Computerized physical and cognitive training improves functional architecture of the brain in Down Syndrome adults: a longitudinal network science EEG study

Anagnostopoulou A.1*, Styliadis C.1*, Kartsidis P.1, Romanopoulou E.1, Zilidou V.1, Karali C.2, Karagianni M.1, Klados M.3, Paraskevopoulos E.1**, Bamidis P. D.1**

1 Medical Physics Laboratory, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece.

2 School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Greece.

3 Department of Psychology, The University of Sheffield International Faculty, City College, Thessaloniki, Greece.

* Joined first authorship.

** Joined senior authorship.

Correspondence should be addressed to Charis Styliadis, PhD; styliadis@hotmail.com

Keywords: Down Syndrome, Physical Training, Cognitive Training, Electroencephalography, Network Science Indices, Adaptive Neuroplasticity

Abstract

Understanding the neuroplastic capacity of people with Down Syndrome (PwDS) can reveal the cause-effect relationship between aberrant brain organization and phenotypic characteristics. Non-invasive, neuroplasticity-triggering, training protocols, coupled with conventional evaluation methods, have reported promising results. However, the, so far, sparse neurophysiological and network science evidence, are also crucial in quantifying the efficacy of therapeutic interventions. Using electroencephalography (EEG)-acquired data, as well as connectivity and graph-theory approach, we aim to evaluate the effect of a non-invasive intervention on PwDS and track neuroplastic shifts in the DS brain network. 12 PwDS (6 males, average age 29) completed our 10-week protocol (combined physical and cognitive training). Prior to and after the intervention, they underwent eyes-open, resting-state EEG measurements in conjunction with psychosomatometric assessments. After the short-term training, the evaluations reflect increases in physical and cognitive capabilities, while the functional connectivity analysis showed a significant reorganization of the brain network of PwDS (i.e., calibration of connection intensity) and graph-theory analysis indicated significantly increased global and local efficiency and clustering and decreased path length between nodes. These differences delineate the effects of adaptational neuroplasticity, revealing a transition to a healthier, more efficient, and flexible network architecture, with improved integration and segregation abilities and a possible deceleration of neurodegenerative processes in the brain of PwDS. This trial is registered with ClinicalTrials.gov Identifier NCT04390321.

Author Summary

People with DS (PwDS) have witnessed a steady increase in life expectancy over the past century (average life expectancy of 60 years) with the downside of an increased risk of losing their mental capacity. Though the effects of cognitive and physical training
on the neuroplasticity attributes of people with and without cognitive impairment have been well documented via neurophysiological evaluations and network science indices, there is still insufficient evidence on PwDS.

We investigated the effects of a combinational training protocol on the brain network organization of 12 adult PwDS (age: 29±11) using EEG and network indices (functional connectivity, graph-theoretical approach) coupled with traditional questionnaires. We report evidence of adaptational neuroplastic effects, pointing to a transitional state towards a healthier organization with an increased ability to integrate and segregate information. Our findings underline the ability of the DS brain to respond to the cognitive demands of external stimuli, reflecting the possibility of developing independent-living skills.

Introduction

Neuroplasticity can emerge in both typical and atypical brains and allows for either development (evolutionary plasticity), reaction (reactive plasticity), recovery (reparation plasticity), or adaptation to internal and external stimuli (adaptational plasticity). The different aspects of plasticity are suggested to have the same molecular basis. In contrast to the brain of typically developed (TD) individuals, the down syndrome (DS) brain, because of gene over-expression, presents atypical levels of inhibition, which lead to prolonged failure of synaptic plasticity and a reduced capacity for remodeling. These characteristics, along with morphogenetic modifications, have been identified as some of the leading causes of brain disability in people with DS (PwDS).

Children and young adults with DS, in comparison to age-matched individuals of typical development, have smaller brain volumes (i.e., decreased volume in frontal, amygdalar and cerebellar structures but also increased parahippocampal volume), a pattern which over pronounces after their 50th year of age. The current consensus has associated the cognitive capabilities and deficiencies of PwDS with several distinct brain regions (i.e., right parietal, temporal and occipital lobe, left temporal gyrus, bilateral orbitofrontal cortex, posterior cerebellum, and hippocampus) emphasizing an abnormal, less efficient DS brain organization.

Several other lines of electroencephalography (EEG) and magnetoencephalography (MEG) research have complemented the notion of atypical organization; PwDS, when compared to TD, exhibit slow brain wave, especially in the left posterior areas, with higher delta band and lower alpha and beta band activity, a pattern evident in non-DS AD. fMRI studies have shown that the DS network has a rather-simplified organization, lacking the appropriate efficiency and flexibility. Given the limited capacity of the DS brain to consolidate information due to its disorganized architecture of reduced segregation and impaired integration, diffused connectivity (hyper-synchrony), and decreased long-range connectivity, the DS brain network’s potential for plasticity is in question.

Despite these DS-related atypical deviations, which imply a possible limitation of neuroplasticity, the DS brain does possess neuroplastic capabilities, at least in the form of compensatory events. The emergence of AD-related characteristics (i.e., altered theta band activity and power) in PwDS, at least a decade before the manifestation of dementia and much earlier than in TD people, reaffirm the possibility of compensatory mechanisms, and particularly neuro-plasticity, prior to and during the expression of AD. Characterizing neuroplasticity in PwDS is vital in understanding causality between aberrant brain circuitry and the cognitive and behavioral phenotype.
This understanding would allow the quantification of the remodeling potential of evidence-based interventions that aim to reawake neural plasticity and permit improved cognition.

Longitudinal and interventional studies are required to investigate whether it is possible to overcome, at least partially, the cognitive disability through novel therapies. Such interventional approaches have shifted from a pharmaceutical concept, with, so far, inconclusive results regarding beneficial effects, to non-pharmaceutical interventions of physical and behavioral components, aiming to trigger neuroplasticity and enhance brain health or to protect against neurodegenerative events. Such interventions have shown promise in healthy aging, and populations with cognitive impairments, and provided mounting evidence for lifelong brain plasticity.

Up to date, research is based on cross-sectional brain imaging and graph theory investigations of DS phenotypes, coupled with results focusing on cognitive and behavioral performance, as well as evidence of subjective nature (questionnaires and performance on somatometric and psychometric tests). Several studies support the positive impact of exercise-based interventions on daily life activities for PwDS, showing an effect on adopting a more active lifestyle, and enhancing social skills (provided that the training includes exercises with a social element). DS cognitive protocols have so far offered limited evidence on executive functions for middle-aged individuals, as well as on memory, behavior, and psychoeducation for elderly with DS. Nonetheless, DS literature still features a substantial knowledge gap, and to our knowledge, there are no reports of neurophysiological investigations of the training-induced effects, and especially how its neuroplastic effects manifest in the DS brain.

Given that the lines of research on training-induced effects on aging and populations with DS share common themes and trends, we hypothesized that our training protocol, targeting multiple domains, will trigger neuroplasticity, for the DS brain to adapt to the increased cognitive and physical demands. Additionally, we explored the way neuroplasticity affects the functionality of the DS intrinsic cortical network. To our knowledge, this is the first study to combine training and electroencephalography indices. In close relation, deviations in brain functionality of PwDS have been efficiently addressed with the investigation of resting-state networks, through MRI and EEG studies. Eyes-open resting-state EEG data was acquired to characterize the expression of plasticity in the DS brain through network science and to investigate the manner in which the training-induced neuroplasticity affects the state of the DS network, in terms of organization and characteristics, since it is known to maintain a random-like architecture with impaired integration and segregation capabilities. Could the triggering of neuroplasticity bring about the emergence of a more efficient, complex, and specialized network organization?

EEG was chosen as a neuroscientific biomarker, as the majority of studies investigating DS network science indices use MRI techniques, while the one EEG study that has come to our attention focuses on children. Source analysis was performed, using low resolution electromagnetic tomography (LORETA) for the inverse problem solution, applying an 863-voxel grid to extract the time series and computing the phase transfer entropy (PTE) connectivity metric in the 0.53-35 Hz frequency band. This measure quantifies the direction of the information flow, allowing for a whole-head analysis without requiring an a-priori head model definition. For the identification of significant, within-network differences (post- vs. pre-intervention) in connectivity, an FDR
statistical model was implemented, and then the graph-theoretical approach was utilized to index the training’s neuroplastic effects through the statistical comparison of graph measures in the two time-points.

Results

Psychometric and somatometric results

Psychosomatometric-score comparisons between the two time-points were performed with the use of non-parametric Wilcoxon tests and paired t-tests. Physical assessments exhibit a significant improvement in score for the arm curl test (Table 1). Significant differences in the time of completion (decrease in duration) were evident in the Time Up and Go assessment test (Table 1). The comparison of psychometric assessments revealed an increase in the Digits Forward score (Digits Span test), the Mazes test, as well as the Ravens AB, and Ravens Total Score (Table 1). The rest of the tests showed no significant post-pre changes in score.

Table 1 Somatometric and psychometric tests with significant differences post vs. pre, along with the post-pre mean difference. Results were considered significant for \(p \leq 0.05 \). These results could potentially be interpreted differently in reference to a control group.

<table>
<thead>
<tr>
<th>Somatometric</th>
<th>p-value</th>
<th>mean difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm Curl</td>
<td>0.017</td>
<td>1.75</td>
</tr>
<tr>
<td>Time Up and Go</td>
<td>0.007</td>
<td>-1.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Psychometric</th>
<th>p-value</th>
<th>mean difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digits Span (Digit Forward)</td>
<td>0.032</td>
<td>1.50</td>
</tr>
<tr>
<td>Mazes</td>
<td>0.032</td>
<td>0.97</td>
</tr>
<tr>
<td>Ravens AB</td>
<td>0.017</td>
<td>2.12</td>
</tr>
<tr>
<td>Ravens Total Score</td>
<td>0.015</td>
<td>3.13</td>
</tr>
</tbody>
</table>

PTE results

Statistical comparisons of the PTE matrices between the pre- and post-intervention EEG measurements reveal the adjustment of directional connections' intensity (19 nodes and 19 edges, \(p < 0.05 \), FDR corrected, 10000 permutations) in the DS connectivity network (Figure 1). The cortical reorganization in the DS brain is characterized by the strengthening of connections within: i) the left parietal lobe (paracentral, postcentral, precuneus, superior and inferior parietal), with most connections originating from nodes of the superior parietal lobe, and ii) left occipital gyrus, with a starting node from the lingual gyrus, and between: i) left superior/inferior parietal nodes to precentral and middle temporal nodes in the right hemisphere, and ii) left superior/inferior parietal node to left superior frontal nodes (Figure 1).

Graph measures

The significant changes (\(p<0.05 \)) in GE, TS, CPL, CC, LE, and BC between the pre- and post-networks were investigated using Analysis of Covariance, where graph measures served as the dependent values and density as the covariate. Regarding the global measures, we report increases in GE, and TS, and a decrease in CPL. From the comparison of local measures, CC and LE show significant differences in all nodes, with increased values in 739 out of 863 nodes. From these, 374 nodes belong to the left...
hemisphere (91 in the frontal lobe (FL), 55 in the central midline (CM), 64 in the parietal lobe (PL), 69 in the temporal lobe (TL), 40 in the limbic cortex (LC), 55 in the occipital lobe (OL)) and 365 to the right hemisphere (99 in FL, 50 in CM, 63 in PL, 57 in TL, 36 in LC, 58 in OL, 1 in the uvula, 1 in the insula). From the remaining 124 nodes (significant decrease in value), 49 nodes pertain to the left hemisphere (37 in FL, 2 in CM, 4 in TL, 2 in LC, 2 in OL) and 75 to the right hemisphere (27 in FL, 15 in CM, 2 in PL, 19 in TL, 11 in LC, 1 in OL). BC increased in one node of the left fusiform gyrus and decreased in three of the left superior frontal and one in the inferior frontal gyrus.

Table 2 Significant post-pre changes in global (Global efficiency, Transitivity, Characteristic Path Length) and local (Local Clustering Coefficient, Local Efficiency, Node Betweenness Centrality) graph measures, along with their directions (effect). Results were considered significant for $p \leq 0.05$. *For the local graph measures the p-value reported is the mean value of the nodes showing significant increase and decrease, respectively.

<table>
<thead>
<tr>
<th>Graph Measure</th>
<th>p-value</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Efficiency</td>
<td>0.00</td>
<td>Increase</td>
</tr>
<tr>
<td>Transitivity</td>
<td>0.00</td>
<td>Increase</td>
</tr>
<tr>
<td>Characteristic Path Length</td>
<td>0.00</td>
<td>Decrease</td>
</tr>
<tr>
<td>Clustering Coefficient</td>
<td>1.63e-07/8.59e-07*</td>
<td>Increase/Decrease</td>
</tr>
<tr>
<td>Local Efficiency</td>
<td>1.63e-07/8.59e-07*</td>
<td>Increase/Decrease</td>
</tr>
<tr>
<td>Node Betweenness Centrality</td>
<td>0.0221/0.0487*</td>
<td>Increase/Decrease</td>
</tr>
</tbody>
</table>

Discussion

We present novel evidence, indicating that the ten-week long intervention of combined physical and cognitive training, in adults with DS, can trigger neuroplasticity, causing a cortical reorganization, as demonstrated via EEG based indices and graph measures. This reconfiguration delineates the transition to a healthier organization, an effect which is further evident in the assessment-based improved behavioral and cognitive functioning. Our results reveal that: i) short-term training can modify the physical and cognitive performance of adults with DS, ii) the DS brain can adapt to novel stimulation and challenges by utilizing neuroplasticity and reorganizing itself, and iii) that adaptive neuroplasticity may lead to a more complex, flexible and healthier functional network. To the best of our knowledge, this is the first time that resting-state electrophysiological brain activity is used to display meaningful longitudinal relationships to underlying DS processes and outcomes of importance in translational inquiry.

Short-term training modifies physical and cognitive performance

LLM Care can benefit DS related muscular fitness, balance, and motor functions. The significantly improved physical capacity for upper body strength and endurance (Arm Curl Test), mobility, static and dynamic balance (Time Up and Go) are in line with previously reported findings\(^{42,48}\) on adult PwDS. However, our protocol targets multiple physical domains, while most studies investigating the effect of physical training on the somatic capacity of adult PwDS\(^{42,48}\) have mainly focused on a specific domain, i.e. resistance training or aerobic training and, less often, on a combination of two or more domains. The changes reported here, can result in improved health status and
decreased risks for several DS related complications, such as cardiovascular disease. DS adults under training can reach a satisfying level of quality of life and develop a higher level of independent-living skills, particularly useful when performing daily activities.

The cognitive module of LLM Care targets memory, attention, cognitive processing speed and orientation, as well as social skills. Our participants with DS exhibited an improved general cognitive capacity, i.e., in the level of general intelligence (Raven AB and Raven Total), planning and organization skills (WISC-III, Mazes), and in short-term memory, attention, and concentration (WISC-III, Digit Span, Digit Forward). Previous CT interventions on adult PwDS have mainly focused on memory and, less often, on levels of executive function (i.e., planning, attention, working memory, problem-solving and processing speed). In line with the findings of McGlinchey and colleagues, we also report that adult PwDS can complete a computerized cognitive training program that targets multiple domains of cognition, and we similarly report significant improvements.

Cortical reorganization in the DS brain and neuroplastic capacity

Our findings on the changes (i.e., increased connectivity) of the eyes-open resting-state network indicate that the PwDS present a capacity for neuroplasticity. Specifically, in this study it is evidenced that the DS brain can utilize neuroplasticity and adapt to novel stimulation and challenges. In the literature, there are four prominent categories of neuroplasticity: evolutionary, reactive, adaptational, and reparation. We can rule out the triggering of evolutionary and reactive plasticity, since the first is most active during the development of the brain, and the latter is most commonly triggered by a single stimulus (our training utilizes repetitive stimuli). Adaptational and reparation plasticity both cause cortical reorganization through long-term stimuli. The brain usually taps into reparation neuroplasticity when recovering from loss of function (e.g. due to brain injury, degeneration etc.); this is not the case for the DS brain, which may be characterized by aberrant circuitry and structural deficiencies but has not experienced loss of functionality, with respect to the DS typical capacity. Considering all this, we suggest that the response of the DS network to our training’s successive external stimuli is the result of adaptational neuroplasticity being triggered in the DS brain.

The intervention has mostly induced changes in areas of the left frontal, parietal, and occipital gyrus, as well as of the right precentral and temporal gyrus with the increase of information flow between these areas (Figure 1). These enhanced connections are mostly directed from nodes of the left parietal lobe to the other affected brain regions, as well as within the parietal lobe. The DS brain, when compared to TD, is characterized by anomalous cerebral lateralization, with a decreased volume of the left compared to the right hemisphere, particularly in posterior (i.e., temporal) regions. Additionally, the atypical hemispheric asymmetries in DS highlighted abnormalities in intra-hemispheric coherence and connection directionality. Triggering adaptational neuroplasticity in the DS brain induced the enhancement of directed connections within the left hemisphere and between the two hemispheres, indicating the increased engagement of the left hemisphere (increased connectivity in the left-hemisphere) in information processing and the increased communication between hemispheres (directed connections from left to right hemisphere). Hence, we regard the heightened left-intra-hemispheric and inter-hemispheric connectivity as the brain adapting to the increased demands on energy and
information exchange during the training and a step towards a healthier, more complex network organization.

In reference to the core resting-state networks, as defined by Yeo et al., 2011, we have noted increased connectivity within (visual, dorsal attention network (DAN), default mode network (DMN)) and between (frontoparietal network (FPN) and DMN, DAN and somatosensory network (SMN) and DMN and DAN) the networks, which we equate to amplified network complexity and a healthier functional structure. Specifically, the heightened connectivity within DAN and DMN, as well as the manifestation of stronger connections from FPN to DMN and DMN to DAN, which are all networks associated with higher cognitive control, may reflect the adjustment of the DS brain to the cognitive demands of the training and an effort to achieve higher cognitive functions, an event which has also been reported in patients with AD53. Additionally, evidence from the correlation of fMRI findings with the DS cognitive deficiencies test score, pointed towards an inverse relationship between the level of cognitive impairment of PwDS and the within VAN and DAN39 connectivity, with the lower connectivity in DAN-DS network being in part connected to the cognitive dysfunction characteristic for DS40. A more detailed investigation on connectivity patterns between DS resting-state networks (both cognitive and sensory) and the link between resting-state network connectivity and DS cognitive capacity could provide additional evidence in further understanding the state of the DS brain.

Training related global and local indices reveal a transition towards a healthier organization of the DS network due to neuroplastic effects

We suggest that the network’s reorganization, due to LLM Care training and triggering of adaptational neuroplasticity, indexes a transitional state from a random-like network towards a healthier functional architecture (please see Figure 2 for an illustration of our theoretical proposal). Considering the DS brain’s simplified architecture, and the lack of functional specialization, with impaired integration and segregation12, the significant changes (i.e., increase) in GE and TS hint that an adult DS functional network, similar to the one here before training, retains features of a random network38 (mainly reduced segregation of information). This is not surprising given that basic cognitive abilities (low level of general intelligence, which also characterizes PwDS) are exemplified by random networks, while broad cognitive abilities (high level of general intelligence) would require a small-world network54,55. Small-world networks maintain an optimal balance of integration and segregation (combining characteristics of random and regular networks), to support not only general but also specific abilities54,55. In contrast, the absence of small-world properties in the DS brain, namely reduced GE, TS, and therefore robustness, indicates the increased risk of communication loss between connected regions and their causality for cognitive decline38,56.

Therefore, the simultaneous increment in global efficiency and transitivity denotes the increase of both integration and segregation and the transition to a less-random, healthier network organization. These significant changes can be regarded as the brain adapting to the training’s increased demands in cognition, reflected in the increase of general intelligence reported in the scores of cognitive tests (Raven Total, Raven AB). Potentially, the training could tap into adaptational plasticity at a higher intensity, inducing further cortical reorganization, resulting in a more modular network capable of facilitating higher cognitive abilities and engaging broad and perhaps specific abilities.
In typically developed individuals, the decrease of CPL would be interpreted as contradicting shift towards a more random network that disturbs the SW balance. In our case, the reduction of CPL further supports our hypothesis of a transitional stage, since the adult DS network deviates from its random-like characteristics by displaying a greater CPL. In their study, Vega and colleagues suggested that the abnormal between-network co-activation in DS connectivity could either be attributed to atypical dendritic pruning (i.e., they retain some longer connections) or to a neuroplastic compensatory mechanism accompanying many neurodegenerative disorders such as AD, which could be responsible for creating longer pathways. Similarly, other studies report that the brain network of PwDS presents increased local connectivity, indicating increased CPL. Hence, the decrease of CPL indeed indicates the transition to a less-random network and could point to the deceleration or even reversal of degenerative instances in the DS brain.

The reconfiguration of connection-intensity implies that the DS network has entered a state of increased fluidity, as also evidenced by the triggered neuroplasticity, to interchange between functional states, especially its transition to “hard-to-reach” states, which is a fundamental feature of general intelligence.

If the optimal function of the brain is to be attributed to small-world network architecture, it is plausible that the intervention-induced adaptational-neuroplastic transition has characteristics that would eventually lead to such a network. Here, these characteristics are evident not only on a global level (i.e., changes in CPL and GE) but also from a local network perspective. The increases in CC and LE support our hypothesis, as they indicate increase in segregation and robustness, less randomness in functional clustering organization, and additionally, an increase of fault tolerance in the network. The post-training network robustness and segregation can potentially serve in neuroprotection for PwDS. Still, the effectiveness of such a mechanism would rely on the trade-off between integration and segregation, mainly maintaining small-world network characteristics. These shifts signal the decrease in wiring cost and subsequent increase in cost-efficiency (GE-wiring cost), rendering the network more efficient as a whole. Finally, the transition towards small-world network characteristics is backed up by the changes in BC (increase and decrease), which point to a more hierarchical and less random organization. Previously, it was reported that the DS brain is characterized by decreased centrality.

Future research questions and limitations

Our small sample size and lack of a TD control group may have limited the opportunity to classify DS phenotypes that respond best to combined PT and CT, and also introduced some statistical difficulties (i.e., in the detection of significant differences).

Though this study is the first to provide insights into the benefits of combined PT and CT in adults with DS through the use of neuropsychological and neurophysiological assessments, there remains a gap in our basic understanding of the unique contributions of each training to DS related cognition and brain function. Further studies are necessary to index the influence of each component on the triggering of neuroplasticity and subsequently network organization and cognition. Similarly the stability of the reported neuroplastic shifts (follow up) can only be addressed through additional and more in-depth investigations, including follow-up and further longitudinal.
studies, to fill the gaps in the existing literature. Nevertheless, the format of our protocol should provide a uniform impact on cognitive processes and ensure, to a point, the transference of effect to other generalizable cognitive domains50. This notion is based on previous studies on the effects of combined physical and cognitive training, concluding that physical exercise has an impact on executive functions, and the best interventions for DS are the ones targeting these functions50.

Conclusion

The rise of DS prevalence sets a significant challenge in developing innovative health care interventions that provide the best quality of care. Currently, much effort is being made to offer a neurocognitive treatment augmenting the functional and cognitive abilities of PwDS and thus allowing for a more independent, productive, and fulfilling daily life. Our results feature, for the first time, brain imaging, connectivity, and graph-theory analysis components, and emphasize the significance of introducing stimulation and adaptable challenges in the subjects’ environment. Furthermore, they provide evidence that triggering adaptational neuroplasticity in the DS brain provokes the emergence of less-random, more complex, hierarchical network. This neuroplastic reorganization points to the ability of the DS brain to adjust to the training’s increased cognitive demands, indexing the potential of the DS brain to calibrate its cognitive capacity and delineating the importance of developing localized neurobehavioral interventions targeting the corresponding symptomatology. Similarly, the neuroplastic effect of the training indicates a transition to a healthier brain organization, accompanied by an increased ability to integrate and segregate information with improved efficiency, robustness and flexibility, and a possible deceleration of neurodegenerative processes in the DS brain. They hold promise in the potential of training a more balanced and stable functional DS phenotype, in terms of small-world characteristics.

Methods

Subjects

This study's pool consisted of 12 subjects with DS (age: 29±11, 6 females). Participants were recruited from a variety of local organizations (please see Acknowledgements). The participants underwent both physical and cognitive training, as well as psychosomatometric evaluations before and after the completion of the intervention (Figure 1). The training procedure took place in the Thessaloniki Active and Healthy Ageing Living Lab (Thess-AHALL)60, and the premises of the Greek Association of Down Syndrome. This study is part of the dsLLM clinical trial, registered with ClinicalTrials.gov, with identifier code NCT04390321. The study protocol was approved by the Bioethics Committee of the Medical School of Aristotle University of Thessaloniki and was conducted per the Helsinki Declaration of Human Rights. The participants’ legal guardians signed a written informed consent prior to their inclusion in the study.

LLM Care Intervention

The intervention protocol consists of physical and cognitive training (LLM Care61, http://www.llmcare.gr/en). The study protocol was further developed to improve the quality of life and aid in the development of independent living skills in PwDS62,63. LLM Care also aims to further improve brain functionality64. All training sessions were computerized, center-based, and conducted under supervision. The sequence of training
methods was pseudo-randomized and counterbalanced. The details of each training intervention have been previously described in detail65,66 and are summarized in Figure 3.

Cognitive training

The cognitive training (CT) component of LLM Care uses the BrainHQ software (Posit Science Corporation, San Francisco, CA, USA), an online interactive environment in Greek language67. It consists of six categories (29 exercises in total), with customizable difficulty levels, utilizing audiovisual stimuli. This component of the intervention targets memory, attention, cognitive-processing speed, navigation, and people skills. This regime was selected since patients with DS exhibit deficiencies in these processes. The CT was conducted for half an hour, with a frequency of 2 days per week for 10 weeks. In every CT session, the participants were required to complete at least one task from each category. During the training, participants were urged to complete as many exercises as they could from each category.

Physical training

The physical training (PT) component of LLM Care is based on the WebFitForAll protocol66,68, adequately adjusted to the needs and capacity of PwDS. It utilizes motion sensor devices (i.e., Kinect). Games and physical exercise are combined, providing a pleasant experience throughout the training. PT sessions lasted for half an hour and were conducted with the same frequency as CT. The training consists of aerobic (cycling, in-place-hiking), flexibility (stretching), strength (resistance, weightlifting), and balance (static, dynamic) exercises. The warm-up and cool-down routines (5-minutes duration), signify the start and completion of every session, respectively. During aerobic exercises, the participants entered a virtual environment, set up in Google maps, and explored cities and landscapes. Upon correct completion of the flexibility and strength exercises, the trainees were progressively rewarded with an array of pleasing images. The scope of balance exercises was to move their bodies either horizontally or vertically, which was achieved through games.

Psychometric and somatometric assessments

Prior to and after the intervention the participants’ cognitive and physical capacity was assessed. The psychometric evaluation consisted of a set of neurocognitive tests that measure memory attention, concentration (WISC-III69: Digits Span), verbal and non-verbal mental capabilities (Raven70), processing speed (WISC-III: Digits Span and Picture Arrangement), problem-solving, visuospatial processing, organization skills (WISC-III: Block Design, Picture Arrangement, Mazes), social intelligence (WISC-III: Picture Arrangement), and identification of emotions (Reading the mind in the eyes71,72, and a variation: Reading the mind in the face (emotion recognition from video)).

The somatometric evaluation included the Short Physical Performance Battery (SPPB)73, 10 Meter Walk74, Back Scratch75, Sit and Reach76, Arm Curl75, Four Square Step (FSST)77, Stork Balance (for both legs)78, Timed Up and Go79 tests, and Body Mass Index (BMI). These tests appraise functioning mobility, flexibility (in specific areas), dynamic stability, strength and static and dynamic balance.

EEG recording

Pre- and post-intervention resting-state EEG activity was recorded for 5 minutes, using a high-density Nihon-Kohden EEG device (128 active scalp electrode) at a
sampling rate of 1000Hz. The EEG recordings were performed in an electrically shielded, sound, and light attenuated booth. The electrode impedances were lower than 10 kΩ. The participants were instructed to remain in a resting position while keeping their eyes open. Eyes-closed EEGs were not measured due to the limited capacity of the participants with DS to stay relaxed with their eyes closed.

EEG data analysis

Pre-processing

The raw EEG data was visually inspected and bad channels were interpolated (less than 20% of the channels), while any eye-movement related artifacts (blinks and horizontal movement) were corrected, through adaptive artifact correction using the Brain Electrical Source Analysis software (BESA research, version 6, Megis Software, Heidelberg, Germany) (Figure 5, blue section). The artifact-corrected data from each measurement were imported in the Fieldtrip Matlab toolbox for additional processing (Figure 5, blue section). The signals were denoised by filtering the data (0.53 Hz high-pass IIR filter, 48-52 Hz notch IIR filter, 97 Hz low-pass IIR filter). The filtered signals were analyzed into independent components, and the artifactual components (less than 20% of the components) were rejected. After signal reconstruction, the data was, once again, visually inspected for any remaining artifacts. Randomly selected fifteen segments (4 seconds each) from each artifact-free EEG recording for additional processing.

Source reconstruction

Each subject’s segments (15 segments, 4000 samples, 4 seconds duration each) were imported into BESA (Figure 5, orange section). The current density reconstructions (CDR) were estimated for each sample point, solving the inverse problem using LORETA in the 0.5-35 Hz frequency range. LORETA was utilized, as it does not require the a priori declaration of the number of sources and is suitable for whole cortex analysis. The CDRs were exported as four-dimensional images (4-D) in the analyze format (keeping all sampling points), which were, in turn, imported into Matlab. A cortex mask was superimposed on the images. The mask includes only grey matter, and excludes the subcortex, the brainstem, and cerebellum, to limit the source space. The source space consisted of 863 voxels.

Functional connectivity

After extracting the time-series of each voxel from the 4-D images, they were used to compute the Phase Transfer Entropy (PTE) (Figure 5, green section). The computation resulted in 863x863 adjacency matrices. The metric is calculated independently for every pair of voxels in each segment. Each voxel represented a node of the brain network, with the node’s coordinates corresponding to the center of each voxel. PTE is the estimation of TE between phase time-series, i.e., it evaluates the influence of one signal’s phase on another signal’s phase. PTE was selected because its results are not based on a specific data model since its computation is reliant on non-linear probability distributions. Therefore, it allows the detection of higher order relations in the phase information flow and renders the measure resistant to source leakage. The algorithm applies the Hilbert transform to estimate the phases of each signal. It determines the number of bins by utilizing the Scott methodology, resulting in 37 bins.
on average (13 samples per bin). The adjacency matrices of each subject were averaged, resulting in two sets of 12 adjacency matrices (Figure 5, green section).

Graph measures computation

Using the Brain Connectivity Toolbox\(^8^5\), the graph measures of global efficiency (GE), transitivity (TS, a variation of global clustering coefficient), characteristic path length (CPL), clustering coefficient (CC), local efficiency (LE) and node betweenness centrality (BC) were computed for each participant. In a later step, the centrality Matlab function, which measures node importance, was used to compute the node degree centrality (DC) of the network mapping the pre- and post-intervention differences. The density of each graph was estimated by summarizing the weights of each graph.

These measures were chosen to examine the influence of our intervention on the characteristics of the DS brain and its functional organization. To that aim, GE and CPL were utilized to index the effects on integration\(^8^5\), TS, CC, and LE to measure the effects on segregation\(^8^5\), and BC and DC to check for hierarchical changes in the network. GE is the average inverse shortest path length of the network\(^8^6\) and quantifies the efficacy of information transference and its assimilation in the network\(^8^5\). CPL is the average shortest path length of the edges connecting the nodes of the network\(^8^7\) and characterizes its robustness\(^8^5\). TS is the ratio of closed triplets to the maximum number of triplets (open (three nodes with up to two connections between them) and closed (three nodes with three connections between them))\(^8^8\), while CC of a node is the ratio of its connected neighbors to the maximum number of possible connections\(^8^7\). These two measures reflect the clustering organization of the DS brain network on a global and local level, respectively, and also quantify its robustness\(^8^5\). LE of a node is the computation of GE on a local level, strongly related to CC\(^8^6,8^9\), and measures the efficiency of information transference to the node’s neighbors. BC corresponds to the fraction of shortest paths that pass through a node\(^9^0\) and is a measure of centrality, measuring the importance of a node in the information flow between nodes\(^8^5\). So, the higher the value of BC is, the more vital that node is for the transfer of information in the network. Lastly, DC calculates the number of links connected to a specific node, i.e., it measures if a node exhibits higher or lower connectivity to other nodes.

Statistical analysis

The pre- and post-intervention somatometric and psychometric assessment scores, were compared with the use of non-parametric Wilcoxon tests and paired t-tests. The statistical comparisons were performed using the IBM SPSS 25.0 software. Wilcoxon tests were performed on the psychometric battery tests and somatometric tests with discrete-values score, while paired t-tests were applied on the remaining somatometric assessment tests.

The Network Based Statistics (NBS)\(^9^1\) MATLAB toolbox was employed to estimate the statistically significant differences between the whole-head network of the pre- and post-intervention connectivity networks of our subjects. A paired samples t-test corrected for 10000 random comparisons via False Discovery Rate (FDR) correction\(^9^2\) was performed. This methodology evaluates the significance of each edge independently, providing an independent p-value for each connection. Significant differences between the two time-points were visualized as weighted graphs through the BrainNet Viewer\(^9^3\) toolbox (Figure 3.A). DC was estimated from the outcome of this comparison, and the results were depicted in the same graph.
For the graph measures, Analysis of Covariance (ANCOVA) was used, where each measure serves as the dependent variable and density as the covariate, because density seriously affects the values of the other measures. For local measures (i.e., CC, LE, and BC), ANCOVA and FDR correction were performed for each of the 863 nodes and p-values for Type I errors, respectively. Results below the 5 percent threshold were considered significant.

Acknowledgments

This study is an extension of the European CIP-ICTPSP. 2008.1.4 Long Lasting Memories (LLM) project (Project no. 238904) (http://www.longlastingmemories.eu/). The authors would like to thank all the participants, their families, and caregivers, the Down Syndrome Association of Greece, Spring Children Mixed Living Center – Daily Care Activity & Training for Disabled People, The Down Syndrome Association of Serres, Center for the Rehabilitation of Social Support & Creative Employment of People with Disabilities, Child Care Center in Ptolemaida, Centre For Persons With Learning Difficulties - Zooodohos Pigi, Center of Creative Activities - Municipality of Neapoli and Sykies, Special laboratory for vocational education and training in Alexandria, Center for the Rehabilitation of Social Support & Creative Employment of People with disabilities "O Sotir", Center of Creative Activities for People with Disabilities-Municipality of Neapoli and Sykes. In addition, the authors would like to thank a list of people assisting in the trial facilitation, as follows: Dimitris Bamidis, Foteini Dolianiti, Ioanna Dratsiou, Sotiria Gilou, Maria Karagianni, Katerina Katsouli, Elieni Manthou, Maria Metaxa, Annita Varella (in alphabetical order), as well as, students from the Dept of Psychology, The University of Sheffield International Faculty, City College (Greece) who were practicing under the supervision of Dr Anna Vivas and Dr Elissavet Chrysochoou who were also advising the authoring team on the psychological aspects of the whole endeavour. Last but not least, authors would like to thank Emeritous Professor of Pediatrics and Genetics Dr Charikleia Chatzisevastou-Loukidou for advising the team on all medical aspects of the project and for linking the team with many of the pilot sites.

Conflict of Interest

There are potential conflicts of interest (other, not financial, outside the scope of the submitted work) for the author P. Bamidis in respect of PositScience and the Aristotle University of Thessaloniki. There is a co-marketing agreement between PositScience and the Aristotle University of Thessaloniki to exploit Brain HQ within the LLM Care self-funded initiative that emerged as the non-for-profit business exploitation of the Long Lasting Memories (LLM Project) (www.longlastingmemories.eu) originally funded by the ICT-CIP-PSP Program of the European Commission. Brain HQ now forms part of LLM Care, a technology transfer/self-funded initiative that emerged as the non-for-profit business exploitation of LLM. Additionally, FitForAll (FFA) has been developed in the Aristotle University of Thessaloniki during the Long Lasting Memories (LLM Project) (www.longlastingmemories.eu) originally funded by the ICT-CIP-PSP Program of the European Commission. It now forms part of LLM Care, a technology transfer/self-funded initiative that emerged as the non-for-profit business exploitation of LLM.

References

40. Pujol, J. *et al.* Anomalous brain functional connectivity contributing to poor

77. Whitney, S. L., Marchetti, G. F., Morris, L. O. & Sparto, P. J. The Reliability and

Figure Captions

Figure 1 Differences in cortical connectivity between post- and pre-intervention networks **A: Post vs. Pre.** Significant post-pre connectivity differences. Information direction is depicted through line arrows, and the color scale represents t-values. The visualized networks are significant at a level of p<0.05, FDR corrected. The difference in the size of the nodes depicts the increase in the node degree centrality; the most prominent nodes are in the left parietal lobe. **B: Depiction of pre- and post-intervention networks** than the pre-network (1.2044), pointing to the amplified connection intensity. When comparing the two, concerning the same threshold, the post-network shows increased connectivity, especially with the same lower connection-intensity threshold of 1.17. The color scale represents the connection intensity/weight of the edge. The post-network has a higher edge-weight maximum value (1. in the left frontal, parietal, temporal and occipital lobe, and right frontal, occipital lobe, and central midline, while showing a decrease in connection intensity in the left central midline. **C: Circular graph depicting the cortical reorganization in the DS brain** (cyan denotes the left hemisphere and green the right), with the color scale representing t-values. The cortical reorganization is characterized by the strengthening of direct connections within: i) left parietal lobe (paracentral, postcentral, precuneus, superior and inferior parietal), and ii) left occipital gyrus, and between: i) left superior/inferior parietal nodes to precentral and middle temporal nodes in the right hemisphere, and ii) left superior/inferior parietal node to left superior frontal nodes.

Figure 2 Illustration of our theoretical proposal. Changes in connectivity and graph-theory characteristics, as an outcome of the intervention triggering adaptational neuroplasticity in the DS brain, index the post-intervention DS network (B→C) as a transitional state from the random-like organization of the pre-intervention DS network**38** towards a healthier functional structure. This artwork has been inspired by figure 2 in **54**. Random networks (A) are characterized by high global efficiency (over-integration) and low clustering (under-segregation) and exemplify the general abilities of general intelligence (low intelligence level). Small-world networks (C), which show the exact functional organization showcased in brain networks of TD populations, incorporate characteristics of both random and regular networks, achieving an optimal balance between global and local characteristics. SW networks (C), are at large associated with the broad abilities component of general intelligence (higher intelligence level). As per the literature**12,38–40**, the pre-intervention DS network (B) showed a random-like, simplified architecture, with impaired segregation and integration, as evidenced by the low CC and LE (random network characteristics) and decreased GE and increased CPL, respectively. The DS pre-network’s (B) integration-related characteristics (lower GE, higher CPL), are not common in random networks. Hence, the DS pre-network (B) is classified as random-like, and not entirely random, maintaining an equal distance from random (A) and SW (C) networks. The DS post-network (B→C), exhibits an increase in integration (random network characteristic), as well as segregation (regular network characteristic), so it is interpreted as a step towards an SW-like, to a point, architecture that highlights a healthier brain organization.
Figure 3 DS-LLM Care design and flow of participants with DS.

Figure 4 EEG data analysis schematic. **Pre-processing** (blue): EEG data were interpolated and artifact corrected, visually inspected, high-pass, bandpass, and low-pass filtered. Independent component analysis (ICA), as well as visual inspection, were used to reject artefactual data. Following, 15 segments of 4-s were randomly selected. **Source reconstruction** (orange): The data were processed within 0.53-35 Hz frequency range, source reconstructed (4-D LORETA, for all time points), and a previously used 863-node atlas was applied to extract the time-series of every voxel from every segment per subject. **Functional connectivity** (green): Functional connectivity was computed for every segment of every subject, using the phase transfer entropy metric (PTE), and the 15 matrices of every subject were averaged into one. A network science approach was taken for the computation of graph measures per subject. Group average statistics were calculated to identify the statistically significant differences of post- and pre-intervention networks.
Subject:
- 12 DS individuals
 - Age: 29±11, 6 females
 - 10 week protocol

Pre-measurements:
- Psychometric and somatometric assessment tests
 - 5-minute resting state EEG measurement

Intervention details:
- 2 CT sessions/week, 30 minutes each
 - Audiovisual stimuli, memory, attention, cognitive processing speed and orientation
 - Average 20±3 sessions
- 2 PT sessions/week, 30 minutes each
 - Aerobic, flexibility, strength and balance
 - Average 18±4 sessions

Post-measurements:
- Psychometric and somatometric assessment tests
 - 5-minute resting state EEG measurement