1,000 NTD per day per diem during home isolation or quarantine.⁵

4. How would real-time data management, linkage of datasets, and dashboards be developed, and who would “own this”?

⁵ according to article 4 of the Regulations Governing Disease Prevention Compensation During Severe Pneumonia with Novel Pathogens Isolation and Quarantine Periods. https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=L0050040
A. Epidemiology Surveillance System

According to law, health authorities are mandated to establish an epidemiological surveillance and advance-alert system for communicable diseases. The components include:

1. National Notifiable surveillance and advance-alert system;
2. Laboratory surveillance and advance-alert system;
3. Sentinel medical institution surveillance and advance-alert system;
4. School-based surveillance and advance-alert system;
5. Nosocomial infection surveillance and advance-alert system;
6. General public surveillance and advance-alert system;
7. Disease control material surveillance and advance-alert system;
8. Populous institution surveillance and advance-alert system;
9. Symptom surveillance and advance-alert system;
10. Real-time outbreak disease surveillance and advance-alert system;
11. Other surveillance and advance-alert system of communicable diseases.

The information of communicable disease identified by these systems is used for real-time outbreak risk assessment of the health authorities.

B. Digital Covid-19 prevention system

Another example is the digital Covid-19 prevention system in Taiwan. The system includes a QR-code-based health data collection in the airport for inbound passengers. The data is linked to the "epidemic prevention tracking system" used by both the health authorities and police to inform them of the incoming cases and to document the follow-up symptom and home visit information. During home isolation and quarantine, the "electronic Fencing System", described earlier, facilitates adherence.

Table 1: the role, procedures and collaboration of local outbreak control team for home isolation, quarantine and self-health management in Taiwan.

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Home Isolation</th>
<th>Home Quarantine</th>
<th>Self-health management</th>
</tr>
</thead>
</table>
| **Groups of persons** | Persons who had contact with confirmed cases | People with travel history | 1. Reported cases who have tested negative and met criteria for being released from isolation
2. People reported and tested for COVID-19 under “COVID-19 Community-based Surveillance” |
| **Responsible authorities** | Local health authorities | Local civil affairs bureau or borough chief | Central/Local health authorities |
| **Enforcement** | Home isolation for 14 days
Active monitoring twice a day | Home quarantine for 14 days
Active monitoring once or twice a day | Self-health management for 14 days |

Notes concerning respective measures
- Health authority will issue a “Home (Self) Isolation Notice”
- Health authority shall check health status of the individual twice a day
- During the home isolation period, the individual is to stay at home (or designated location) and not go out, and may not leave the country or use public transportation
- Symptomatic individuals will be sent to the hospital for medical attention
- Individuals not adhering to the CECC’s prevention measures will be penalized under the Communicable Disease Control Act and be forcibly placed
- After the home isolation period ends, the individual should conduct an additional 7-day period of self-health management

Legal basis
- Article 48, Communicable Disease Control Act
- Paragraph 1, Article 15, Special Act for Prevention, Relief and Revitalization Measures for Severe Pneumonia with Novel Pathogens
- Article 58, Communicable Disease Control Act
- Paragraph 2, Article 15, Special Act for Prevention, Relief and Revitalization Measures for Severe Pneumonia with Novel Pathogens
- Article 48, Communicable Disease Control Act; Article 58, Communicable Disease Control Act
- Article 57, Communicable Disease Control Act; Article 69, Communicable Disease Control Act

Central Epidemic Command Center
www.cdc.gov.tw
Communicable Disease Reporting and Consultation Hotline: 1922
Such information is lawfully collected by the health authorities and government for outbreak control. However, the authorities can only retain the information for 28 days and are required to subsequently eliminate and destroy the data for the protection of personal data.

The digital Covid-19 prevention system is linked to National Health Insurance MediCloud System, cloud-based medical information sharing platform for medical professionals to gain up-to-date clinical information, including testing and imaging results, of the patient seeking care. The additional linkage provides information on the Covid-19 travel history, home isolation and quarantine status for clinicians to provide care while maintaining infectious control measures to ensure safety of the medical staff and other patients.

The index case on Diamond Princess Cruise ship was reported on January 20th 2020. On January 31st, 3000 passengers from the Diamond Princess cruise disembarked at Keelung harbour in Taiwan for a 1-day tour. Soon afterwards, on February 5, the cruise ship reported a Covid-19 outbreak.

To manage the potential risk of large scale Covid-19 outbreak, the Taiwanese government identified 627,386 potential contacts of the 3,000 Diamond Princess passengers using geopositioning analysis on mobile sensor data, with cross-validation, using other big sensor surveillance data. The telecommunication companies sent text messages to these potential contacts with the information on home quarantine, self health management and subsequent RT-PCR testing if symptoms were displayed. The contact data was linked to a National Health Insurance claims dataset, for the health authorities to follow their health outcomes. As of February 29th, no Covid-19 incident has been reported from the contacts.

