Air Pollution and Lipometabolic Disturbance: A Systematic Review and Meta-Analysis

Haohao Chena, Liuhua Shib, Andrew Rosenbergb, Ye Zhuc, Lixin Taoc,d, Zhiwei Sune,f, Ji Wange,f,*

a Eighth Clinical School, Fuxing Hospital, Capital Medical University, Beijing 100038, China
b Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta Georgia 30322, United States.
c Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
d Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, P.R. China
e Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
f Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China

* To whom correspondence should be addressed:

Ji Wang, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China, Tel.: (86) 10-83911776, E-mail: wangji@ccmu.edu.cn

CC-BY 4.0 International license

This work is licensed under a Creative Commons Attribution 4.0 International License.

The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
Abstract

Background: Growing evidence suggests that long-term exposure to air pollutants is associated with cardiovascular morbidity, including lipometabolic disturbance.

Objectives: To explore the chronic effects of air pollutants on lipometabolic disturbance via detectable lipoprotein parameters.

Methods: Seven online databases were searched to conduct a meta-analysis of epidemiological studies examining the relationship between air pollution and lipid parameter levels. Subgroup analysis was additionally carried out for each air pollutant studied.

Results: A total of 2,274 records were retrieved, resulting in 10 studies included in the final quantitative meta-analysis, comprising seven studies in Europe and the United States and three studies in mainland China. Using a random-effect model, the results showed that for each 10 μg/m³ increase in PM₂.₅, TC, LDL-C, and HDL-C levels and metabolic syndrome (MetS) incidence increased by 3.31% (95% CI: 2.29%, 8.91%), 2.34% (95% CI: 1.30%, 3.39%), -1.57% (95% CI: -1.85%, -1.28%), and 4.33% (95% CI: 2.69%, 5.98%), respectively; for each 10 μg/m³ increase in PM₁₀, TG, HDL-C, and LDL-C levels increased by 5.27% (95% CI: 2.03%, 8.50%), -0.24% (95% CI: -0.95%, -0.47%), and 0.45% (95% CI: -0.57%, 1.47%), respectively; for each 10 μg/m³ increase in NO₂, TG and HDL-C levels increased by 4.18% (95% CI: 1.12%, 7.23%) and -0.51% (95% CI: -2.61%, 1.58%), respectively. No significant associations were detected for combinations of air pollutants on lipometabolic disturbance.

Conclusion: Increased air pollutant exposure was significantly associated with changes in blood lipid parameter levels, which can be an indicator of the body's lipometabolic disturbance.

Keywords: air pollutant, particulate matter, lipoprotein, meta-analysis
1. Introduction

Air pollution is among the greatest environmental risks to global health (Cohen et al., 2017; Lelieveld, Evans, Fnais, Giannadaki, & Pozzer, 2015; Shi et al., 2016). The World Health Organization (WHO) estimates that ambient air pollution is responsible for nearly seven million premature deaths worldwide every year (Landrigan et al., 2018). Major components of atmospheric pollution include particulate matter of different diameter sizes, such as PM$_{2.5}$, PM$_{10}$, UFP (ultrafine particulate matter), and gas compounds such as CO, NO$_x$, SO$_2$, O$_3$, among others. Primarily deriving from fuel combustion, industrial emissions, transportation and ground dust, these pollutants can cause serious harm to the human body (Runzhi, 2020 (In China)). A growing body of evidence demonstrates the links between air pollution and cardiovascular diseases (Akintoye et al., 2016; Combes & Franchineau, 2019; Lin et al., 2019; Zheng, Liu, Zhang, & Chen, 2018), respiratory diseases (Dagenais et al., 2020; H. C. Huang et al., 2020; Schraufnagel et al., 2019; Zu et al., 2017), and neurological disorders (Myung, Lee, & Kim, 2019; Seelen et al., 2017; Thomson, 2019), among which cardiovascular disease is the leading cause of death in low-income and middle-income countries (Yusuf et al., 2020). Conventionally, risk factors for cardiovascular disease (CVD) have been associated with abnormal levels in lipoprotein-lipid parameters, including low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), total cholesterol (TC), and triglycerides (TG), which may indicate lipometabolic disturbance (Yuanning et al., 2019 (In China)). The co-occurrence of these established risk factors, known collectively as metabolic syndrome (MetS), may therefore amplify susceptibility to the CVD risks associated with air pollution exposure (Dabass et al., 2018; Eze et al., 2015; Tsai, Lin, Chen, & Chu, 2018; Yang, Qian, et al., 2018).
The biological mechanism of exposure to air pollution and cardiovascular diseases remains unclear. Five possible biologically plausible mechanisms (Weidong et al., 2018 (In China)) underscore the pathways through which exposure may lead to cardiovascular morbidity: first, oxidative stress and inflammatory reactions; second, endothelial injury and dysfunction; third, an imbalance in the function of the autonomic nervous system, fourth, changes in the function of blood clotting; and fifth, lipid internal balance disorder. Among them, oxidative stress and inflammatory reaction, as well as lipid internal balance disorder, most likely account for changes in multiple lipid parameters associated with air pollution.

In recent years, studies have investigated the associations between air pollution and lipid profile parameters, adding to evidence that suggests air pollution may contribute to changes in blood lipid parameters (Cai et al., 2017; Hou et al., 2020; Lee et al., 2019; Vânia, Rita, Matias, & Baltazar, 2019; Yang, Bloom, et al., 2018). However, most previous studies have been limited to single air pollutants. To date, no systematic review has been found which offers a comprehensive synthesis of the links between various atmospheric pollutants and lipid parameters. The aim of this meta-analysis is to provide a comprehensive and quantitative overview of the literature regarding the association between air pollutants (PM$_{2.5}$, PM$_{10}$, NO$_2$), lipid parameters (HDL-C, LDL-C, TC, TG), and MetS morbidity.

2. Materials and Methods

2.1 Search Strategy

This study was conducted using standard methods which follow the Preferred Reporting Items for Systematic Review and Meta-Analysis (PISMA) (J et al., 2020; "Preferred reporting
items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation,” 2016). Seven electronic databases, including China National Knowledge Infrastructure (CNKI), Wanfang, Vip, SinoMed, Pubmed, EMBASE, and the Cochrane Library, were searched for peer-reviewed articles published from 2000 to January 28, 2020. Keywords searched included: (“Air Pollution” OR “Pollution, Air” OR “Air Quality” OR “Ultrafine Fibers” OR “Airborne Particulate Matter” OR “Particulate Matter, Airborne” OR “Air Pollutants, Particulate” OR “Particulate Air Pollutants” OR “Ambient Particulate Matter” OR “Particulate Matter, Ambient” OR “Ultrafine Particulate Matter” OR “Particulate Matter, Ultrafine”) AND (“Cardiovascular Disease” OR “Disease, Cardiovascular” OR “Diseases, Cardiovascular” OR “HDL” OR “LDL” OR “cholesterol” OR “cholesterin” OR “cholesteric” OR “TC” OR “TG” OR “dyslipidaemia” OR “HDL-C” OR “LDL-C”) AND (“Cohort” OR “Cross-sectional” OR “Case control” OR “Case-control” OR “Epidemiology OR “Epidemiological”). Additionally, references of included literature and one previously published systematic review were manually retrieved.

2.2 Eligibility Criteria

2.2.1 Inclusion Criteria

Studies were included if: (1) The study includes all population with no age, gender, or race restrictions. (2) The study describes the relationship between particulate air pollutants and metabolic disease/cardiovascular disease. (3) Results quantify changes in lipid parameters, including HDL-C, LDL-C, TC, TG, etc. (4) Cross-sectional studies, cohort studies, or case control studies. (5) The Literature is published in either Chinese or English.
2.2.2 Exclusion Criteria

Studies were excluded if: (1) The research was based on animal experiments or cytological experiments. (2) The study was a review or meta-analysis. (3) The study was a duplicate. (4) Effect estimates were not reported as a percent change in lipid metabolism per 10 μg/m³ change in particulate air pollutants. (5) The data reported resulted from an independent study. If inconsistent results have been reported for a given population or period at the time publications were retrieved, older studies were superseded by the most recent publication.

2.3 Literature Screening and Quality Evaluation

Two researchers independently retrieved and screened the literature following the above order and criteria. Upon review, a third researcher was consulted when discrepancies occurred. The methodological quality of each cohort study was evaluated according to the Newcastle-Ottawa Scale (NOS) literature quality evaluation tool (Luchini, Stubbs, Solmi, & Veronese, 2017), which includes three aspects of population selection, comparability, and results. A total of 8 items belonging to NOS could be graded by an “*” for each item, and the top score can include up to 9 “*”. Cross-sectional studies were assessed by the American Health Care Quality and Research Institute (AHRQ) scale for quality evaluation (B, 2017). An 11-point scale is used to calculate responses of either “Yes”, “No”, or “Not clear”, for a total score of 11.

2.4 Data extraction and statistical analysis

Information was independently extracted by two researchers based on a pre-set data extraction form which included: author name(s), year of publication, study period, location,
population, median age, sample size, experimental design type, exposure time, and contaminants.

Divergent interpretations were reconciled by a third researcher.

When the literature data were extracted, the percent changes in lipid metabolism per 10 μg/m³ change in particulate air pollutants were directly utilized. As such, the results presented in this meta-analysis are expressed as the percentage change in lipid parameters and MetS incidence for each 10 μg/m³ increment in air pollutant. The between-study heterogeneity was evaluated using both the I² statistic and Q-test (Huedo-Medina, Sanchez-Meca, Marin-Martinez, & Botella, 2006). If I² ≥ 50% or the p-value for a Q-test was < 0.01, then heterogeneity was considered “high” and the Der Simonian and Laird random effects model was used to pool effect estimates. Otherwise, heterogeneity was considered “moderate” or “low” and the Mantel-Haenszel fixed effects model was used to pool effect estimates. The Meta-analysis was performed using Stata software version 14.0. A p-value < 0.05 was considered statistically significant.

3. Results

3.1 Literature Retrieval and Characteristics

A total of 2,274 records were obtained from multiple databases. After duplicates were removed, the titles and abstracts of 1,714 records were screened. 1,154 full-text publications were subsequently assessed using the eligibility criteria. As a result, ten records met all criteria and were included in the final quantitative meta-analysis (Cai et al., 2017; Hou et al., 2020; Lee et al., 2019; Shanley et al., 2016; Sorensen et al., 2015; Wallwork et al., 2017; Wang et al., 2018; Wu et al., 2019; Yang, Bloom, et al., 2018; Yitshak Sade, Kloog, Liberty, Schwartz, & Novack, 2016). A flow diagram of the study selection process is shown in the Fig. 1.
Overall, this study includes a total of ten records comprising eight cohort studies (Cai et al., 2017; Lee et al., 2019; Shanley et al., 2016; Wallwork et al., 2017; Wang et al., 2018; Wu et al., 2019; Yang, Bloom, et al., 2018; Yitshak Sade et al., 2016) and two cross-sectional studies (Hou et al., 2020; Sorensen et al., 2015). An exposure time of less than or equal to thirty days was recorded as short-term exposure, whereas an exposure time greater than thirty days was recorded as long-term exposure. Study characteristics are summarized in Table 1.

3.2 Quality Evaluation

Using the NOS scale to evaluate eight cohort studies, one study was less representative, three studies were less comparable, six mentioned follow-ups, eight mentioned the specific measurement methods from which the results were derived, and six were subject to the integrity of follow-up. For this quality evaluation, a study was awarded one “*”, corresponding to one point, for each NOS item it contained. Using the AHRQ scale to evaluate two cross-sectional studies, both mentioned the source of data, patient identification time period, follow-up situation, and continuity of the subject. For evaluation, “yes” was recorded as one point, whereas “no” or “uncertain” was recorded as zero for each component of the AHRQ scale. Final scores for each respective study is summarized in Table 1.

3.3 Data Extraction and Conversion

The results of the data extraction of the ten records are shown in Table 2. The growth rate of particulate air pollutants varied from study to study. As such, in order to pool data for further analysis, original data from each study was uniformly converted to the rate of change of each lipid
parameter per 10 μg/m³ increment change in air pollutant. A complete list of converted results is reported in Table 3.

3.4 Quantitative Meta-analysis

Based on a quantitative comparison of the ten studies included in the analysis, a total of twelve groups were identified to characterize the relationship between particulate air pollutants and lipid parameters, including PM$_{2.5}$/TC; PM$_{2.5}$/HDL-C; PM$_{2.5}$/LDL-C; PM$_{2.5}$/MetS; PM$_{10}$/TG; PM$_{10}$/LDL-C; PM$_{10}$/HDL-C; NO$_2$/TC; NO$_2$/TG; NO$_2$/HDL-C; PM$_{10}$/HDL-C (diabetic population); PM$_{10}$/LDL-C (diabetic population). After data conversion, these effect estimates were analyzed using twelve different analyses for each pollutant/outcome combination.

3.4.1 PM$_{2.5}$ with TC, HDL-C, LDL-C, and MetS (Lee et al., 2019; Sorensen et al., 2015; Wu et al., 2019; Yang, Bloom, et al., 2018)

PM$_{2.5}$ exposure was significantly associated with TC, HDL-C, LDL-C, and MetS. Specifically, for each 10 μg/m³ increase in PM$_{2.5}$, TC levels increased by 3.31% (95% CI: -0.0229~0.0891, P=0.046), LDL-C levels increased by 2.34% (95% CI: 0.0130~0.0339, P=0.001), HDL-C levels decreased 1.57% (95% CI: -0.0185~0.0128, P=0.001), and the MetS increased by 4.33% (95% CI: 0.0269~0.0598, P<0.001) (See Fig. 2).

3.4.2 PM$_{10}$ with TG, HDL-C, and LDL-C (Cai et al., 2017; Shanley et al., 2016; Yang, Bloom, et al., 2018; Yitshak Sade et al., 2016)

PM$_{10}$ exposure was significantly associated with TG, HDL-C, LDL-C. Specifically, for each 10 μg/m³ increase in PM$_{10}$, TG levels increased by 5.27% (95% CI: 0.0203~0.0850, P<0.001), HDL-C levels decreased by 0.24% (95% CI: -0.0095~0.0047, P=0.002), and LDL-C levels
increased by 0.45% (95% CI: -0.057~0.0147, P<0.001) (See Fig. 3).

3.4.3 NO2 with TG, HDL-C, and TC (Cai et al., 2017; Sorensen et al., 2015; Yang, Bloom, et al., 2018)

NO2 exposure was associated with TG and HDL-C; however, was not significantly associated with TC. Specifically, for each 10 μg/m³ increase in NO2, TG levels increased by 4.18% (95% CI: 0.0112~0.0723, P=0.020), and HDL-C levels decreased by 0.51% (95% CI: -0.0261~0.0158, P<0.001). TC levels increased by 1.01% (95% CI: 0.0035~0.0167, P=0.858) (See Fig. 4).

3.4.4 PM10 with LDL-C and HDL-C in diabetic population (Wang et al., 2018; Yitshak Sade et al., 2016)

Three studies included subjects with diabetes mellitus, suggesting differential modification of LDL-C and HDL-C levels associated with PM10 exposure. PM10 exposure was significantly associated with HDL-C levels, but not with LDL-C levels. For each 10 μg/m³ increase in PM10, HDL-C levels decreased 0.45% (95% CI: -0.0072~0.0017, P=0.009), while LDL-C increased by 1.14% (95% CI: 0.0090~0.00138, P=0.265) (See Fig. 5).

4 Discussion

This meta-analysis found significant associations between PM2.5, PM10, and NO2, and lipoprotein parameters, with evidence of substantial between-study heterogeneity. These findings add to evidence that MetS may increase susceptibility to cardiovascular morbidity associated with air pollution exposure.

Gaio et al. (Vânia et al., 2019) reported that LDL-C and TG levels increased by 0.12% (95% CI: 0.0178~0.0206) and 3.14% (95% CI: 0.0136~0.0495) respectively, per 10
μg/m³ increase in PM₁₀, which is consistent with our study, although effect estimates were smaller than the current study. They also observed a decrease of 0.45% (95% CI: -0.0265 to -0.0181) in HDL-C levels per 10 μg/m³ increase in NO₂, but no statistically significant changes in TC. When considering the differences between the two studies, such factors as the use of differential inclusion and exclusion criteria for screening may have resulted in more or less robust records for final selection. To the extent that studies focused on associations between particulate air pollutants and lipometabolic disturbance were much less based on the pre-search, the inclusion criteria in our study were broader, while the exclusion criteria were similar to the meta-analysis by Gaio et al. As a result, our study included an additional study by Maayan et al. (Yitshak Sade et al., 2016) in the subgroup category for studies investigating the relationship between PM₁₀ exposures and LDL-C and TG levels. In this study, PM₂.₅ was more significantly associated with multiple lipid parameters compared to PM₁₀, which is consistent with findings by Hazrije et al. (Mustafić et al., 2012); however, Hazrije et al. (Mustafić et al., 2012) reported a stronger association between myocardial infarction and PM₂.₅ compared to PM₁₀. This may result from the differential characteristics of PM₂.₅ such as smaller diameter size, larger surface area, slower sedimentation rate, and longer retention time in the air compared to PM₁₀.

This paper reported that elevated PM₁₀ exposure on the diabetic population was associated with higher HDL-C levels, but not significantly associated with LDL-C levels. This was only partially consistent with the study by Wang et al. (Minzhen & Shan, 2018 (In China)), which reported significant associations between PM₁₀ exposure and both HDL-C levels and LDL-C levels. Such discrepancy may be due to differences in the characteristics of the study population. Further, two studies (Wang et al., 2018; Yitshak Sade et al., 2016) included in this meta-analysis...
contained subjects with diabetes using data obtained from medical institutions, whereas the Wang et al. (Minzhen & Shan, 2018 (In China)) had the advantage of follow-up throughout the study period, which may have provided a more precise measure of changes in lipid parameters.

The present study suggests that air pollution may adversely affect lipometabolic balance by promoting LDL oxidation, disrupting the scavenger receptor and LDL receptor body function, accelerating the accumulation of lipids in plaque (Fuertes, Plaat, & Minelli, 2020; Miller, 2020). HDL, as a protective factor for lipid metabolic disorders, decreased in levels when exposed to air pollutants (Bell et al., 2017).

Despite a considerably inclusive search strategy, with few restrictions on study design and population characteristics, our final selection yielded 10 qualified studies for this meta-analysis. We detected high between-study heterogeneity in most of the subgroups studied, which, taken together, may attenuate credibility with cumulative evidence. Yet, heterogeneity may be captured by unmeasured variables that were not reported such as population susceptibility, temperature, distribution of air pollutants or other potential sources (Liu et al., 2019; Ward-Caviness, 2019).

There are some limitations that should be addressed. First, most of the literature failed to consider whether subjects had taken lipid-lowering drugs or related drugs using history before or during the study period, which may bias results and lead to less positive change in blood lipid parameter levels (Ho & Hee, 2015). Furthermore, evidence suggests that noise intensity can directly impact lipid parameters levels (Cai et al., 2017; Y.-K. Huang, Hanneke, & Jones, 2019; Jørgensen et al., 2019; Klompmaker et al., 2019; Shapovalova, Ryzhova, & Ryzhov, 2010; Sorensen et al., 2015). Considering noise has obvious geographical distribution characteristics, i.e., urban residential areas typically have higher levels of noise intensity than rural or remote areas,
and that distance between residential areas and main roadways could fluctuate multiple lipid parameters, future analyses should further examine noise intensity as a possible confounding risk factor. Similarly, green spaces near residential areas or workplaces have been shown to influence lipometabolic balance and should additionally be included as a confounding variable (Ji, Zhu, Lv, & Shi, 2019; Klompmaker et al., 2019; Yang et al., 2019). Moreover, residential greenness has been shown elsewhere to have a beneficial effect on MetS and diabetes; accordingly, this association could be attenuated after adjustment for air pollution (Thiering et al., 2016; Yang et al., 2020). To quantify air pollution exposure, many studies (Cai et al., 2017; Hou et al., 2020; Lee et al., 2019; Shanley et al., 2016; Sorensen et al., 2015; Wang et al., 2018) use ground-based measurements derived from fixed air quality monitoring sites. While other studies (Wallwork et al., 2017; Wu et al., 2019; Yang, Bloom, et al., 2018; Yitshak Sade et al., 2016) incorporate predictive models estimated from spatiotemporal hybrid modeling. More specifically, models may utilize low-cost GPS on mobile devices to monitor an average individual exposure to air pollutants in real time, over the study period. Such methods greatly increase the accuracy of measurements and may reflect a better estimate of true exposure to air pollutants. Despite the limitations, previous studies have focused on the relationship between blood lipid parameters levels and a single air pollutant. Examining the effects of air pollution exposure one pollutant at a time underestimates the complexity of atmospheric chemical mixing and the multiple pollutant sources implicated in the link between air pollution exposure and adverse health, and more specifically, the nuanced effects of various pollutants on blood lipid parameters.

5 Conclusion
This study found that PM$_{10}$, PM$_{2.5}$, and NO$_2$ were significantly associated with HDL-C, LDL-C, TC, and TG levels, suggesting a link between air pollution and cardiovascular morbidity. Therefore, improving air quality may yield substantial health benefits.

Declaration of Competing Interest

The authors declare no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81872649), National Key R&D Program of China (2017YFC0211600), Scientific Research Project of Beijing Educational Committee (KM201910025023), and HERCULES Exposome Research Centre (P30ES019776).
References

doi:10.1289/EHP4389

Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. (2016). *BMJ (Clinical research ed.)*, 354, i4086. doi:10.1136/bmj.i4086

Runzhi, C. (2020 (In China)). The effects of major atmospheric pollutants on population health

Sorensen, M., Hjortebjerg, D., Erikson, K. T., Ketzel, M., Tjonneland, A., Overvad, K., &

environmental research and public health, 15(4). doi:10.3390/ijerph15040631

Figure Legend

Fig.1. Flow diagram of study selection process.

Fig.2. Forest plot of PM$_{2.5}$ exposure (per 10 μg/m3 increase) with changes of TC, HDL-C, LDL levels and MetS morbidity. (*% change in the outcome per 10 mg/m3 pollutant increase. Abbreviations: $I^2 =$ measure of between-study heterogeneity; $P =$ Cochran's Q test P-value.)

Fig.3. Forest plot of PM$_{10}$ exposure (per 10 μg/m3 increase) with changes of TG, LDL-C, and HDL-C levels. (*% change in the outcome per 10 mg/m3 pollutant increase. Abbreviations: $I^2 =$ measure of between-study heterogeneity; $P =$ Cochran's Q test P-value.)

Fig.4. Forest plot of NO$_2$ exposure (per 10 μg/m3 increase) with changes of TC, TG and HDL-C levels. (*% change in the outcome per 10 mg/m3 pollutant increase. Abbreviations: $I^2 =$ measure of between-study heterogeneity; $P =$ Cochran's Q test P-value.)

Fig.5. Forest plot of PM$_{10}$ exposure (per 10 μg/m3 increase) with changes of HDL-C and LDL-C levels in diabetic population. (*% change in the outcome per 10 mg/m3 pollutant increase. Abbreviations: $I^2 =$ measure of between-study heterogeneity; $P =$ Cochran's Q test P-value.)
Records identified through database searching (n=2274)

Records after duplicates removed (n=1714)

Records title/abstract screened (n=1154)

Full-text articles assessed for eligibility (n=493)

Articles included in meta-analysis (n=10)

Duplicate records (n=560)

Records not addressing the research question and excluded based on title/abstract screening (n=661)

Full-text articles excluded (n=483)
1. Animal experiment (n=242)
2. Other exposures/outcomes (n=122)
3. Indoor pollution (n=107)
4. Methodological articles (n=12)
<table>
<thead>
<tr>
<th>Study ID</th>
<th>% change (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5/TC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang et al. 2018</td>
<td>1.10 (0.80, 1.40)</td>
<td>62.54</td>
</tr>
<tr>
<td>Mette et al. 2015</td>
<td>7.00 (1.20, 12.80)</td>
<td>37.46</td>
</tr>
<tr>
<td>Subtotal (I-squared = 74.8%, p = 0.046)</td>
<td>3.31 (-2.29, 8.91)</td>
<td>100.00</td>
</tr>
<tr>
<td>PM2.5/HDL-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang et al. 2018</td>
<td>-1.10 (-1.40, -0.80)</td>
<td>27.30</td>
</tr>
<tr>
<td>Wu et al. 2018</td>
<td>-2.33 (-4.67, -0.33)</td>
<td>1.66</td>
</tr>
<tr>
<td>Maayan et al. 2016</td>
<td>-1.84 (-2.04, -1.64)</td>
<td>32.77</td>
</tr>
<tr>
<td>Lee et al. 2019</td>
<td>-1.63 (-1.69, -1.56)</td>
<td>38.26</td>
</tr>
<tr>
<td>Subtotal (I-squared = 82.0%, p = 0.001)</td>
<td>-1.57 (-1.85, -1.28)</td>
<td>100.00</td>
</tr>
<tr>
<td>PM2.5/LDL-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang et al. 2018</td>
<td>2.90 (2.40, 3.50)</td>
<td>47.95</td>
</tr>
<tr>
<td>Maayan et al. 2016</td>
<td>1.83 (1.47, 2.17)</td>
<td>52.05</td>
</tr>
<tr>
<td>Subtotal (I-squared = 90.3%, p = 0.001)</td>
<td>2.34 (1.30, 3.39)</td>
<td>100.00</td>
</tr>
<tr>
<td>PM2.5/MetS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee et al. 2019</td>
<td>1.07 (1.03, 1.11)</td>
<td>38.99</td>
</tr>
<tr>
<td>Hou et al. 2020</td>
<td>2.85 (2.72, 2.98)</td>
<td>38.90</td>
</tr>
<tr>
<td>Rachel et al. 2016</td>
<td>12.70 (10.60, 15.20)</td>
<td>22.11</td>
</tr>
<tr>
<td>Subtotal (I-squared = 99.7%, p = 0.000)</td>
<td>4.33 (2.69, 5.98)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis
<table>
<thead>
<tr>
<th>Study ID</th>
<th>% change (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10/TG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang et al. 2018</td>
<td>4.70 (3.60, 5.90)</td>
<td>35.05</td>
</tr>
<tr>
<td>Shanley et al. 2016</td>
<td>2.18 (0.95, 3.39)</td>
<td>34.86</td>
</tr>
<tr>
<td>Cai et al. 2017</td>
<td>9.50 (7.00, 12.00)</td>
<td>30.09</td>
</tr>
<tr>
<td>Subtotal (I-squared = 93.0%, p = 0.000)</td>
<td>5.27 (2.03, 8.50)</td>
<td>100.00</td>
</tr>
<tr>
<td>PM10/LDL-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang et al. 2018</td>
<td>-0.90 (-1.30, -0.40)</td>
<td>32.37</td>
</tr>
<tr>
<td>Maayan et al. 2016</td>
<td>1.14 (1.01, 1.25)</td>
<td>34.37</td>
</tr>
<tr>
<td>Shanley et al. 2016</td>
<td>1.06 (0.73, 1.41)</td>
<td>33.26</td>
</tr>
<tr>
<td>Subtotal (I-squared = 97.3%, p = 0.000)</td>
<td>0.45 (-0.57, 1.47)</td>
<td>100.00</td>
</tr>
<tr>
<td>PM10/HDL-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maayan et al. 2016</td>
<td>-0.57 (-0.63, -0.49)</td>
<td>54.83</td>
</tr>
<tr>
<td>Shanley et al. 2016</td>
<td>0.16 (-0.29, 0.61)</td>
<td>45.17</td>
</tr>
<tr>
<td>Subtotal (I-squared = 89.9%, p = 0.002)</td>
<td>-0.24 (-0.95, 0.47)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis
Figure 4

