Repurposed prophylaxis strategies for COVID-19: a review

Erwan Sallard¹, François-Xavier Lescure²,³, Charles Burdet²,³, Jérémie Guedj²,³, Yazdan Yazdanpanah²,³, Nathan Peiffer-Smadja²,³,⁴

¹ École Normale Supérieure de Paris, 45 Rue D'Ulm, 75005, Paris, France
² Université de Paris, IAME, INSERM, F-75018, Paris, France
³ Department of Infectious and Tropical Diseases, Assistance Publique - Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, 75018, Paris, France
⁴ National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK.

Abstract

Introduction
Efficient therapeutic strategies are needed to counter the COVID-19 pandemic, caused by the SARS-CoV-2 virus. In a context where specific vaccines are not yet available, the containment of the pandemic would be facilitated with efficient prophylaxis.

Methods
We screened several clinical trials repositories and platforms in search of the prophylactic strategies that are investigated against COVID-19 in late April 2020.

Results
Up to April 27, 2020, we found 68 clinical trials targeting medical workers (n=43, 63%), patients relatives (n=16, 24%) or individuals at risk of severe COVID-19 (n=5, 7%). (Hydroxy)chloroquine was the most frequently evaluated treatment (n=46, 68%), before BCG vaccine (n=5, 7%). Sixty-one (90%) clinical trials were randomized with a median of planned inclusions of 600 (IQR 255-1515).

Conclusion
The investigated prophylaxis strategies cover both pre- and post-exposure prophylaxis and study numerous immune enhancers and antivirals, although most research efforts are focused on (hydroxy)chloroquine.
INTRODUCTION

The SARS-CoV-2 is an emerging human coronavirus discovered in Wuhan, China, in December 2019. It causes the COVID-19 disease, which developed into a pandemic in early 2020: on May 24, 2020, more than 5 million persons had been infected and more than 340,000 died. In the past four months, more than 12,400 articles have been published and scientific data collected from thousands of patients have been released. This impressive research and clinical work made it possible to better understand the disease and its different phases. Numerous clinical trials are currently investigating multiple therapeutic candidates and strategies (1), including prophylaxis (2).

Prophylaxis refers to measures taken to prevent the onset of the disease. For infectious diseases it includes for example drugs aimed at blocking the infectious cycle of the pathogen or drugs that can reinforce the host immunity. There are two main categories of prophylaxis: pre-exposure prophylaxis (PrEP), where individuals who did not yet encounter the pathogen are treated, and post-exposure prophylaxis (PEP), where individuals who may have been infected (for example through contact with patients) but did not yet develop symptoms are treated. Both strategies have been extensively studied with HIV infections (3). According to these studies, PrEP with tenofovir disoproxil fumarate-emtricitabine can reduce the risk of HIV transmission by more than 90 percent in patients who are at high risk of acquiring HIV, depending on the level of adherence (4,5).

Prophylaxis is an interesting strategy for COVID-19 since it could both contain the spread of the SARS-CoV-2 and prevent the development of COVID-19, especially in patients at risk of severe forms. In this review we discuss the current approaches for COVID-19 prophylaxis and the therapeutic perspectives they raise.

METHODS

A review of currently registered clinical trials was performed to identify relevant studies. A search was conducted on April 27 on the clinicaltrials.gov repository (6), the EudraCT repository (7), the anticovid platform (8), the covid-nma platform (9) and the covid-trials platform (10), using the keywords “prophylaxis”, “PrEP” and “prevention”, except in the covid-nma platform where the keywords “healthy” and “exposed” were searched in the data file. A search on pubmed on May 14 with the keywords “COVID-19 prophylaxis”, “COVID-19 prophylax*” and “COVID-19 vacc*” did not reveal any published clinical trial result.

The eligibility criteria were developed using the Patient Intervention Comparison Outcomes Study type (PICOS) framework (11).

Inclusion criteria were:
- Population: any population
- Intervention/Comparator: any antiviral agent or drug. We excluded trials evaluating therapeutic strategies whose description was not sufficient to identify a specific drug.
- Outcomes: any outcome evaluating the infection with SARS-CoV-2
- Study type: interventional clinical trial.

RESULTS

Number of studies
We found 309 studies on the clinicaltrials.gov repository, 32 on the EudraCT repository, 508 on the anticovid platform, 69 on the covid-nma platform and 101 on the covid-trials platform. After eliminating the duplicates and the studies that were not testing prophylaxis (n=951), 68 relevant clinical trials were identified (Figure 1), summarized in Table 1. Sixty-one (90%) clinical trials were randomized with a median of planned inclusions of 600 (IQR 255-1515). Most trials were focused on hydroxychloroquine (n=46, 68%), followed by BCG vaccine (n=5, 7%) and lopinavir/ritonavir (n=3, 4%). The most frequently evaluated routes of administration were oral (n=51, 75%), intradermal for vaccines (n=6, 9%) and inhaled (n=4, 6%). Both pre- and post-exposure prophylaxis were investigated, with a substantial number of trials on PrEP for exposed medical workers, as could be expected from the current emphasis on protecting medical workers in order to keep health systems functional through the pandemic. The complete list of trials can be found in Supplementary Table 1.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N = 68 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Hydroxy)chloroquine*</td>
<td>46 (68)</td>
</tr>
<tr>
<td>BCG vaccine</td>
<td>5 (7)</td>
</tr>
<tr>
<td>Lopinavir/ritonavir</td>
<td>3 (4)</td>
</tr>
<tr>
<td>Interferon</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Nitazoxanide</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Nitric oxide</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Arbidol</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Drug</td>
<td>Count</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Mycobacterium w</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Measles vaccines</td>
<td>1 (1)</td>
</tr>
<tr>
<td>PUL-042 inhalation</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Convalescent serum</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Thiazide + calcium blocker</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Mesenchymal stem cells</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Mefloquine</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Melatonin</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Levamisole + isoprinosine</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Targeted population</td>
<td></td>
</tr>
<tr>
<td>Medical workers</td>
<td>43 (63)</td>
</tr>
<tr>
<td>Patients relatives</td>
<td>16 (24)</td>
</tr>
<tr>
<td>At-risk individuals</td>
<td>5 (7)</td>
</tr>
<tr>
<td>Others</td>
<td>10 (15)</td>
</tr>
<tr>
<td>Administration mode</td>
<td></td>
</tr>
<tr>
<td>Oral</td>
<td>51 (75)</td>
</tr>
<tr>
<td>Intradermal</td>
<td>6 (9)</td>
</tr>
<tr>
<td>Inhaled / spray</td>
<td>4 (6)</td>
</tr>
<tr>
<td>Intravenous</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Others</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Unspecified</td>
<td>3 (4)</td>
</tr>
<tr>
<td>Study design</td>
<td></td>
</tr>
<tr>
<td>Randomized</td>
<td>61 (90)</td>
</tr>
<tr>
<td>Non-randomized</td>
<td>6 (9)</td>
</tr>
<tr>
<td>Unspecified</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Total number of planned inclusions</td>
<td></td>
</tr>
<tr>
<td>200 and less</td>
<td>16 (24)</td>
</tr>
<tr>
<td>201-999</td>
<td>25 (37)</td>
</tr>
<tr>
<td>1000 and more</td>
<td>26 (38)</td>
</tr>
<tr>
<td>Unspecified</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>

Table 1: Description of the clinical trials registered for the prophylaxis of COVID-19

*4 trials included an association of hydroxychloroquine with other drugs: hydroxychloroquine + azithromycin, hydroxychloroquine + arbidol, hydroxychloroquine + bromhexine, hydroxychloroquine + tenofovir + emtricitabine

**4 trials included several categories

(Hydroxy)chloroquine

Chloroquine derivatives, most notably hydroxychloroquine sulfate, inhibit coronavirus membrane fusion through an increase in endosomal pH and disrupt the glycosylation of their glycoproteins (13) They were suggested to be efficient against SARS-CoV-2 in vitro (12–14) and allegedly improved the disease in COVID-19 patients (17,18), although these reports are questioned and side effects are suspected (17,18). These early results and the ease to produce and administer hydroxychloroquine in high quantities may explain why it is the most investigated prophylaxis against COVID-19, with 68% (46/68) of all clinical trials analysed in this review, and involving more than 150,000 subjects in total (Supplementary Table 1). Chloroquine derivatives are administered orally at doses ranging from 400mg per week to 600mg per day, with a loading dose the first day (or occasionally the first 4 days) of 200 to 1200mg. Both pre- and
post-exposure prophylaxis were represented, the former included trials conducted over 65 (IQR=58-90) days in median, while the median duration of the latter was 5 (IQR=5-5) days after exposure.

Interferons

Type 1 interferons (IFN) are cytokines with pro-inflammatory and unspecific antiviral properties. Although they are produced by the organism when an infection occurs, treating COVID-19 patients with additional IFN is thought to be protective in the early phases of infection, when an acceleration in the recruitment of adaptive immunity can facilitate viral clearance (21). Therefore, type 1 interferons appear suited to prophylaxis or early disease treatment, and to immunocompromized patients (22). In late stages of the disease, an excessive immune response could be deleterious and the role of interferons is more debated. In macaques, prophylactic pegylated IFNα2b administered intramuscularly one on two days at 3mg/kg decreased SARS-CoV replication and lung damage (23). As a therapy, IFNα2b has been reported to reduce SARS-CoV-2 infection duration (24) in a small-scale, non-randomised clinical trial. Recently, IFNα1b was used as a prophylaxis on hundreds of health care workers, many of whom directly exposed to COVID-19 patients, and administered by nasal drops, in combination or not with thymosin-α1 (a putative enhancer of cellular innate immunity) (25). No COVID-19 case was reported in the individuals who received the prophylaxis. Although very promising, this result must be further confirmed, since it stems from a non-randomised clinical trial. Different modes of IFN administration are studied, notably subcutaneous pegylated IFNλ1a in a phase 2 clinical trial (NCT04344600).

Lopinavir/ritonavir

Lopinavir/ritonavir (LPV/RTV), a protease inhibitor, was reported to improve SARS (26), although this study was criticized due to biases in patients’ assignment (27). Its safety profile is ascertained by its widespread use against HIV (28). LPV/RTV is investigated as COVID-19 post-exposure prophylaxis in the CORIPREV-LR trial (NCT04321174) and the COPEP trial (NCT04364022), during respectively 14 or 5 days following exposure to a COVID-19 patient. It is administered orally twice daily at doses of 400mg lopinavir + 100mg ritonavir in CORIPREV-LR, versus 200mg lopinavir + 50mg ritonavir in COPEP. In the trial COVIDAXIS (NCT04328285), it is used as PrEP, administered orally twice daily at doses of 200mg lopinavir + 50mg ritonavir for 2 months.

Nitazoxanide

Nitazoxanide is a broad-spectrum antiviral that amplifies cytoplasmic RNA sensing and type 1 IFN signaling. It inhibits SARS-CoV-2 replication in vitro (14) and is tested as a PrEP for 600 elderly people in special care institutions in the trial NCT04343248, and for 800 medical workers in the trial NCT04359680. It is administered orally twice a day at doses of 600mg in both studies.

Nitric oxide

Nitric oxide, a signaling molecule and unspecific antimicrobial, inhibits SARS-CoV replication in vitro (29) and is investigated as a PrEP for medical workers in contact with COVID-19 patients in the trial NCT04312243. It is administered twice daily through a 15 minutes long inhalation of a gas containing 160ppm of nitric oxide. In the NCT04337918 trial, it is used both as PrEP for medical workers and as post-exposure prophylaxis. Several modes of administration are investigated: gargle, nasopharyngeal irrigation and nasal spray.

Convallescent serum
Convalescent serum intravenous administration has been proposed as a passive antibody prophylaxis or therapy against COVID-19 (30) following the hypothesis that antibodies developed by the donor, who had been infected by SARS-CoV-2 and recovered, could protect the recipient against potential infection. Convalescent serum has already been used as a therapy against MERS-CoV (31), SARS-CoV (32,33) and SARS-CoV-2 (34), and resulted in improved prognosis, but has not yet been tested as a prophylaxis. The number of recovered patients is already very high and is expected to grow further: thus, if the pool of potential donors is efficiently harnessed, large quantities of convalescent serum could be produced and convalescent plasma may become a good candidate for large-scale prophylaxis. Therefore, convalescent serum has been included in the guidelines of the Infectious Diseases Society of America (35) for both pre- and post-exposure prophylaxis. This treatment will be tested as a post-exposure prophylaxis, with 150 individuals belonging to categories highly susceptible to develop a severe disease, in a phase 2 clinical trial (NCT04323800).

However, the most relevant dose of convalescent serum has yet to be determined, and convalescent serum treatment raises the risk of antibody-dependant enhancement of infection (ADE), a process observed in a few coronaviruses (36). Consequently, investigations aiming to determine if convalescent antibodies for SARS-CoV-2 could induce ADE are warranted.

An alternative to convalescent serum prophylaxis is the use of antibody preparations, which are already being developed, but we did not find clinical trials investigating them.

Tuberculosis or measles vaccines

The BCG tuberculosis vaccine is known to have non-specific protective effects against respiratory infections. Moreover, the geographical distribution of BCG vaccination is negatively correlated with the prevalence and mortality of COVID-19 (37,38), although the significance of this correlation is debated (39,40). 5 clinical trials of BCG vaccination on medical workers exposed to COVID-19 are being conducted (NCT04328441, NCT04327206, NCT04348370, NCT04350931, NCT04362124) and involve together 8810 subjects.

Similarly, Mycobacterium W, another tuberculosis vaccine, is tested as anti COVID-19 prophylaxis (both pre- and post-exposure) in the trial NCT04353518.

An *in silico* comparison of SARS-CoV-2 proteins with those of the measles, mumps and rubella viruses suggested that the antigens of the MMR vaccine may immunise patients against SARS-CoV-2 epitopes (41). Although this hypothesis has not yet been tested *in vitro* or *in vivo*, it prompted the launch of the NCT04357028 trial, where the MMR vaccine is used as PrEP for medical workers.

Levamisole and isoprinosine

Levamisole is a stimulator of T helper type 1 immune response (42), used as vaccine adjuvant. Isoprinosine is also an immunostimulator and has antiviral properties whose mechanism is unclear (43). These two drugs are tested in combination in the trial NCT04360122, as a PrEP for medical workers. They are administered orally at doses of 150mg levamisole twice a week and 1g isoprinosine three times a day.

Other treatments

Other compounds are investigated in combination with hydroxychloroquine. Umifenovir (arbidol) is a broad-spectrum antiviral approved in Russia and China which impairs viral membrane fusion (44) and displays anti SARS-CoV-2 effects. It was correlated with improvements in COVID-19 in a small-scale (16 patients in the arbidol group), non-randomised clinical trial (45). It is investigated as post-exposure...
prophylaxis in the trials ChiCTR2000029803 and ChiCTR2000029592. Azithromycine is an antibiotic and antiviral reported to synergize with hydroxychloroquine against COVID-19 in the controversial report of Gautret et al. (18). It is compared with hydroxychloroquine as PrEP for medical workers in the trials NCT04344379 and NCT04354597, with an oral administration of respectively 250mg per day and 500mg per week.

Mefloquine, an anti-malarial drug, was identified as a potent in vitro inhibitor of SARS-CoV-2 (46) and other coronaviruses (47,48), and is currently evaluated as a post-exposure prophylaxis in the 2020-001194-69 clinical trial on 200 individuals, with an oral administration of 250mg/day for a month.

In the NCT04334928 trial, both tenofovir disoproxil and emtricitabine are tested. These are nucleoside inhibitors of HIV reverse transcriptase. Their use against COVID-19 was probably prompted by the discovery that tenofovir binds SARS-CoV-2 RdRp (49), suggesting an antiviral effect. They are administered orally at respective doses of 245 and 200 mg per day to medical workers.

Bromhexine is a potent and specific inhibitor of the TMPRSS2 protease involved in SARS-CoV-2 spike protein maturation (50). It is investigated in an early phase 1 clinical trial (NCT04340349), where it is administered orally at doses of 8mg 3 times a day.
DISCUSSION

Most of the trials studied here are randomised and include a large number of patients. Prophylaxis research efforts are mainly concentrated on (hydroxy)chloroquine although evidence in favour of this drug is currently low, a fact which has already been reported for clinical therapeutic trials (1). Numerous other antivirals potentially active on SARS-CoV-2 are investigated, but in a limited number of studies. Half of the trials on immune enhancers are testing vaccines against tuberculosis or measles, notably the BCG vaccine.

Both pre and post exposure prophylaxis are investigated. PrEP strategies targeted at-risk individuals (such as elderly or with chronic medical conditions such as obesity (12)) or, in most cases, medical workers highly exposed to infectious patients, on the protection of whom a special emphasis is put in order to keep health systems functional through the pandemic. Most trials were focused on (hydroxy)chloroquine (68%), which explains the prevalence of orally administered treatments. Numerous trials on hydroxychloroquine or BCG vaccine are redundant because they follow identical or very similar protocols.

An important challenge with prophylactic treatments is that they must be pursued or repeated until the recipient is immunized or falls out of the priority categories, because the protective effects are short-lived: from a few hours with interferon nasal drops (25) to a few weeks with convalescent serum (30). The long duration of treatments and the fact that they are targeted on healthy individuals make it essential to propose treatments easily administered on an outpatient basis and with an excellent tolerance. Compared with therapeutic treatments, more risks are taken and less advantages are expected, which may lead to exclude treatments such as hydroxychloroquine for which side effects have been reported.

Naturally, the prophylactic strategies evaluated are centered on the early antiviral action of drugs or the
stimulation of the immune system, e.g. with interferons or convalescent antibodies. The anti-inflammatory strategies that have been described elsewhere are reserved for patients with severe disease and an excessive immune response to the virus (51).

We only included trials that were registered up to April 27, 2020 but new approaches could be tested in future trials, notably antivirals that demonstrated prophylactic efficiency against coronaviruses, such as EIDD-2801 (52).

CONCLUSION

Numerous strategies of prophylaxis against COVID-19 are currently investigated, and target different steps of the virus life cycle or the patient immune system. (Hydroxy)chloroquine is being evaluated in 68% of the registered clinical trials that we found, while numerous prophylactic strategies were investigated in a small number of trials. This discrepancy highlights the need to increase the number of treatments investigated in order to achieve an extensive cover of all promising candidate treatments against COVID-19.

REFERENCES

7. EU clinical trials register [Internet]. [cited 2020 Apr 27]. Available from: https://www.clinicaltrialsregister.eu
models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal.
BMJ. 2020 Apr 7;m1328.

Clinical trials identified through database searching (clinicaltrials.gov, EudraCT, anticovid, covid-nma and covid-trials) n=1019

1019 records identified

Records screened (n=1019)

Records excluded (n=951)

Records included in scoping review (n=68)