5. How would a “rapid response” occur, and what would precipitate such a response? e.g. schools, care homes, other localities?

The overarching strategy to prevent Covid-19 community transmission is published by the CDC Taiwan on April 6th, 2020, listing the following 12 strategies:

A. At the individual and family level

10 Information on departures/transits to high-risk areas is now included in the travel history notification list, thus effectively closing gaps in disease prevention. National Health Insurance Administration. https://www.nhi.gov.tw/english/News_Content.aspx?n=996D1B4B5DC4B343&sm=FOEAFEB716DE7FFA&s=00AF96BA7D327FF5
1) health promotion and risk communication, 2) isolating Covid-19 cases, 3) isolating close contacts (with methods such as home isolation/quarantine, institution quarantine and workplace quarantine).

B. At the community level

4) regional quarantine, 5) enhancing infectious disease control or suspending public gathering, 6) enhancing infectious disease control in public transportation, 7) school suspension or closure, 8) enhancing infectious disease control in public areas and/or retailing stores, 9) rapid containment, 10) sheltering, 11) domestic travel restriction, 12) cordon sanitaire.

5-1. Hospitals

The contingency plan to prevent coronavirus infection in hospitals has been established according to the principles of Chemical, biological, radiological and nuclear (CBRN) defence and protective measures, after the nosocomial infections during the SARS outbreak in 2003. It includes the following three main principles.

1. the division of hospital areas according to Covid-19 infection risk as contaminated (such as negative pressure ward, iCU, CCU), intermediate and clean zones;
2. triage of patients (patients with Covid-19 like symptoms will be managed and treated in designated areas separated from other non-Covid-19 medical care activities);
3. medical staff divide into set teams and locations to deliver care, and change in teams and care station is set to minimum. (As in a submarine, the compartments can be completely separated when seawater enters.)

The infectious control aimed to minimise the fomite and aerosol transmission. During SARS, hospitals implemented the contingency measures reduced the risk of SARS nosocomial infection by half as compared to hospitals without the preventive measures in place.14

Hospital covid-19 nosocomial infection contingency protocols

If two Covid-19 clustering occurred within 14 days in a hospital, followed by a third cluster infection, the hospital to report to corresponding health authority to conduct outbreak investigation. Judging from the findings of the investigation, the hospital and health authority can initiate the “operational control” or “clearing control” protocols for 28 days, according to the CDC Taiwan hospital clustering contingency plan.15 Operational control minimize all non-essential care activities to apply thorough disinfection, whereas cleaning control moves all patients and staff from the contaminated area to allocated area or designated hospital within the medical network16 to continue care.

Hospitals to prepare for contingency with simulation practices.

5-2. Care home

13 Infectious control guideline for medical institutions in response to COVID-19, CDC Taiwan. June 2020 (in mandarin, translation available upon request)
15 Contingency recommendations for hospitals in response to COVID-19 (Wuhan pneumonia) confirmed cases. CDC Taiwan. May 2020 (https://fightcovid.edu.tw/cdc-guidelines/contingency-recommendation)
16 Established according to the Regulations Governing Operation of the Communicable Disease
The infectious control17 and contingency plan18 for long-term care homes are similar to the hospital.

5-3. School

Aligned with the 7th strategy of community infection control described earlier, the ministry of education together with CDC Taiwan published the criteria for school suspension in response to Covid-19.19 The duration of suspension is 14 days.

1. For schools other than universities:

 (1) When one teacher or student identified as a confirmed case by the Central Epidemic Command Center (CECC), the class is suspended for 14 days.

 (2) When more than two teachers and students in a school are identified as confirmed diseases by CECC, the school is closed for 14 days.

 (3) When one-third of schools in a borough are closed due to Covid-19, all schools in the borough are closed for 14 days.

2. For universities:

 (1) When a teacher or student identified as a confirmed case by CECC, all courses taught by the teacher or taken by the student are suspended for 14 days.

 (2) When more than 2 teachers and/or students are confirmed cases by the CECC, the university is closed for 14 days.

6. How would an app be assimilated in light of the above?

As a part of the contingency plan, the government collaborates with telecommunication companies and AI companies to develop a health report App, integrating the digital Covid-19 prevention system in Taiwan (as described in the answer to question 4 and question 7 above).