<table>
<thead>
<tr>
<th>Study ID</th>
<th>% change (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO2/TC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang et al. 2018</td>
<td>0.95 (0.00, 1.89)</td>
<td>48.66</td>
</tr>
<tr>
<td>Mette et al. 2015</td>
<td>1.07 (0.16, 2.00)</td>
<td>51.34</td>
</tr>
<tr>
<td>Subtotal (I-squared = 0.0%, p = 0.858)</td>
<td>1.01 (0.35, 1.67)</td>
<td>100.00</td>
</tr>
<tr>
<td>NO2/TG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang et al. 2018</td>
<td>6.00 (3.50, 8.60)</td>
<td>42.25</td>
</tr>
<tr>
<td>Cai et al. 2017</td>
<td>2.84 (2.16, 3.65)</td>
<td>57.75</td>
</tr>
<tr>
<td>Subtotal (I-squared = 81.6%, p = 0.020)</td>
<td>4.18 (1.12, 7.23)</td>
<td>100.00</td>
</tr>
<tr>
<td>NO2/HDL-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang et al. 2018</td>
<td>-1.60 (-2.30, -1.00)</td>
<td>49.27</td>
</tr>
<tr>
<td>Cai et al. 2017</td>
<td>0.54 (0.14, 0.95)</td>
<td>50.73</td>
</tr>
<tr>
<td>Subtotal (I-squared = 96.7%, p = 0.000)</td>
<td>-0.51 (-2.61, 1.58)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis
<table>
<thead>
<tr>
<th>Study ID</th>
<th>% change (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10/HDL-C*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang et al. 2018</td>
<td>-0.29 (-0.49, -0.10)</td>
<td>44.62</td>
</tr>
<tr>
<td>Maayan et al. 2016</td>
<td>-0.57 (-0.64, -0.49)</td>
<td>55.38</td>
</tr>
<tr>
<td>Subtotal (I-squared = 85.5%, p = 0.009)</td>
<td>-0.45 (-0.72, -0.17)</td>
<td>100.00</td>
</tr>
<tr>
<td>PM10/LDL-C*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang et al. 2018</td>
<td>0.83 (0.21, 1.45)</td>
<td>13.09</td>
</tr>
<tr>
<td>Maayan et al. 2016</td>
<td>1.19 (1.06, 1.32)</td>
<td>86.91</td>
</tr>
<tr>
<td>Subtotal (I-squared = 19.4%, p = 0.265)</td>
<td>1.14 (0.90, 1.38)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis