Title: SARS-CoV-2 lethality decreased over time in two Italian Provinces.

Authors: Maria Elena Flacco1¶*, Cecilia Acuti Martellucci2¶, Francesca Bravi3, Giustino Parruti4, Alfonso Mascitelli5, Lorenzo Mantovani6, Lamberto Manzoli1*.

Affiliations:
1 Department of Medical Sciences, University of Ferrara, Italy;
2 Department of Biomedical Sciences and Public Health, University of the Marche Region, Ancona, Italy;
3 “Sant’Anna” University Hospital of Ferrara, Italy;
4 Local Health Authority of Pescara, Italy;
5 Regional Healthcare Agency of Abruzzo, Pescara, Italy.
6 School of Medicine and Surgery, University Bicocca, Milan, Italy.

Short title: SARS-CoV-2 lethality decrease over time.

Key words: SARS-CoV-2; COVID-19; Case-fatality rate; Mortality.

* Imanzoli@post.harvard.edu (LM)

Word count: 1440.

Number of Tables/Figures: 3.

¶ These authors equally contributed to this manuscript.

Abbreviations: COPD, chronic obstructive pulmonary disease; COVID-19, coronavirus disease 2019; CVD, cardiovascular disease; HR, hazard ratio; RT-PCR, reverse transcription polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SDO, hospital discharge abstract (scheda di dimissione ospedaliera).
Abstract

Background

Some experts recently reported that SARS-CoV-2 lethality decreased considerably, but no evidence is yet available. This retrospective cohort study aimed to evaluate whether SARS-CoV-2 case-fatality rate decreased with time, adjusting for main potential confounders.

Methods and findings

We included all SARS-CoV-2 infected subjects diagnosed in Ferrara and Pescara provinces, Italy. Information were collected from local registries, clinical charts, and electronic health records. We compared the case-fatality rate of the subjects diagnosed during April and March, 2020. We used Cox proportional hazards analysis and random-effect logistic regression, adjusting for age, gender, hypertension, type II diabetes, major cardiovascular diseases (CVD), chronic obstructive pulmonary diseases (COPD), cancer and renal disease. The sample included 1946 subjects (mean age 58.8y; 45.7% males). 177 persons deceased, after a mean of 11.7 days of follow-up. From March to April, the case-fatality rate significantly decreased in the total sample (10.8% versus 6.0%; p<0.001), and in any subgroup of patients. Large reductions of the lethality were observed among the elderly (from 30.0% to 13.4%), and subjects with hypertension (23.0% to 12.1%), diabetes (30.3% to 8.4%), CVD (31.5% to 12.1%), COPD (29.7% to 11.4%), and renal disease (32.3% to 11.5%). In April, the adjusted hazard ratio of death was 0.42 (95% Confidence Interval: 0.29-0.60). The mean age of those who died substantially increased from March (77.9±10.8y) to April (86.9±7.7y).

Conclusions

In this sample, SARS-CoV-2 case-fatality rate decreased considerably over time, supporting recent claims of a substantial improvement of SARS-CoV-2 clinical management. The findings are inevitably preliminary and require confirmation.
Author summary

Why was this study done?

- Some experts recently reported that SARS-CoV-2 lethality decreased considerably, but no evidence is yet available.

What did the researchers do and find?

- We carried out a retrospective cohort study on 1946 SARS-CoV-2 infected subjects from two Italian provinces, evaluating the potential variation of the case-fatality rate over time.
- From March to April, in both univariate and multivariable analyses, SARS-CoV-2 case-fatality rate significantly and substantially decreased, overall and in any subgroup of subjects.

What do these findings mean?

- The therapies and clinical management of SARS-CoV-2 infected subjects might have substantially improved over time.
Introduction

As of May 18, 2020, SARS-CoV-2 pandemic has caused 320,000 deaths worldwide [1], with largely discrepant case-fatality rates across countries (from <1% to 16%) [2], likely due to differences in population age structure [3, 4], variations in testing policies and case recording [5], and/or preparedness of the healthcare system, which in turn is affected by the intensity of the spread [4, 5].

Since the start of the pandemic, Italy has been among the countries with the highest death toll, with more than 32,000 recorded deaths [1], and an estimated case-fatality rate of 14% [2], which peaked at 20% among the citizens aged ≥80 years [6].

In the last few weeks, some clinicians suggested that SARS-CoV-2 lethality decreased considerably, mostly as a consequence of more tailored therapeutic approaches [7-11]. Although the claims were made by expert physicians, actively engaged in the care of infected patients, the available evidence is anecdotal or based upon case-studies.

We analysed the data of all infected cases in two Italian Provinces to evaluate whether SARS-CoV-2 case-fatality rate decreased with time, adjusting for main potential confounders.

Methods

This retrospective cohort study included all subjects infected with SARS-CoV-2, diagnosed in the Provinces of Ferrara and Pescara, between March 3 (the onset date of the first cases), and April 25, 2020. All participants were followed up to May 5, 2020. All infections were diagnosed by the central laboratories of Ferrara University Hospital or Pescara Hospital through RT-PCR (Reverse transcription polymerase chain reaction) test on nasopharyngeal swabs, and were confirmed by the Italian National Institute of Health.

Information on age, gender, and pre-existing conditions of all participants were collected from local registries, clinical charts (for hospitalized patients), and through data-linkage with hospital discharge abstracts (Italian SDO) and the National database of drug prescription. Electronic databases were queried from the day of the diagnosis until January 1st, 2015. All data have been revised manually by two physicians (LM and MEF), and the following conditions have been included in the analyses: hypertension, type II...
diabetes, major cardiovascular diseases (heart failure, myocardial infarction and stroke - CVD), chronic obstructive pulmonary diseases (COPD, bronchitis, pneumonia, asthma, and emphysema), malignant tumors and renal disease.

The study complies with the Declaration of Helsinki, the research protocol was approved by the Ethics Committee of the Emilia-Romagna Region (code 287, approved on March 24, 2020), and the requirement for informed consent was waived because of the retrospective and pseudo-anonymized nature of the data.

Data Analysis

We compared the case-fatality rate (fatal / confirmed cases) during the first 29 days after the index day (from March 3 to March 31) with that of the second half of the period (days 30-53; from April 1 to April 25). The differences between the two periods were initially evaluated using t-test for continuous variables, and chi-squared test for categorical ones. The potential independent predictors of death were then evaluated using Cox proportional hazards analysis (using the data censored at May 5, to include ≥10 days of follow-up). All covariates were included a priori in the model in their original form, with the exception of age, which was treated as either continuous or ordinal, to explore the association between the outcome and several age classes. Schoenfeld’s test was used to assess the validity of proportional hazards assumption, and Nelson-Aalen cumulative hazard estimates to check the validity of constant incidence ratios during the follow-up [12]. Using the data censored at 20 days of follow-up, a random-effect logistic regression was also fit, with province as the cluster unit. The same above criteria were used to build the final model. Missing data were <5% in all primary analyses; therefore, no missing imputation technique was adopted. Statistical significance was defined as a two-sided p-value<0.05, and all analyses were carried out using Stata, version 13.1 (Stata Corp., College Station, TX, 2014).

Results

The sample consisted of 1946 subjects (mean age 58.8y; 45.7% males); of them, 31.2% were hypertensive, 12.3% diabetics, and 16.6% with CVD. Some of the characteristics of the sample significantly varied from March to April. Infected subjects were older by 5.6 years, and the proportion of females, diabetics, subjects with CVD and renal diseases significantly increased (Table 1).
Table 1. Characteristics of the sample, overall and by time of SARS-CoV-2 infection diagnosis after the first case (March 3, 2020).

<table>
<thead>
<tr>
<th></th>
<th>Total sample (n=1946)</th>
<th>March 2020 a (n=1244)</th>
<th>April 2020 b (n=702)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (SD), years</td>
<td>58.8 (21.3)</td>
<td>56.8 (20.0)</td>
<td>62.4 (23.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age-class in years, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><18</td>
<td>3.5</td>
<td>3.9</td>
<td>2.8</td>
<td>0.2</td>
</tr>
<tr>
<td>18-39.9</td>
<td>14.8</td>
<td>14.7</td>
<td>15.0</td>
<td>0.9</td>
</tr>
<tr>
<td>40-49.9</td>
<td>15.0</td>
<td>16.6</td>
<td>12.1</td>
<td>0.008</td>
</tr>
<tr>
<td>50-59.9</td>
<td>19.0</td>
<td>20.1</td>
<td>17.0</td>
<td>0.09</td>
</tr>
<tr>
<td>60-69.9</td>
<td>13.8</td>
<td>16.1</td>
<td>9.7</td>
<td><0.001</td>
</tr>
<tr>
<td>70-79.9</td>
<td>13.2</td>
<td>14.1</td>
<td>11.7</td>
<td>0.13</td>
</tr>
<tr>
<td>≥80</td>
<td>20.8</td>
<td>14.6</td>
<td>31.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Male gender, %</td>
<td>45.7</td>
<td>50.2</td>
<td>37.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>31.2</td>
<td>32.9</td>
<td>28.4</td>
<td>0.038</td>
</tr>
<tr>
<td>Diabetes, %</td>
<td>12.3</td>
<td>10.6</td>
<td>15.2</td>
<td>0.003</td>
</tr>
<tr>
<td>Major cardiovascular diseases, %</td>
<td>16.6</td>
<td>14.6</td>
<td>20.1</td>
<td>0.002</td>
</tr>
<tr>
<td>COPD, %</td>
<td>5.6</td>
<td>6.0</td>
<td>5.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Cancer, %</td>
<td>7.7</td>
<td>8.3</td>
<td>6.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Renal diseases, %</td>
<td>5.9</td>
<td>5.0</td>
<td>7.4</td>
<td>0.029</td>
</tr>
</tbody>
</table>

a From March 3 to March 31.
b From April 1 to April 25.
p Chi-squared test for categorical variables, t-test for continuous ones.

Overall, 177 persons deceased (after a mean of 11.7 days of follow-up): 135 of the 1244 subjects diagnosed in March, 42 of the 702 subjects diagnosed in April. The mean age of those who died substantially increased: it was 77.9±10.8 for those diagnosed in March, 86.9±7.7 for those detected in April (p<0.001). In March, 28 of those deceased were younger than 70 years, and 8 were younger than 60 years. In April, a single death occurred in subjects younger than 70 years.

From March to April, the overall case-fatality rate significantly decreased (10.8% versus 6.0%, respectively; p<0.001 - Fig 1).

Figure 1. SARS-CoV-2 case-fatality rate in the first two months of the pandemic (March and April, 2020), overall and stratified for the most frequent risk classes (all p<0.05). Vertical bars are referred to 95% confidence intervals.
As shown in Table 2, a reduction of SARS-CoV-2 lethality was observed in any age-class and any category of risk. The decrease was however larger among the subjects at higher risk of death: with the lethality dropping from 23.4% to 6.1% in the age-class 70-79y, and from 36.3% to 16.1% among the elderly (80+ years); both p<0.05. Similar reductions of the case-fatality rate were observed among the subjects with hypertension (from 23.0% to 12.1%), diabetes (from 30.3% to 8.4%), CVD (from 31.5% to 12.1%), COPD (from 29.7% to 11.4%), and renal disease (from 32.3% to 11.5%; all univariate p-values<0.05).

Table 2. Proportion of deaths, overall and by time of SARS-CoV-2 infection diagnosis after the first case (March 3, 2020), and hazard ratios (HRs) predicting the time to death of patients diagnosed in April vs March 2020.

<table>
<thead>
<tr>
<th></th>
<th>Total sample</th>
<th>March 2020 a</th>
<th>April 2020 b</th>
<th>pc</th>
<th>April vs March HR (95% CI)</th>
<th>pd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>9.1</td>
<td>10.8</td>
<td>6.0</td>
<td><0.001</td>
<td>0.42 (0.29-0.60)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age-class in years, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><18</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>18-39.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>40-49.9</td>
<td>0.7</td>
<td>1.0</td>
<td>0.0</td>
<td>0.4</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>50-59.9</td>
<td>1.9</td>
<td>2.4</td>
<td>0.8</td>
<td>0.3</td>
<td>0.37 (0.04-3.32)</td>
<td>0.4</td>
</tr>
<tr>
<td>60-69.9</td>
<td>7.5</td>
<td>10.0</td>
<td>0.0</td>
<td>0.007</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>70-79.9</td>
<td>17.9</td>
<td>23.4</td>
<td>6.1</td>
<td>0.001</td>
<td>0.31 (0.12-0.79)</td>
<td>0.014</td>
</tr>
<tr>
<td>≥80</td>
<td>25.2</td>
<td>36.3</td>
<td>16.1</td>
<td><0.001</td>
<td>0.51 (0.33-0.77)</td>
<td>0.002</td>
</tr>
<tr>
<td>Gender, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>8.0</td>
<td>9.0</td>
<td>6.4</td>
<td>0.12</td>
<td>0.43 (0.27-0.69)</td>
<td><0.001</td>
</tr>
<tr>
<td>Males</td>
<td>10.4</td>
<td>12.7</td>
<td>5.3</td>
<td>0.001</td>
<td>0.35 (0.19-0.62)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>4.4</td>
<td>4.9</td>
<td>3.6</td>
<td>0.3</td>
<td>0.43 (0.24-0.78)</td>
<td>0.005</td>
</tr>
<tr>
<td>Yes</td>
<td>19.4</td>
<td>23.0</td>
<td>12.1</td>
<td>0.001</td>
<td>0.45 (0.28-0.72)</td>
<td>0.001</td>
</tr>
<tr>
<td>Diabetes, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>7.5</td>
<td>8.5</td>
<td>5.6</td>
<td>0.025</td>
<td>0.44 (0.29-0.68)</td>
<td><0.001</td>
</tr>
<tr>
<td>Yes</td>
<td>20.5</td>
<td>30.3</td>
<td>8.4</td>
<td><0.001</td>
<td>0.36 (0.17-0.76)</td>
<td>0.007</td>
</tr>
<tr>
<td>Major cardiovascular diseases, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>6.3</td>
<td>7.3</td>
<td>4.5</td>
<td>0.023</td>
<td>0.49 (0.30-0.79)</td>
<td>0.003</td>
</tr>
<tr>
<td>Yes</td>
<td>23.0</td>
<td>31.5</td>
<td>12.1</td>
<td><0.001</td>
<td>0.37 (0.21-0.66)</td>
<td>0.001</td>
</tr>
<tr>
<td>COPD, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>8.2</td>
<td>9.7</td>
<td>5.7</td>
<td>0.003</td>
<td>0.49 (0.33-0.72)</td>
<td><0.001</td>
</tr>
<tr>
<td>Yes</td>
<td>23.9</td>
<td>29.7</td>
<td>11.4</td>
<td>0.036</td>
<td>0.26 (0.08-0.82)</td>
<td>0.022</td>
</tr>
<tr>
<td>Cancer, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>8.2</td>
<td>9.8</td>
<td>5.5</td>
<td>0.001</td>
<td>0.43 (0.29-0.64)</td>
<td><0.001</td>
</tr>
<tr>
<td>Yes</td>
<td>19.5</td>
<td>22.3</td>
<td>13.0</td>
<td>0.2</td>
<td>0.47 (0.19-1.18)</td>
<td>0.11</td>
</tr>
<tr>
<td>Renal diseases, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>8.2</td>
<td>9.7</td>
<td>5.5</td>
<td>0.002</td>
<td>0.48 (0.32-0.72)</td>
<td><0.001</td>
</tr>
<tr>
<td>Yes</td>
<td>22.8</td>
<td>32.3</td>
<td>11.5</td>
<td>0.009</td>
<td>0.20 (0.07-0.54)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

* From March 3 to March 31.
b From April 1 to April 25.
c Chi-squared test for categorical variables, t-test for continuous ones.
d Cox proportional hazard model, adjusted for age, gender, hypertension, diabetes, major cardiovascular
diseases, COPD, cancer and renal disease. Some models could not be fit due to the scarce number of deaths.

Cox analysis substantially confirmed univariate results: adjusting for age, gender, hypertension, diabetes,
CVD, COPD, cancer and renal disease, the hazard ratio (HR) of death of those diagnosed in April, as
compared to March, was 0.42 (95% Confidence Interval - CI: 0.29-0.60 - Table 2). With the only exception
of the subjects with history of cancer, a significantly, considerably lower likelihood of death was observed in
any subset of the sample, with HRs ranging from 0.20 among the subjects with renal disease, up to 0.51
among those aged 80 years or more (Table 2). The results of the random-effect logistic regression did not
vary: overall, the adjusted odds ratio of death at 20 days was 0.29 (95% CI: 0.19-0.45; p<0.001) for those
diagnosed in April, as compared to the subjects detected in March.

Discussion

This study provides the first evidence of a considerable decrease of SARS-CoV-2 case-fatality rate over
time. From March to April 2020, the death rate decreased by more than 50% in all age-classes, being larger
among the subjects with the highest risk of death because of comorbidities [13, 14]. This finding was
confirmed in all multivariable analyses, adjusting for several potential confounders.

It is complex to discern which could be the potential reasons for the observed, entirely novel findings. The
first, most obvious explanation, is that the healthcare system might have been overcrowded during the
epidemic peak in March, with a loss of efficacy [15]. This is however very unlikely to apply to the present
sample, because SARS-CoV-2 infection rates were relatively low - and never exceeded the capacity of the
intensive care units - in the two provinces under analysis [16].

Other potential, non mutually exclusive explanations include virus mutation and substantial improvements in
the organization (including the expansion of dedicated hospital beds), therapy and management of the
infected subjects. Some scientists suggested that a less virulent viral strain, with consequent reduced
lethality, might emerge during the pandemic [10]. However, the hypothesis has been contested [17] and is
currently unsubstantiated by data. Concerning the therapy, a growing number of clinicians suggest that the
current therapeutic approach, based upon the early administration of more tailored medications, is
considerably improving the clinical course of COVID-19 [7-9, 11]. In the two provinces under investigation, the treatment is currently based upon antiviral agents (Chloroquine / Hydroxychloroquine or Lopinavir / Ritonavir), intensive respiratory support [18, 19], and, from the latest days of March, low molecular weight heparin and monoclonal antibodies against inflammatory cytokines (e.g. Tocilizumab), which showed some preliminary, promising results [18, 20-23]. Given that available data are anecdotal, only the results of the several randomized trials that are being conducted on the above treatments [18], will permit to discern which approach, and to what extent, contributed to the improvement of SARS-CoV-2 infection prognosis.

The main limitations of the study are the inclusion of only two provinces from a single country, and the lack of data on body mass index, which is emerging as significant predictor of death from COVID-19 [24, 25].

In conclusion, the present study provided evidence of a significant, considerable decrease of SARS-CoV-2 case-fatality rate between March and April, 2020, supporting preliminary claims on a substantial improvement of the therapeutic approaches. The findings are inevitably preliminary and require confirmation from further datasets and ongoing randomized trials.
Acknowledgments

The authors are grateful to Dr. Giorgia Valpiani and Dr. Nicola Napoli for their valuable help in data collection.

Financial disclosure statement: This work was not funded.

Competing interests: All authors declare that they have no potential conflict of interest.
References

Figure 1.

![Chart showing percentages of different age groups and conditions in March and April.](image-url)