Another App developed is a social distancing App, using bluetooth device signal to estimate the physical social interactions out of devices close to individual. The App meets GDPR regulations and generates anonymous hashed ID history stored at the device for up to 28 days.20

9. What are the barriers to & enablers of being tested, reporting contacts & isolating as a result of being contacted?

9-1. enablers

1. The effective control of Covid-19 indicated by low incidence and mortality is an ongoing encouragement for the country, which has gone through SARS, to carry on the regulations.

2. The care provided by the local outbreak control team, individuals undergoing home isolation or quarantine have expressed their appreciation of being contacted once or twice daily by the health authorities and borough staff. The warm gesture of 14-day stay-at-home package

\begin{thebibliography}{10}
\bibitem{infected} Infectious control guideline for Long-Term Care Organizations in Response to COVID-19, CDC Taiwan, February 22nd (in mandarin, translation available upon request)
\bibitem{contingency} Guideline for contingency plan for Health and Welfare Institution (boarding homes) in response to COVID-19, CDC Taiwan. May 20th 2020 (in mandarin, translation available upon request)
\bibitem{suspension} Criteria for school suspension in response to Covid-19. Ministry of education, February 12th, 2020 (in mandarin, translation available upon request)
\bibitem{social} Taiwan Social Distancing APP \url{https://covirus.cc/social-distancing-app-intro.html}
\end{thebibliography}
prepared and delivered by the local government to individuals undergoing isolation or quarantine also helps.

3. The public trust developed with the leadership of CECC, central and local teams. The transparency and information, effective communicating of risk, and the care and humanity shared by the CECC and teams working on Covid-19 prevention and control. In addition, the hard work, care and kindness given by the medical staff. The public consider that if they follow the guidance, they will be safe, and if they are unfortunately getting sick, they will be well looked after.

4. The precision, efficiency and safety of the Covid-19 prevention system. At the airport, digital "entry quarantine system" has shortened the time from entry to care from 19 hours to 4.5 hours. The electronic fencing has greatly reduced the proportion of individuals going out of home isolation or quarantine from 30% in January to 0.3% currently and may significantly reduce potential community transmission.

5. The per diem of 1,000 NTD each day for home isolation and quarantine and the fine of 100,000 - 1 million NTD for violating the home isolation or quarantine regulations.21

9-2 barriers
Perceived shortage of personal prevention materials and false information can disturb the public with uncertainty and worry.

Taiwan is a diverse society with a significant immigrant population. To overcome the potential language and culture barriers. All health education materials and essential forms, such as notice for home isolation or quarantine are translated into multiple languages, and news communicated in different commonly-spoken dialects.

The coping strategy
Overcoming the shortage of personal prevention materials - make your own.

Masks
In early February, Taiwan’s daily mask production capacity was only 2.71 million pieces. By mid-May, 114 production lines were added with a daily output of 19 million pieces. The main contributors are the mask national team (production), the military (production), Taiwan Textile Research Institute (coordination), the post office (distribution) and eMask platform (fair distribution – purchase with the health insurance IC card).22 A total of 700 million masks were distributed with low price to the public since February, and currently there are 350 million of inventory of medical and surgical masks. 220 million masks were distributed free to medical professional and staff.

PPE
Before Covid-19, Taiwan imported all PPEs from abroad. To address the need of PPE, the government collaborates with the textile industry and material factories to produce PPE in house. The first production of 1 million PPE is about to complete.

22 open source App provided by the Digital Minister Tang:
- Frontend https://github.com/gdg-twhk/mask-web
- iOS/Android app https://github.com/gdg-twhk/mask-app
- Backend API https://github.com/gdg-twhk/mask-gae
App to support Korea: https://github.com/kiang/covid19-kr-masks/
Alcohol disinfectant
The government recruited the Tobacco and Liquor Corporation and Sugar Corporation to produce alcohol disinfectant since February, and 19.3 million bottles have been delivered for medical or household use since.

False information control
According to law, individuals who disseminate rumours or false information regarding the Covid-19 epidemics, causing damage to the public or others, can be sentenced to imprisonment and/or a fine up to NT$3 million.

3. What local commissioning arrangements are needed to facilitate this?
Local commissioning may be specific to the UK context. In Taiwan, the collaboration between the central and local government and hospitals to establish the communicable disease medical network may hopefully be helpful (Regulations Governing Operation of the Communicable Disease https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=L0050014 The budget document can be included upon request.)

8. Messaging to the public and behavioural incentives
Case study can be added upon request.

Figure 1: systematic review study flow diagram

Records identified through database searching (n = 160)

Additional records identified through other sources (n = 4)

Records after duplicates removed (n = 134)

Records screened (n = 53)

Records excluded (n = 81)

Full-text articles assessed for eligibility (n = 51)

Full-text articles excluded, with reasons (n = 2)

Studies prioritised in rapid qualitative synthesis (n = 30)
Table S1. Population health profile and health care comparison between Taiwan and the UK.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Taiwan</th>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population, (million) (2015)</td>
<td>23.5</td>
<td>65.1</td>
</tr>
<tr>
<td>Female, % (2011)</td>
<td>49.9</td>
<td>50.9</td>
</tr>
<tr>
<td>Population density, persons per km² (2013)</td>
<td>646</td>
<td>413 (England)</td>
</tr>
<tr>
<td>Gross national income per capita, (PPP international $) (2016)</td>
<td>48,095</td>
<td>42,481</td>
</tr>
<tr>
<td>Gini coefficient (2013)</td>
<td>0.336</td>
<td>0.358</td>
</tr>
<tr>
<td>Health system indicators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross national income spent on health, % (2013)</td>
<td>6.0</td>
<td>9.3</td>
</tr>
<tr>
<td>Curative (acute) hospital beds, per 1 000 population (2014)</td>
<td>3.4</td>
<td>2.3</td>
</tr>
<tr>
<td>Negative pressure quarantine beds, whole country</td>
<td>963</td>
<td>N/A</td>
</tr>
<tr>
<td>Population Health Profile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life expectancy at birth, years (2015)</td>
<td>80.2</td>
<td>81.2</td>
</tr>
<tr>
<td>Tobacco use among aged 15+ (2013)</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Liters per capita alcohol consumption (2011)</td>
<td>2.6 (18+)</td>
<td>9.9 (15+)</td>
</tr>
</tbody>
</table>

Appendix session one: mobile geopositioning method with health data linkage for Diamond Princess cruise ship contact tracing.

Background of the event is described in the case study 4-C.

Identify trails of the cruise passengers

As it was impossible to conduct retrospective individual interviews for each passenger, the method used to find out the location of the passengers have visited and the contact was primarily mobile geopositioning, verified with data from vehicle GPS, credit card transaction log, and closed-circuit television (CCTV).

The mobile position data from more than 3000 passengers on January 31, 2020, were obtained from five telecommunication companies in Taiwan. The cruise was moored at the harbour from 6 AM to 6 PM. The contact locations were ascertained with roaming signals with time of exposure over 30 minutes from multimobile base stations between 5 AM and 8 PM, as the major tracking routes. Based on the mobile signal registered to the base stations of five telecom companies, and compared the data before, during and after the docking of the cruise to retrieve mobile phone numbers of passengers.

The team was then able to depict rough locations marked by the signals of these phones, and about 34% of passengers took shuttle buses for local tours, 5.2% took taxis, the others biked or walked around at the harbour or a nearby area. The travel agency provided the itinerary of the day trip, and with the assistance of the local government, more than 24 buses and 50 taxies had been interviewed to recover the journeys of the 3000 passengers.

Identifying the Possible Contacts

The team resorted to the mobile position information of passengers to identify the sensors of mobiles from the possible contact persons. Citizens who carried their mobile phone and stayed within 500 meters of the marked locations over 5 minutes on January 31, 2020 were classified as people who possibly contacted the passengers of the Diamond Princess cruise ship. The number of potential contacts was 627,386.

On February 7, 2020, 2 days after the news of cruise outbreak reported, the CECC sent an alert notice using SMS through the Public Warning System to remind the 627,386 contacts and activate the mitigation plan. The potential contact persons were advised to quarantine at home, to stop further transmission, and advised to undergo the self-monitoring of COVID-19 symptoms (fever, cough, and shortness of breath) and contact health authority to seek medical care if symptoms were present.

Management of Potential Contacts with Symptoms

On February 9, the CECC notified all health care providers of the incident and provided guidelines for management of symptomatic contacts. Health care professionals were advised to sample contacts presenting symptoms and test for Covid-19 and provide care accordingly. Health care professionals were also advised to proactively contact public health authorities to initiate active follow-up of the contacts.

COVID-19 Surveillance for Contact Population Using National Health Insurance Claims Data

In order to capture those in the contact population who sought medical attention but did not report to public health authorities, National Health Insurance Claims data were used to track the health
status of all potential contact. Those who were hospitalized due to pneumonia were identified. For those who remained hospitalized but had not been tested for SARS-CoV-2, the health care providers were informed of the potential exposure of the patient and screening for SARS-CoV-2 was suggested.

The data was lawfully accessed and linked under the Taiwan Infectious Disease Control Act mandated in 2007. For the purpose of containing disease outbreak, the one as Covid-19, authorization or consent to the retrieval of individual information by the relevant government authorities can be waived.
List of reviewed articles:

