ABSTRACT

Background: Many challenges lie ahead for COVID-19, not only related to the acceleration of the pandemic, but also to the prediction of the hospital's personal protective equipment to accommodate the explosive demand. Due to the situation of uncertainty, the hospital administration encourages the excess stock of these materials, causing excess products in some hospitals, but shortages in others. Although three main factors limit the number of patients seen at a hospital: the number of beds available, the number of equipment, and, above all, the number of health professionals available at the hospital, per shift.

Objective: In this scenario, a challenge is to build an easy-to-use computational tool to predict the demand for personal protective equipment in hospitals during the COVID-19 pandemic, with updating in real-time.

Methods: We propose naive statistical modeling, which combines historical data on the consumption of personal protective equipment by hospitals, current protocols for their uses and epidemiological data related to the disease, in order to build predictive models for the demand for personal protective equipment in Brazilian hospitals during the pandemic. We then embed our modeling in a tool that can provide the safety stock for a particular hospital.

Results: Our tool presents forecasts of consumption/demand for personal protective equipment over time, indicating the moment when the hospital reaches maximum consumption, the estimate of how long it will work in this state, and when it will leave it.

Conclusion: With our forecasting, a hospital may have estimated, based on its stock levels and possible new purchases, its needs related to a specific personal protective equipment, which allows for the adoption of strategies to control and keep the stock at safety levels to the demand. As a direct consequence, it enables interchange and cooperation between hospitals, aiming to maximize the care during the pandemic.

Keywords: COVID-19 Pandemic, Outbreak, Healthcare Supply Chain, burn rate, easy-to-use computational tool
1 INTRODUCTION

As of May 24, 2020, more than 5.4 million confirmed positive cases of COVID-19 worldwide, with 345,000 global deaths and more than 360,000 confirmed cases in Brazil (15). Hospital systems around the world have been overwhelmed by the volume of cases, including shortages of personal protective equipment (PPE), critical medical supplies and increasing costs (7). In this scenario of scarce hospital resources, a challenge is to build an easy-to-use tool to predict the demand for PPE in hospitals during the COVID-19 pandemic.

Indeed, due in large part to the increase in demand, technological solutions for the management of processes in the health area are necessary, using historical data from hospital supplies. Factors such as price increases and difficulties in purchasing critical supplies without long terms require intelligent maintenance of the stock so that there is no shortage of supplies in hospitals. It is worth noting that the supply chain represents the second largest expense for hospitals (1).

In this paper, we propose naive statistical modeling, which combines historical data on the consumption of PPE by hospitals, current protocols for their uses, and epidemiological data related to the disease, in order to build predictive models for the demand of a hospital for PPE in Brazilian hospitals during the pandemic. We then embed our modeling in a tool that presents forecasts of consumption/demand for PPE overtime in real-time. This tool indicates the moment when the hospital reaches its maximum consumption, estimates how long it will work in this state and when it will leave it. The structure of our modeling is graphically summarized in Figure 1.

With our forecasting, a hospital may estimate, based on its stock levels and future purchases, its needs related to a specific PPE, which allows the adoption of strategies to keep stock levels that are adequate to the demand. As a direct consequence, it enables interchange and cooperation between hospitals, aiming to maximize the care during the pandemic.

The next sections of the paper are dedicated to describing the data and statistical models used (Section 2), as well as, the description of our computational tool, and the results of applying the developed modeling for several different Brazilian hospitals (Sections 3). Some final comments in Section 4 complete the paper.

2 MATERIAL & METHODS

Our modeling uses forecasting parametric models to meet the PPE demand of a hospital, provided based on the estimated epidemic curve, as well as characteristics related to the hospital, as well as other variables, such as hospitalization rate, frequency of emergency care, number of beds available.

Indeed, we propose a mathematical/statistical model that expresses the expected relationship of the consumption of a given PPE over time, with the epidemiological characteristics of the region and also with the internal characteristics of a particular hospital. For this, we take into account three fundamental fronts: the recent historical record of hospital consumption of a PPE; the maximum possible level of consumption of a PPE; the magnitude of the stay in a maximum consumption regime. Each of these characteristics requires the observation of different sources of information and generates meaningful interpretations for the model’s construction.

The information used, in the modeling process, was obtained from three perspectives, which reverberates the relationship across which point in time will the hospital started working on a maximum consumption regime (for each PPE) and for how long it will remain under this pandemic regime.
Indeed, for the development of the proposed approach, the following characteristics related to the hospital are considered:

- List of PPE and other healthcare supplies, such as hand sanitizer, waterproof aprons, sterile gloves, procedure gloves, surgical mask, and N95 masks and caps.
- Availability of these supplies in stock at the hospital (units of the items available to be used).
- Forecast of weekly consumption: this demand is calculated considering the expected number of hospitalizations of the hospital and the consumption of inputs per hospitalization, or the consumption of inputs according to the hospital’s occupancy rate (offer as calculated, as we consider the curve). In addition to consumption, it is necessary to know how these data are calculated, and the hospital must check their calculation.
- The available beds separated or not by the type of case (mild, severe, and critical). For each type of bed, the average number of days of hospitalization will be used (for simulation over a longer period). The hospital will provide both the number of beds and the average occupancy.
- Value of the safety stock (minimum stock of each input or as calculated by the hospital).
- Initial conditions: what is the hospital occupation and days that each bed will be occupied (hospital estimate).

Besides, the curves related to demand estimated by the city of Brazil were constructed using a growth model to meet demand from the worst-case situation. We also used information related to the hospital concerning PPE and its infra-structure for occupation. Moreover, we consider the forecasting of the demand for hospitalizations and the number of health staff.

The statistical model that parameterizes these data simulates the use of resources about consumption, and aims to obtain an indication of the safety stock for each PPE, considering the possibility of having a certain amount. Further details of the statistical modeling can be found in Appendix A.

3 RESULTS

We developed a easy-to-use computational tool, which combines different elements informed by the hospital under analysis. It is available in https://cemeai.shinyapps.io/bionexo_covid19 (in Portuguese). The items that are needed for feeding the platform are divided into three dimensions:
consumption and stock information, which are hospital general information, such as, location (state and city), PPE general classes, weekly consumption, current stock level; disease behavior in the hospital under study, which are hospital pandemic dynamic data, such as percentage of hospitalized infected patients, percentage of ICU hospitalized patients, average length of stay, number of beds and occupancy rate; and forecast of scenarios related to demand, which are hospital demand forecasting data, such as forecasting horizon, security percentage, and maximum consumption.

The first step is to estimate the death growth related to each region. A growth curve function is adopted to predict the number of deaths in the city where the hospital lies. For instance, the three-parameters logistic (11, chap. 6) or the Gompertz function (14). Figure 2 panels (a) show each cumulative number of death, exemplified by five cities in Brazil: Belo Horizonte (MG), Recife (PE), Curitiba (PR), Porto Alegre (RS) and São Paulo (SP).

Then, based on the process described in Appendix C, we obtain the behavior for regional demand for each city (Figure 2 panels (b)), which expresses a particular behavior concerning the dynamics of the disease. The fraction of such curve that fits a specific hospital depends on the market-share associated with it, and the cut line that represents its current capacity (in terms of the number of free ICU beds) considers the total number of beds and the respective occupancy rates (Figure 2 panels (c)). With this step, we determine the cut line that gives us an indication of when the hospital situation begins to regularize.

Subsequently, a simulated hospital structure, described in Appendix B, in response to demand focused exclusively on the COVID-19 pandemic, is considered. This simulated hospital’s composition was an essential element for estimating the threshold that relates to the maximum consumption of PPE, the number of beds available, the size of the health team, and the used protocol. With this step, we defined a technically standardized level for maximum consumption, on which we established some variation in its surroundings to contemplate possible changes in the protocol due to the pandemic situation.

The next step consists in adjusting the conditioned model to the information obtained in the previous steps. Thus, we established a forecast for the weekly PPE consumption of a hospital under analysis through models considering some possible scenarios. Figure 3 presents the estimate in which the pandemic presents a potential risk to the hospital situation as a result. The generated scenarios consider the historical consumption of a PPE in particular, the theoretical premises for the use of PPE based on the magnitude of the hospital, and the effects of the pandemic observed in its region. The gray margin exposes the forecast horizon.

Still, in Figure 3 each consumption limit line also indicates the security of the available stock in terms of the number of weeks that the current stock would last if there were no new entries. The red dashed lines represent upper limits for consumption, considering the growth trend of previous records and different total consumption levels, the transparent red margins represent the 2.5% and 97.5% limits for predicted curve. The blue dot denotes the current stock position. The transparent blue margins represent the minimum and maximum stock limits. The yellow line showed the date when the first case of COVID-19 was identified in its municipality. The vertical line in light-blue represents a cut line from which we believe that the hospital situation will return to normal. The transparent margin around it expresses the uncertainty involved in this expectation.

This value for maximum consumption will be given as input to the model (submitted in the Maximum consumption field), and it will be recalculated, making the specific analysis to hospital reality (3b). The red line is the upper limit for consumption, where growth occurs with the intensity outlined by the historical record and considering its consumption protocol.
This growth ceases from the moment the hospital situation begins to regularize (in the present example, we believe that around 08/27/2020). The construction of this cut line takes into account the situation of the hospital in facing the pandemic.

The board of the hospital’s under analysis, in the face of the pandemic, may use the cut line as an aid in decision making, estimated by the considered approximations and assumptions, supporting the hospital’s regularization situation by the following steps:

1. Based on the death count due to COVID-19. We obtain an estimate for this behavior, and, from it, we add other sources of uncertainty, such as under-reporting factors.

2. Conditioning the real death curve, we consider the estimated relationship between the death and infected curve, added by a randomness factor.

Figure 2. Pandemic dynamic estimation for five cities in Brazil. The selected cities are Belo Horizonte (MG), Recife (PE), Curitiba (PR), Porto Alegre (RS) and São Paulo (SP). The top five figures represent the cumulative death rate per region. The five center figures express the expected dynamics of the disease. The bottom five figures represent the market-share fraction expected to be attended by the analyzed hospital.
3. Subsequently, via the infected curve, estimates of the fraction of hospitalized and, of those hospitalized, those who need ICU admission.

4. From the curve of intensive care unit inpatients, we considered the average number of days in the intensive care unit, and, given this consideration and the randomness involved, we took an approximation, even if gross, of the curve of recoveries.

5. The difference between the intensive care unit inpatients curve and the recoveries curve leads us to a hospital demand curve for intensive care unit beds.

The fraction of the curve that applies to the hospital under analysis is considered an estimate by market-share. In the first panel (left) in the Figure 4 estimates the death dynamics of the Brazilian municipalities (extracted by the website brasil.io), later this growth curve helped in the corrected estimation bypassing the underreporting of COVID-19, see more details in the appendices. The central panel is related to the region’s demand curve, and finally, the right panel adds the daily demand of the hospital (being a fraction of the region answered by market-share).
The total sum will represent the Forecast Horizon can be increased by a percentage defined in the security field. The fragmentation of this forecast according to the percentage of consumption of each item individually, in the last 30 days.

As an auxiliary tool, the expected demand for each group of commonly used items in the pandemic will be broken down into individual products (with different references). This table can be exported and aims to consider the different scenarios that relate to the maximum consumption.

Perhaps the essential point of this tool is the accumulated record of hospitals that need to be helped, and those that can help others. This initiative can be materialized with an indicator that tells us if the hospital can help, or needs help, after analyzing the situation of lack or over-stock for each general class of PPE or the need to purchase more supplies.

4 FINAL COMMENTS

Prediction modeling was developed by combining hospitals’ historical data and the disease growth curve. The idea is to avoid a possible lack of PPE during the COVID-19 pandemic. The developed tool provides to the hospital managers a forecast for the consumption of several PPEs, taking into account the expected number of patients that arrive in the emergency room with COVID-19 symptoms, as well as the expected percentage of those that need intensive care. As a result, the safety stock of PPEs can be estimated. Consequently, it may be rearranged among geographically close hospitals, preventing attendance restrictions, and avoiding unnecessary expenses.

The proposed approach is naive in different ways. For instance, we chose to assume a random structure based on a symmetric probability distribution for the errors, both in the adjust of the consumption curve \(C_t\) and the death curve \(Y_t\). The choice of such distributions may not be the most appropriate one. We use some indirect results. In other words, the only raw data directly accessed in the statistical estimation processes correspond to the recent history of the consumption of any PPE and the death record in a particular city. All other information carries subjectivities and uncertainties that we cannot quantify in light of the analyzed data. Although, the theoretical support of the studies that provided such information allowed us to understand the observed average behaviors as premises in our modeling. Finally, the considered growth models are simple.

All of these points can be refined and addressed in future studies. Such as assign a possibly asymmetric probability distribution for the errors, joint statistical modeling the various information, with data directly accessed by us, and consider other growth models and then use statistical selection among different models.

On the other hand, naivety also has some attractive advantages. Scalability is one of them since complex models commonly require computationally intensive methods, many of them need a more substantial amount of information to express good results and the computational processing time is considerably longer. In this sense, our naive approach allows the use and diffusion of the methodology on a broader spectrum of possibilities, such as the use of our computational tool with updating in real-time. Another interesting point is that researchers from other areas can clearly understand the methodology, and its results can be effectively internalized. Besides, the integrated set of small independent solutions, such as the proposal presented here, can serve as a basis for more in-depth investigations by expressing insights that are difficult to perceive in individual analyzes.

Moreover, the results obtained with the use of our computational tool were exposed to some managers of PPE in some Brazilian hospitals. The degree of agreement with the reality of their practical activities encourages us the continuity of the development, maintenance, and dissemination of the platform.
CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

ACKNOWLEDGMENTS

The research was carried out using the computational resources of the Center for Mathematical Sciences Applied to Industry (CeMEAI), funded by FAPESP (2013/07375-0). Francisco Louzada is supported by the Brazilian agency CNPq (301976/2017-1).

APPENDIX A – STATISTICAL METHODOLOGY

Consumption/demand curve. In principle, we consider a random variable C_t denoting the consumption of a given PPE over time t, normally distributed with mean μ_t and variance σ^2.

The adopted statistical model aims to parameterize the growth behavior of the demand for a product, followed by a (possibly) period of constant high demand, then accompanied by a decline in demand. Thus, μ_t is assumed as a five parameters function given by

$$
\mu_t = f(t; a, b, c, d, e) = \begin{cases}
 a + (d - a) \exp \left\{ - \frac{(c - t)^2}{b} \right\}, & \text{if } t \leq c, \\
 d, & \text{if } c < t \leq e, \\
 a + (d - a) \exp \left\{ - \frac{(t - e)^2}{b} \right\}, & \text{if } t > e \text{ or } c \geq e,
\end{cases}
$$

where a denotes the magnitude of basic consumption, here assumed to be constant, b denotes the intensity of growth/decrease in consumption over time, c denotes the point in t that the maximum consumption is reached, d denotes the magnitude of maximum consumption, e denotes the point in t that consumption begins to decrease.

According to the variation of parameters a, b, c, d and e, some possible behaviors for the mean of the proposed model can be observed in Figure [5].

The described proposal that relates the model C_t with the consumption curve with the regional epidemiological characteristics and interior features of a particular hospital takes into account three fundamental aspects. The recent historical record of hospital consumption of a given PPE, The maximum consumption level of the PPE, How long the hospital stays on the maximum consumption level. Each of these features requires the observation of distinct information sources and generate meaningful interpretations for the model building, as follows.

1. The recent historical record of hospital consumption of a given PPE provides information of the baseline demand before the COVID-19 pandemic (represented by the model parameter a) and evidence of changing in the consumption regime (represented by the model parameter b);
2. The maximum level of PPE consumption considers the maximum capacity and the totality of the hospital staff dedicated to COVID-19 patients care (this maximum level is represented by the parameter d of the model and, as it is a fixed and particular characteristic of each hospital and PPE, it is set as a known parameter). This information is determined based on the procedure described in Appendix B;
3. The time spent on the maximum consumption regime (whose endpoint in t is represented by the e parameter of the model) is determined by the use of hospital information and the region around it. It is
Figure 5. Some possibly behaviors of μ_t for fixed values of $a = 1$, $e = 20$ and $b = 0.5, 1.0, 1.5, 10$, $c = 10, 15, 20, 25$ and $d = 2, 3, 4$.

The combined use of information obtained from these three perspectives makes the theoretical model adopted to relate the epidemiological characteristics of the region, as well as demand features of the supply chain of the hospital under study.

In this sense, as the parameters, d and e are determined indirectly (see Appendices B and C) therefore considered known in the curve expressed by μ_t, the parameters a, b and c must be estimated by some estimation process.

Estimation Process. We define the random structure, based on a set of observations from recent consumption history $C = (C_t, \ldots, C_{t_n})$, $C_t = f(t_i; a, b, c) + \varepsilon_i$, where $\varepsilon_i \sim N(0, \sigma^2)$, for $i = 1, \ldots, n$.

The parameters $\theta = (a, b, c) e \sigma^2$ are estimated by considering the log-likelihood function, given by

$$\ell(\theta, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} \left[C_t - f(t_i; \theta) \right]^2 = -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \text{SQRes}(\theta),$$

(2)
where \(\text{SQRes}(\theta) \) denotes the residual sum of squares.

If we use non-informative or sufficiently vague a priori information for the parameters, we have that an estimator for \(\theta \) and \(\sigma^2 \) can be obtained by maximizing (2), which occurs with the minimization of \(\text{SQRes}(\theta) \) (\(\theta \) is independent of \(\sigma^2 \)). In addition, \(\partial \ell / \partial \sigma^2 = 0 \) has a solution given by \(\hat{\sigma}^2 = \text{SQRes}(\hat{\theta}) / n \), while \(\hat{\theta} \) is the least squares estimator of \(\theta \) (9). The standard error of the estimators can be obtained based on the Fisher Information matrix and the prediction intervals are determined using the Delta Method (4).

APPENDIX B – SIMULATED HOSPITAL DATA

In order to evaluate the proposed model, a simulated hospital environment was used based on the Brazilian Health Regulatory Agency (ANVISA) (2). This simulation serves as a general example for the hospitals in which the model will be applied, and its characteristics (staff and material consumption) were defined using data provided by experts.

The hospital allocates its patients into three categories: Inpatient Units (IU), Intensive Care Units (ICU), and Emergency Room (ER). IU patients are in a non-critical state, while UTI patients are in a critical state, demanding more human resources and materials. The number of hospital beds is divided between both units, and IU beds can be turned into ICU if needed. ER patients are on hold to be transferred to either IU or ICU. Therefore they are not considered to be occupying hospital beds.

The allocation of doctors, nurses, and physiotherapists is shown in Table 1. The number of IU and ICU needed staff is given based on the number of occupied beds, except for doctors for IU patients, which is given by the number of total hospital beds, regardless of their occupation. Column IU/RRT shows the staff allocated to IUs as Rapid Response Team (RRT). In these columns, the numbers represent the staff needed for 12-hour shifts, while numbers on the ER column represent the daily staff needed for a unit with an average of 10,000 treatments per month, which also work on 12-hour shifts.

Table 1. Staff allocation in the simulated hospital.

<table>
<thead>
<tr>
<th>Staff</th>
<th>IU</th>
<th>IU/RRT</th>
<th>ICU</th>
<th>ER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctors</td>
<td>1 / 10 total beds</td>
<td>1 / 100 beds</td>
<td>1 / 10 beds</td>
<td>20</td>
</tr>
<tr>
<td>Nurses</td>
<td>1 / 6 beds</td>
<td>1 / 100 beds</td>
<td>1 / 8 beds</td>
<td>10</td>
</tr>
<tr>
<td>Physiotherapists</td>
<td>1 / 20 beds</td>
<td>1 / 100 beds</td>
<td>1 / 10 beds</td>
<td>-</td>
</tr>
</tbody>
</table>

IU e ICU: values for a 12-hour shift; ER: daily values for an unit with 10,000 monthly treatments.

Table 2 shows the consumption of critical material per professional during a 12-hour shift. These values estimate what is used taken from a series of premises and observations on real hospitals.

Table 2. Material consumption in the simulated hospital.

<table>
<thead>
<tr>
<th>Material</th>
<th>Doctor</th>
<th>Nurse</th>
<th>Physiotherapist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical Mask (unit)</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Waterproof Apron (unit)</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Hospital Cap (unit)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Procedure Gloves (pair)</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Sterile Gloves (pair)</td>
<td>2</td>
<td>-</td>
<td>20</td>
</tr>
</tbody>
</table>

Average values per professional in a 12-hour shift.
The consumption of other essential materials needs to be estimated by other means. The use of Hand Sanitizer varies from hospital to hospital since it can be replaced by regular soap. In this case, it is assumed the daily use of 20mL for each IU and ICU patient and 5mL for each ER suspected patient (which is estimated as 50%). Doctors, nurses, and physiotherapists use N95 Masks, at a rate of 1 each 14-day period or ten shifts, thus depending on the staff rotation rather than hospital occupancy.

Lastly, as a premise, the values found are increased by 40% to consider material usage from cleaning and technical staff, visitors, and incoming patients, as well as waste.

APPENDIX C – CALCULATING THE END OF THE PLATEAU

For the determination of a cut line, from which the number of beds available in the hospital becomes again higher than the daily demand of patients in ICU (represented by the parameter e in the model (1)), we used the information of the number of notified deaths accumulated over time (here denoted by the random variable Y_t^*) and other hospital information as described below.

The growth curve of Y_t^* can be estimated by a nonlinear growth curve model, such as the Logistic model (11), Gompertz, Richards (14), Von Bertalanffly (6), among others. The selection between the most appropriate model for each region can be made based on some statistical criteria such as AIC, AICc, BIC (see, for instance, (16)). The estimation process is analogous to what is described in Appendix A.

From the estimated curve for Y_t^*, we consider a brief simulation study to approach the hospital demand curve. We incorporate other sources of uncertainty, such as underreporting factors and lethality rates, among others. The characterization of such sources of uncertainty has theoretical support in studies already published, which support the average behavior defined here as a known premise. This approach may represent a current limitation of the study since we do not contemplate the joint analysis of all the factors involved, which can be incorporated for future studies, though such information has already been obtained and validated by other sources.

Thus, the steps performed are the following:

- The reported deaths curve (Y_t) is a fraction of the actual deaths (Y_t^*), which means that

$$Y_t = PRD \times Y_t^* \quad \text{where} \quad PRD \sim \text{Beta}(\alpha_1, \beta_1).$$

The probability distribution of PRD (proportion of reported deaths) has been defined so that we consider the parameters α_1 and β_1 to be known, such that $\mathbb{E}(\text{PRD}) = \alpha_1/(\alpha_1 + \beta_1) = 0.4$ and $\text{SD}(\text{PRD}) = \sqrt{\alpha_1\beta_1/((\alpha_1 + \beta_1)^2(\alpha_1 + \beta_1 + 1))} = 0.05$. Such assumptions take into account the researchers such as (12) (3) which indicate that the number of real deaths is around 2.6 times the number of reported deaths.

- We understand that the real deaths curve (Y_t^*) is proportionally related to the infected curve (I_t), as follows,

$$Y_t^* = \text{PID} \times I_t, \quad \text{where} \quad \text{PID} \sim \text{Beta}(\alpha_2, \beta_2).$$

The probability distribution of PID (proportion of infected-to-death) was defined considering known α_2 and β_2, such that $\mathbb{E}(\text{PID}) = \alpha_2/(\alpha_2 + \beta_2) = 0.0037$ and $\text{SD}(\text{PID}) = \sqrt{\alpha_2\beta_2/((\alpha_2 + \beta_2)^2(\alpha_2 + \beta_2 + 1))} = 0.0001$. The distribution parameter of the random variable PID was set based on the results of (13) (5) which pointed out that the actual lethality rate of the disease is around 0.37%.
• The hospitalized \((H_t)\) and hospitalized in ICU \((H.ICU_t)\) curves are assumed to correspond to fractions of the curve of infected, as follows

\[
H_t = \text{PIH} \times I_t, \quad \text{where} \quad \text{PIH} \sim \text{Beta}(\alpha_3, \beta_3).
\]

and

\[
H.ICU_t = \text{PH. ICU} \times H_t, \quad \text{where} \quad \text{PH. ICU} \sim \text{Beta}(\alpha_4, \beta_4).
\]

Similarly, the probability distribution of PIH (proportion of infected-to-hospital) and PH.ICU (proportion of hospitalized-to-ICU) are defined as \(\mathbb{E}(\text{PIH}) = \mathbb{E}(\text{PH. ICU}) = 0.25\) and \(\text{SD(PIH)} = \text{SD(PH. ICU)} = 0.05\). This is justified since \(\text{[8,5]}\) show that approximately 25% of the infected need some hospital care, and 25% of those need an ICU.

• The recovered curve \((R_t)\), from ICU situation, was approximated by the translate of the difference between hospitalized in ICU curve \((H.ICU_t)\) and the real deaths curve \((Y^*_t)\), as follows \([17]\)

\[
R_t \approx (H.ICU - Y^*)_t + \text{D.ICU}, \quad \text{where} \quad \text{D. ICU} \sim \text{Poisson}(\lambda).
\]

The probability distribution set to D. ICU (days in ICU) takes into account that \(\mathbb{E}(\text{D. ICU}) = \lambda = 14\), since \([10]\) indicated that the clinical recovery for patients in ICUs is approximately two weeks.

• In addition, we understand that the difference between the hospitalized in ICU curve \((H.ICU_t)\) and the recovered curve \((R_t)\) of the ICU situation approximates the regional demand curve \((RD_t)\) for ICU beds. Therefore

\[
RD_t \approx (H.ICU - R)_t.
\]

• Finally, we assume that the hospital demand curve \((HD_t)\) is a fraction of the regional demand curve \((RD_t)\), weighted by market-share (MS) associated with a particular hospital. Therefore

\[
HD_t = \text{MS} \times RD_t.
\]

The multiplier MS (market-share) was not considered as a random variable. Its value is determined by the number of beds in the hospital and the number of beds available in the region close to the hospital, whose information is collected directly from a Brazilian health database called DataSUS.

Now, once we approximated the hospital demand curve \((HD_t)\), we have established a cut line for the hospital’s service capacity. This is done by considering the number of IU and ICU beds (named as IU. B and ICU. B, respectively) and their occupancy rates (named as OR. IU and OR. ICU, respectively). Since around 20% of IU beds can be upgraded to act as an ICU bed, the cut line is given by

\[
\text{CL} = \text{ICU. B} \times (1 - \text{OR. ICU}) + 0.2 \times \text{IU. B} \times (1 - \text{OR. IU}).
\]

Thus making \(HD_t = \text{CL}\), we identify the cutoff point, \(t^{(1)}\), that the ICU service capacity has been exceeded (if applicable) and the point at which it has returned to normal is \(t^{(2)}\).

The point \(t^{(2)}\) and all the uncertainty associated with it, via the variability of \(\text{PRD}, \text{PID}, \text{PIH}, \text{PH. ICU},\) and \(\text{D. ICU}\), result in a range of possible time points, where the hospital situation is expected to return to normal. The average value of these estimates is set as the cut line represented by the parameter \(e\) of the model \([1]\) (assumed known in this stage of the modeling).
REFERENCES

15. [Dataset] University, J. H. (2020). Covid-19 dashboard by the center for systems science and engineering (csse) at johns hopkins university (jhu)

Gonzatto et al. Safety Stock: Predicting demand on the supply chain during the COVID-19 pandemic