Research Letter

Do COVID-19 patients admitted to the ICU require anti-Pneumocystis jirovecii prophylaxis?

Alexandre Alanio, M.D., Ph.D.*
Laboratoire de Parasitologie-Mycologie AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Université de Paris, and Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, URA3012, Paris, France

Sebastian Voicu, M.D., Ph.D.
Réanimation Médicale et Toxicologique, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Université de Paris, INSERM UMRS1144, Paris, France

Sarah Dellière, M.D.
Laboratoire de Parasitologie-Mycologie AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Université de Paris, and Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, URA3012, Paris, France

Bruno Mégarbane, M.D., Ph.D.
Réanimation Médicale et Toxicologique, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Université de Paris, INSERM UMRS1144, Paris, France

Stéphane Bretagne, M.D., Ph.D.
Laboratoire de Parasitologie-Mycologie AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Université de Paris, and Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, URA3012, Paris, France

*Corresponding author (e-mail: alexandre.alanio@aphp.fr)
Author Contributions:

Concept and design: Alanio, Mégarbane, Bretagne

Patient care: Voicu, Mégarbane.

Microbiological analysis: Alanio, Dellière, Bretagne

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Alanio, Mégarbane, Bretagne

Critical revision of the manuscript for important intellectual content: All authors.

Dr Alanio had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Conflict of Interest Disclosures: None reported.

Funding: The case investigations, analysis, and manuscript preparation were completed as part of official duties at the university hospital.

Acknowledgment: The authors would like to thank Mrs. Alison Good (Scotland, UK) for her helpful review of the manuscript. We would also like to thank our team who managed all COVID-19 patients and our lab technical staff who performed pneumocystis RTqPCR on COVID-19 positive specimens.

Keywords: COVID-19; pneumocystosis; Pneumocystis jirovecii

Word count: 1000 words + 10 references + 1 table + 1 Figure
To the Editor:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is spreading pandemically with more than 3,500,000 diagnosed cases and 250,000 fatalities reported on May 07th 2020 (https://coronavirus.jhu.edu/map.html). Approximately 5-10% of coronavirus disease 2019 (COVID-19) patients may require intensive care unit (ICU) management including mechanical ventilation and 30% may develop secondary pneumonia without identified etiology (1). Hospital-acquired bacterial or fungal superinfections, as described in critically ill patients with Influenza virus, can be suspected (2). Since pneumocystosis is usually reported in patients with T-cell immunodepression (3), less attention has been paid to Pneumocystis jirovecii in non-immunocompromised ICU patients although it accounts for 7% of the co-infections reported in those admitted with Influenza (4). Interestingly, COVID-19 patients may develop acute respiratory distress syndrome (ARDS) requiring adjunctive steroids or other immunomodulatory therapies, a well-known susceptibility factor for developing pneumocystosis (4). Here, we investigated the prevalence of P. jirovecii acid nucleic detection in respiratory specimens sampled to identify co-infections in COVID-19 patients admitted to the ICU.

Methods

All consecutive patients admitted to the ICU between March 15th and April 15th 2020 were enrolled. This study was part of the French COVID-19 cohort registry conducted by the REACTing consortium (REsearch and ACTion targeting emerging infectious diseases) and directed by INSERM (Institut national de la santé et de la recherche médicale) and ISARIC (International Severe Acute Respiratory and Emerging Infection Consortium). Our institutional ethics committee approved the study (IDRCB, 2020-A00256-33; CPP, 11-20 20.02.04.68737). When possible, signed informed consent was obtained from the patients or the next of kin.

Upon reception in the laboratory, all specimens including bronchoalveolar lavage (BAL) fluids and dTT-treated aspirations (dTT 1X at 37°C for 15min) were centrifuged, suspended in 200µL of water and submitted to extraction (whole nucleic acids extraction) using the GeneLead VIII extractor-thermocycler™ (Precision System Science, Matsudo, Japan). P. jirovecii reverse transcriptase quantitative PCR (RTqPCR)
was performed to amplify mtSSU and mtLSU RNA and DNA of *P. jirovecii* using the new R-DiaPnJ kit™ (Diagenode, Liege, Belgium). β-D-glucan was tested using the Fungitell kit™ (Cape Cod Inc, Falmouth, US) as recommended by the manufacturer. Data are presented as median [range] or percentages as appropriate. Comparisons were performed using Mann-Whitney or exact Fisher tests as required. *P*<0.05 was considered as significant.

Results

Twenty-nine successive COVID-19 patients (M/F sex ratio, 2.6; age, 60 years [33-80]) with the usual risk factors for severe COVID-19 presentation were included (Table1). All patients except one were intubated on admission. Twenty-seven patients (93%) who developed ARDS received corticosteroids once mechanically ventilated. Respiratory samples included 27 BALs (93%) and two bronchial aspiration fluids (7%). In 5/29 patients (17%), *P. jirovecii* RTqPCR was positive. The median quantitative cycle value was 32.4 [28.9-36.5].

No significant differences were observed between *P. jirovecii* RTqPCR-positive and negative patients in terms of age, risk factors for severe COVID-19 including prior steroid therapy, severity of ARDS, viral load, blood lymphocyte count, time between intubation or onset of symptoms and SARS-CoV2 detection and time between onset of symptoms, intubation or SARS-CoV2 detection and respiratory specimen sampling. Interestingly, the proportion of macrophages in BAL fluids was significantly higher in *P. jirovecii* RTqPCR-positive versus negative patients (*P*=0.003; Figure1), by contrast to the proportions of neutrophils and lymphocytes.

Three out of five *P. jirovecii* RTqPCR-positive patients received co-trimoxazole as prophylaxis. To date, one patient has died, one patient is still mechanically ventilated and the three others including the two patients who were not treated with co-trimoxazole have been discharged from the hospital.

Discussion

We found an unexpectedly high proportion of critically ill COVID-19 patients detected with *P. jirovecii* (17%) as compared to previous findings in influenza patients (~7%) (4).
The presence of *P. jirovecii* in the healthy adult population has been measured using oropharyngeal wash samples obtained by gargling and examined by conventional or nested PCR methods. However, experts agree that the reported prevalence (~20%) has been overestimated due to technical issues such as contamination with amplicons responsible for false positives (3). In our experience using qPCR, around 15% of BAL fluids are positive in immunocompromised patients (3), supporting the proposal that the prevalence we observed in the apparently non-immunocompromised COVID-19 patients is actually elevated. These patients mostly exhibit marked lymphopenia and alterations in lymphocyte functions (6), likely explaining the high-rate of *P. jirovecii* detection. Nevertheless, β-D-glucan concentrations measured in the respiratory fluid specimens obtained in our five *P. jirovecii* RTqPCR-positive patients were lower than 120pg/mL supporting limited fungal loads in the lung alveoli (7). Of note, in two out of our nine tested *P. jirovecii* RTqPCR-negative patients, higher β-D-glucan concentrations (450 and 523pg/ml) lead to the diagnosis of putative invasive aspergillosis, another fungal infection of risk in COVID-19 patients (8).

Surprisingly, the BAL macrophage proportion was particularly elevated in our *P. jirovecii* RTqPCR-positive COVID-19 patients. In immunocompromised adults with pneumocystosis, BAL macrophage proportions of ~45% have been reported (9). Interestingly, in non-HIV patients, the count and proportion of BAL macrophages was significantly increased in mild compared to severe pneumocystosis, i.e. 40.7% versus 28.3% and 76 versus 50cells/µl, respectively (10). Taken together, these findings strengthen the hypothesis that *P. jirovecii* presence in the deep lung may influence local immunity and enhance inflammation.

Here, three out of five *P. jirovecii* RTqPCR-positive patients received co-trimoxazole as prophylactic regimen, based on the treating physician’s decision. Whether a positive result should be an indication to consider administering co-trimoxazole, at least at prophylactic dosage in COVID-19 patients remains questionable.

Our study limitations include the relatively small number of patients, the single-center setting, and the short study period. However, to the best of our knowledge, this is the first study evaluating the prevalence of *P. jirovecii* in COVID-19 patients. Because we focused on critically ill COVID-19 patients, prevalence of *P. jirovecii* in less severe patients remains to be determined.
In conclusion, based on our findings, we advocate systematically searching for *P. jirovecii* in deep respiratory specimens in critically ill COVID-19 patients. We believe that this strategy may be useful in limiting enhanced inflammation due to the presence of *P. jirovecii* in the lung and avoiding inter-patient *P. jirovecii* transmission.

Author disclosure

The authors declare no conflict of interest.

Figure 1. Distribution of the proportion of macrophages in the bronchoalveolar lavage (BAL) with positive or negative *Pneumocystis jirovecii* reverse transcriptase quantitative PCR (PjRTqPCR)
References

Table 1. Characteristics of twenty-nine critically ill COVID-19 patients according to *Pneumocystis jirovecii* detection in the respiratory samples

<table>
<thead>
<tr>
<th>Parameters</th>
<th>P. jirovecii RTqPCR-positive patients (n=5)</th>
<th>P. jirovecii RTqPCR-negative patients (n=24)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>59 [41-79]</td>
<td>60 [33-80]</td>
<td>0.64</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>1.5</td>
<td>3</td>
<td>0.60</td>
</tr>
<tr>
<td>Diabetes, N (%)</td>
<td>1 (20)</td>
<td>10 (42)</td>
<td>0.62</td>
</tr>
<tr>
<td>Hypertension, N (%)</td>
<td>3 (60)</td>
<td>11 (46)</td>
<td>0.65</td>
</tr>
<tr>
<td>Obesity, N (%)</td>
<td>0</td>
<td>7 (29)</td>
<td>0.30</td>
</tr>
<tr>
<td>Ischemic heart disease, N (%)</td>
<td>1 (20)</td>
<td>5 (21)</td>
<td>0.99</td>
</tr>
<tr>
<td>Prior steroid therapy, N (%)</td>
<td>2 (40)</td>
<td>2 (8)</td>
<td>0.13</td>
</tr>
<tr>
<td>PaO2/FiO2 (mmHg)</td>
<td>167 [79-290]</td>
<td>162.5 [42-480]</td>
<td>0.59</td>
</tr>
<tr>
<td>Time from symptom start to SARS-CoV2 detection (days)</td>
<td>7 [4-13]</td>
<td>7.5 [3-30]</td>
<td>0.92</td>
</tr>
<tr>
<td>Time from symptom start to tracheal intubation (days)</td>
<td>8 [5-16]</td>
<td>8 [3-33]</td>
<td>0.72</td>
</tr>
<tr>
<td>Time from tracheal intubation to BAL (days)</td>
<td>1 [0-5]</td>
<td>3 [0-20]</td>
<td>0.25</td>
</tr>
<tr>
<td>Lymphocyte count (G/L)</td>
<td>0.8 [0.3-1.5]</td>
<td>1.1 [0.3-2.8]</td>
<td>0.99</td>
</tr>
<tr>
<td>BAL macrophages, N (%)</td>
<td>53 [49-72]</td>
<td>26 [4-46]</td>
<td>0.0003</td>
</tr>
<tr>
<td>BAL neutrophils, N (%)</td>
<td>23.5 [10-32]</td>
<td>46 [3-87]</td>
<td>0.29</td>
</tr>
<tr>
<td>BAL lymphocytes, N (%)</td>
<td>18 [10-39]</td>
<td>23 [1-74]</td>
<td>0.83</td>
</tr>
<tr>
<td>β-D-glucan (pg/mL) (N=13)</td>
<td>16.3 [7.0-105.0]</td>
<td>13.1 [7.8-523.0]</td>
<td>0.60</td>
</tr>
<tr>
<td>Viral load, (cycle)</td>
<td>23 [17-32]</td>
<td>28 [15-37]</td>
<td>0.34</td>
</tr>
<tr>
<td>Steroid administration in the ICU, %†</td>
<td>4 (80)</td>
<td>17 (71)</td>
<td>0.99</td>
</tr>
<tr>
<td>Outcome (death / in ICU / discharged), N (%)</td>
<td>1 (20) / 1 (20) / 3 (60)</td>
<td>9 (38) / 3 (12) / 12 (50)</td>
<td>0.1</td>
</tr>
</tbody>
</table>

BAL, bronchoalveolar lavage; ICU, intensive care unit; RTqPCR, reverse transcriptase quantitative polymerase chain reaction;
†Steroid regimen, dexamethasone intravenous dose of 20 mg once daily from day 1 to day 5, followed by 10 mg once daily from day 6 to day 10.