Title Page

*Amna Tariq, MPH, Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA

Eduardo A. Undurraga, Doctorate, Escuela de Gobierno, Pontificia Universidad Católica de Chile and Millennium Initiative for Collaborative Research in Bacterial Resistance (MICROB-R), Chile

Carla Castillo Laborde, MSc., Centro de Epidemiología y Políticas de Salud, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile

Katia Vogt-Geisse, Ph.D., Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile

Ruiyan Luo, Ph.D., Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA

Richard Rothenberg, MD, MPH, Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA

Gerardo Chowell, Ph.D., Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA

Correspondence should be addressed to: *Amna Tariq, Department of Population Health Sciences, Georgia State University School of Public Health, Atlanta GA, 30303, atariq1@student.gsu.edu

Contact number: 470-985-6352

Research Article

Abstract word count = 150 words

Text word count= 3095 words

Figures= 5
Table= 1

Article Summary Line: COVID-19 epidemic shows an early sub-exponential growth trend and sustained transmission of SARS-CoV-2 in Chile despite early control interventions, underscoring the need for persistent social distancing and active case finding efforts.

Running Title: Early transmission dynamics of COVID-19 in Chile

Keywords: COVID-19, SARS-CoV-2, Generalized growth model, Sub-epidemic wave model, Interventions

Title: Early transmission dynamics of COVID-19 in Chile: From sub-exponential ascending growth dynamics to a stationary disease wave, March-April, 2020

Authors: Amna Tariq, Eduardo A. Undurraga, Carla Castillo Laborde, Katia Vogt-Geisse, Ruiyan Luo, Richard Rothenberg, Gerardo Chowell

Affiliations: School of Public Health, Georgia State University, Atlanta, GA, USA (A. Tariq, R. Luo, R. Rothenberg, G. Chowell), Escuela de Gobierno, Pontificia Universidad Católica de Chile (E. A. Undurraga), Millennium Initiative for Collaborative Research in Bacterial Resistance (MICROB-R), Chile (E. A. Undurraga), Centro de Epidemiología y Políticas de Salud, Clínica Alemana Universidad del Desarrollo, Santiago, Chile (C. C. Laborde), Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile (K. V. Geisse)

Email addresses: A. Tariq (atariq1@student.gsu.edu), E. A. Undurraga (eundurra@uc.cl), C. C. Laborde (carlacastillo@udd.cl), K. V. Geisse (katia.vogt@uai.cl), R. Luo (rluo@gsu.edu), R. Rothenberg (rothenberg@gsu.edu), G. Chowell (gchowell@gsu.edu)
Abstract

The COVID-19 pandemic reached Latin America in February 2020, with the first case in Chile identified on March 3rd, 2020. Since then Chile has accumulated a total of 14365 cases as of April 28th, 2020. We estimate the reproduction number during the early transmission phase in Chile and study the effectiveness of control interventions by conducting short-term forecasts based on early transmission dynamics of COVID-19. The incidence curve displays sub-exponential growth dynamics with the scaling of growth parameter, p, estimated at 0.8 (95% CI: 0.7, 0.8) and the reproduction number estimated at 1.6 (95% CI: 1.5, 1.6). The sub-epidemic model indicates a stationary wave of stable epidemic size. Our current findings point to sustained transmission of SARS-CoV-2 in Chile. While the social distancing interventions have slowed the virus spread, the number of new COVID-19 cases continue to accrue, underscoring the need for persistent social distancing efforts to control the epidemic.
Main text

Introduction

The coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was declared a global pandemic by the WHO (World Health Organization) on March 11th, 2020 (1). This highly contagious unprecedented virus has impacted government and public institutions, strained the health care systems, restricted people in their homes and caused country-wide lock downs resulting in a global economic crisis. Moreover, as of May 2nd, 2020, more than 3 million COVID-19 cases in 210 countries and territories have been recorded, including more than 200,000 deaths (2). The social, economic and psychological impact of this pandemic on much of the world’s population is profound (3).

Soon after its initial rapid spread in China, the first case of novel coronavirus beyond China was reported in Thailand on January 13th, 2020 (4). The first case in the USA was not identified until January 20th, 2020 followed by the detection of the first cases in the European territory on January 24th, 2020 (5, 6). The COVID-19 pandemic has since spread to every continent except the Antarctica. While some countries like Australia and New Zealand have steadily suppressed the COVID-19 spread as of April 20th, 2020, reporting ~0-17 cases per day, other countries like Italy, Spain and the US still struggle to contain the increasing number of cases (7). Subsequently, considerable COVID-19 outbreaks have occurred in Latin America since late February 2020, with 61888 cases reported in Brazil, followed by 27517 cases in Peru, 23240 cases in Ecuador, 14677 cases in Mexico and 14365 cases in Chile as of April 28th, 2020 (7, 8). The first case of SARS-CoV-2 in Chile was identified on March 3rd, 2020. While the initial cases were imported from South East Asia and Europe, the COVID-19 case counts have expanded in this country, placing
Chile in phase 4 of the pandemic and surpassing 1000 reported cases of the novel coronavirus on March 25th, 2020 (9).

Chile is the fifth country in Latin America after Brazil, Mexico, Ecuador and Argentina to report COVID-19 cases. The first six imported cases were reported in the city of Talca and the capital of Chile, Santiago (10). However, since the early phase of the outbreak, Chile has employed an agile public health response by announcing a ban on large public health gatherings of more than 500 people on March 13th, 2020 when the nationwide cumulative case count reached 44 reported cases (11). Moreover, the Chilean government announced the closure of all day cares, schools and universities on March 16th, 2020. This was followed by the announcement to close country borders on March 18th, 2020, and the declaration of national emergency on the same date, which was accompanied with several concrete interventions to further contain the outbreak in the region (12, 13). In particular, this has been followed by a night time curfew in Chile as of March 22nd, 2020, and intermittent targeted lockdowns (i.e., lockdown goes on and off at the municipality level depending on total cases and case growth) starting on March 28th in two municipalities in Southern Chile and seven municipalities in Santiago (13). Chile has accumulated a total of 14365 reported cases including 207 deaths as of April 28th, 2020. The majority of these cases are concentrated in Chile’s capital, Santiago, with 8300 reported cases and the Araucanía in Southern Chile with 1251 reported cases (14). However, the crude case fatality rate in Chile (1.4%) remains well below the global average (6.8%) (7, 10).

In this study we estimate the transmission potential of COVID-19, including the effective reproduction number, R, during the early transmission phase of the COVID-19 epidemic in Chile that can guide the magnitude and intensity of control interventions to combat the epidemic (15, 16). Moreover, we can study the effectiveness of control interventions in Chile, including closure
of country borders, schools and non-essential businesses and the implementation of night time
curfew among others (see Table 1) on the transmission rate by conducting short-term forecasts
calibrated using the trajectory of the epidemic (17).

Methods

COVID-19 incidence and testing data

We obtained updates on the daily series of COVID-19 cases as of April 28th, 2020 from
the publicly available data from the Github repository created by the government of Chile (8).
Incidence case data by the date of reporting, confirmed by PCR (polymerase chain reaction) tests
from March 3rd–April 28th, 2020 were analyzed. The daily testing and positivity rates available
from April 9th–April 28th, 2020 were also analyzed.

Generalized growth model (GGM)

We generate short term forecasts in real time using the generalized growth model (GGM)
that characterizes the early ascending phase of the epidemic by estimating two parameters: (1) the
intrinsic growth rate, \(r \); and (2) a dimensionless “deceleration of growth” parameter, \(p \). This model
allows to capture a range of epidemic growth profiles, by modulating parameter \(p \), including sub-
exponential (polynomial) (0< \(p <1 \)) and exponential growth trends (\(p =1 \)). The GGM model is
given by the following differential equation:

\[
\frac{dC(t)}{dt} = C'(t) = rC(t)^p
\]

In this equation \(C'(t) \) describes the incidence curve over time \(t \), \(C(t) \) describes the cumulative
number of cases at time \(t \) and \(p\in[0,1] \) is a “deceleration of growth” parameter. This equation
becomes constant incidence over time if \(p =0 \) and an exponential growth model for cumulative
cases if \(p =1 \). Whereas if \(p \) is in the range 0< \(p <1 \), then the model indicates sub-exponential growth
dynamics (18, 19).
Sub-epidemic wave model

We also fit the sub-epidemic model to the daily incidence of COVID-19, that depicts various profiles of overlapping sub-epidemics shaping the epidemic waves. This model characterizes each group sub-epidemic by a 3-parameter generalized logistic growth model (GLM) given by the following differential equation:

\[
\frac{dC(t)}{dt} = rC(t)^p \left(1 - \frac{C(t)}{K_o}\right)
\]

In this equation \(\frac{dC(t)}{dt}\) describes the incidence curve over time \(t\), \(C(t)\) describes the cumulative number of cases at time \(t\), \(p\in[0,1]\) is a “deceleration of growth” parameter, \(r\) is a positive growth rate parameter (1/time) and \(K_o\) is the final epidemic size. This model describes different early epidemic growth profiles, from constant incidence if \(p = 0\), to sub-exponential/polynomial initial growth if \(0 < p < 1\), and initial exponential growth dynamics if \(p = 1\). Next, we model an epidemic wave comprising of \(n\) overlapping sub-epidemics given by the following system of coupled differential equation:

\[
\frac{dC_i(t)}{dt} = rA_{i-1}(t)C_i(t)^p \left(1 - \frac{C_i(t)}{K_i}\right), i = 1, ..., n
\]

In this equation \(C_i(t)\) describes the cumulative infection number for \(i^{th}\) sub-epidemic, and \(K_i\) is the size of sub-epidemic \(i\), where \(i=1,...,n\). The equations are coupled through an indicator variable, \(A_i(t)\) that models the onset timing of \((i+1)^{th}\) sub-epidemic, making sure that sub-epidemics comprising an epidemic wave follow a regular structure. Therefore,

\[
A_i(t) = \begin{cases}
1 & C_i(t) > C_{thr} \quad i = 1,2,3,...,n - 1 \\
0 & Otherwise
\end{cases}
\]
where \(1 \leq C_{thr} < K_0\) and \(A_0(t) = 1\) for the sub-epidemic 1. Moreover, for the subsequently occurring sub-epidemics, the size of the \(i\)th sub-epidemic \((K_i)\) declines exponentially at a rate \(q\) because of multiple factors such as the effect of interventions, behavior changes and changes in disease transmission dependent on seasonality, we have,

\[
K_i = K_0 e^{-q(i-1)}, \quad i = 1, 2, ..., n,
\]

where \(K_1 = K_0\) is the final size of sub-epidemic 1. If \(q = 0\), then the model predicts an epidemic wave composed of subsequent sub-epidemics of equal size. If the epidemic wave is comprised by a single sub-epidemic, the model boils down to the 3-parameter generalized growth model whereas an epidemic wave comprised by two or more sub-epidemics is calibrated with 5 parameters: \(r, p, K_0, q\) and \(C_{thr}\) (20).

Calibration of the GGM and sub-epidemic wave model

We calibrate the GGM model and the sub-epidemic wave model to the daily incidence curve by dates of reporting in Chile using time series data that is available from March 3rd–March 30th, 2020 and from March 3rd–April 28th, respectively.

Model parameters are estimated by a non-linear least square fitting of model solution to the incidence data by the date of reporting. This is achieved by searching for the set of model parameters \(\hat{\Theta} = (\Theta_1, \Theta_2, ..., \Theta_m)\) that minimizes the sum of squared differences between the observed data \(y_{ti} = y_{t1}, y_{t2}, ..., y_{tn}\) and the corresponding mean incidence curve given by \(f(t_i, \Theta)\): where \(\Theta = (r, p)\) correspond to an estimated set of parameters of the GGM model and \(\Theta = (r, p, K_0, q, C_{thr})\) to an estimated set of parameters of the sub-epidemic wave model. In both cases, the objective function for the best fit solution of \(f(t_i, \Theta)\) is given by:

\[
\hat{\Theta} = \arg \min \sum_{i=1}^{n}(f(t_i, \Theta) - y_{ti})^2
\]
where t_i is the time stamp at which the time series data are observed and n is the total number of data points available for inference. The initial condition is fixed to the first observation in the data set. This way, $f(t_i, \Theta)$ gives the best fit to the time series data y_{t_i}. Next, we utilize a parametric bootstrapping approach assuming Poisson error structure for the sub-epidemic model and the negative binomial error structure for the GGM model to derive uncertainty in the parameters obtained by non-linear least square fit of the data as previously described ($18, 21$). The model confidence intervals of parameters and the 95% prediction intervals of model fit are also obtained using the parametric bootstrap approach (18).

Reproduction number, R, from case incidence using GGM

The reproduction number, R, is defined as the average number of secondary cases generated by a primary case during the early ascending phase of an outbreak. This is a crucial quantity to identify the intensity of interventions required to contain an epidemic ($22, 23$). Estimates of effective R indicate if the disease transmission continues ($R>1$) or if the active disease transmission ceases ($R<1$). Therefore, in order to contain an outbreak, we need to maintain $R<1$.

We estimate the reproduction number by calibrating the GGM to the early growth phase of the epidemic (28 days) (19). We model the generation interval of SARS-CoV-2 assuming gamma distribution with a mean of 4.41 days and a standard deviation of 3.17 days ($24-28$). We estimate the growth rate parameter, r, and the deceleration of growth parameter, p, as described above. Then we simulate the progression of incidence cases from the calibrated GGM model and apply the discretized probability distribution of the generation interval to the renewal equation (16):

$$R_{t_i} = \frac{I_i}{\sum_{j=0}^{I_i} (I_{t_i-j} p_j)}$$
In this equation, local incidence at calendar time t_i is denoted by I_i and the discretized probability distribution of the generation interval is denoted by ρ_i. The numerator represents the total new cases I_i, and the denominator represents the total number of cases that contribute to generating the new cases I_i at time t_i. This way, R_t, represents the average number of secondary cases generated by a single case at time t. Next, we derive the uncertainty bounds around the curve of R_t directly from the uncertainty associated with the parameter estimates (r, p). We estimate R_t for 300 simulated curves assuming a negative binomial error structure (18).

Results

Sub-epidemic model fit to case incidence data

A total of 14365 cases were reported by the Ministry of Health Chile as of April 28th, 2020 (8). On average ~441 (SD: 81.3) new cases were reported between April 9th-April 28th, 2020. Figure 1 shows the daily incidence data of all confirmed cases in Chile as of April 28th, 2020. The sub-epidemic model fit to the daily series of case incidence shows an epidemic wave comprised of 3 sub epidemics, and parameter q is estimated to be low, suggesting stable incidence pattern (Figure 2). The figure shows that the sub-epidemic wave model captures successfully the case incidence trend in Chile as of April 28th, 2020 with an epidemic wave comprised by 3 sub-epidemics, and with the “deceleration of growth” parameter, p, estimated at 0.81 (95% CI: 0.77, 0.84), the growth rate parameter, r, estimated at 0.69 (95% CI: 0.57, 0.86), the final size K_o of the first sub-epidemic estimated at $1.01 * 10^4$ (95% CI: 9.33 * 10^3, 1.09 * 10^4), and the final size exponential growth rate, q, estimated at 0.0046 (95% CI: 7.63 * 10^{-12}, 0.224).

Initial growth dynamics and estimate of the reproduction number using GGM

We estimate the reproduction number for the first 28 epidemic days incorporating the effects of the social distancing interventions as explained in Table 1. The incidence curve displays...
sub-exponential growth dynamics with the scaling of growth parameter, p, estimated at 0.8 (95% CI: 0.7, 0.9) and the intrinsic growth rate, r, estimated at 0.8 (95% CI: 0.7, 0.9). The reproduction number for the early transmission phase was estimated at 1.6 (95% CI: 1.5, 1.6) (Figure 3).

Assessing the impact of social distancing interventions

To assess the impact of social distancing interventions in Chile given in Table 1, we generated a 20-days ahead forecast for Chile based on the daily incidence curve until March 30th, 2020. The 28-day calibration period of the model yields an estimated growth rate, r, at 0.8 (95% CI: 0.6, 1.0) and a scaling of growth rate parameter, p, at 0.8 (95% CI: 0.7,0.8). The 20-day ahead forecast suggests that the social distancing measures have significantly slowed down the spread of the virus in Chile, and whose effect is noticeable about two weeks after the implementation of an intervention as shown in Figure 4.

COVID-19 testing rates and positivity rate

Daily testing and positivity rates for the time period April 9th–April 28th, 2020 by the date of reporting are shown in Figure 5. The total number of tests performed for this time period were 105654, amongst which 8819 had positive results. The average number of tests performed daily was estimated at ~4739 between April 9th–April 16th, 2020 and ~5645 between April 17th–April 28th, 2020, a 19% increase. Subsequently, the positivity rate (percentage of positive tests among the total number of tests) fluctuated between 4.8 and 14.2% between April 9th–April 28th, 2020 with an average positivity rate of 8.8% (SD:2.3).

Discussion

The current estimates of the early transmission potential in Chile for the first 28 days of the epidemic indicates sustained local transmission in the country with the estimate of reproduction number R at ~1.6 (95% CI: 1.5, 1.6) which is in accordance with the lower estimates of the
reproduction numbers from studies conducted in China, Brazil, Korea, Peru, South Africa and Iran that lie in the range of 1.5-7.1 (29-37). In contrast, the even lower estimates of R (<1) that have been reported in Singapore and Australia can be correlated with the implementation of early social distancing interventions in these countries (38, 39).

The initial scaling of the growth parameter in Chile indicates a sub-exponential growth pattern ($p \sim 0.8$), consistent with sub-exponential growth patterns of COVID-19 that have been observed in Singapore ($p \sim 0.7$), Korea ($p \sim 0.76$) and other Chinese provinces excluding Hubei ($p \sim 0.67$) (34, 38, 40). In contrast, recent studies have reported nearly exponential growth pattern of the COVID-19 in Iran and Peru and an exponential growth pattern in China (31, 37, 40).

Although the initial transmission stage of COVID-19 in Chile has been attributed to multiple case importations, Chile was quick to implement control measures against the COVID-19 epidemic including border closures on March 18th, 2020 to prevent further case importations. The 20-day ahead forecast of our GGM model calibrated to 28 days suggest that the social distancing measures including closure of schools, universities and day cares have helped slow down the virus spread in the country by reducing population mobility (41). Moreover, the sub-epidemic model fit also indicates a stationary wave composed of three sub-epidemics, reaching a saturation point (~550-580 cases) associated with the social distancing interventions in Chile. The cocktail of interventions including school closures, night time curfew and ban on social gatherings in Chile can be attributed to preventing the disease trend from growing exponentially in the early growth phase. The fluctuations in the case incidence in April, 2020 can be attributed to the weekend effect with more cases reported on Mondays. While, the COVID-19 case incidence exhibits a relative stabilization in case trajectory for the last two epidemic weeks (with an average
of ~441 cases per day), highlighting the positive effects of quarantine and lockdowns in the country, case counts continue to accrue.

Though the number of reported cases in Latin America remains low compared to the US and China, official data for many Latin American countries are incomplete. However, Chile has tested a higher percentage of its residents than any other Latin American nation lending confidence to its reliability (42). For instance, the average number of COVID-19 tests performed in Chile per day is ~5464, much higher compared to the neighboring South American country, Peru (~671 tests per day) (37). Moreover, the average positivity rate of COVID-19 in Chile is estimated at ~8.8% between April 9th-April 28th, 2020 due to the widespread testing in the country. This positivity rate for Chile is consistent with the positivity rates derived from Peru, Denmark, Germany and Canada (6-9%) (43). However, some countries like New Zealand, Australia and South Korea have reached even lower positivity rates (2-3%), with South Korea’s large testing capacity combined with a strategy that tracks infected people via cell phones (42, 44). In comparison, Italy and the US have shown much higher positivity rates (15-20%) for COVID-19, indicating overall limited testing in these countries (45, 46). Moreover, studies suggest there is asymptomatic transmission of SARS-CoV-2, which means we could have underestimated our estimates based on the daily incidence’s growth trend from symptomatic cases (47). Other studies have shown a substantial proportion of cases are not detected by surveillance systems that results in the underestimation of epidemic growth curve (48). On the other hand, relative transmission of asymptomatic cases in Chile is also unknown (49, 50). While our study highlights the effectiveness of control interventions in Chile, it also underscores the need for persistent isolation and social distancing measures to stomp all active disease transmission chains in Chile.
This study has some limitations. First our study analyzes cases by the dates of reporting while it is ideal to analyze the cases by the dates of onset or after adjusting for reporting delays. On the other hand, a substantial fraction of the COVID-19 infections exhibit very mild or no symptoms at all, which may not be reflected by data (26). Second, the data is not stratified by local vs. imported cases, therefore, we assume that all cases contribute equally to the transmission dynamics of COVID-19. Finally, the extent of selective underreporting, and its impact on these results, is difficult to assess.

Conclusion

In this study we estimate the early transmission potential of SARS-CoV-2 in Chile. Our current findings point to sustained transmission of SARS-CoV-2 in the early phase of the outbreak, with our estimate of the reproduction number at ~1.6. The COVID-19 epidemic in Chile followed an early sub-exponential growth trend. While the social distancing interventions have slowed the virus spread, the number of new COVID-19 cases continue to accumulate, underscoring the need for persistent social distancing and active case finding efforts to bring the epidemic under control.

Acknowledgments

Not applicable

Disclaimers

Not applicable

Author Bio

Amna Tariq is a PhD student in the Department of Population Health Science, School of Public Health, Georgia State University, Atlanta, GA. Her primary research focus is mathematical modeling and quantitative analysis of infectious diseases and emerging epidemics.

List of abbreviations
COVID-19

SARS-CoV-2

PCR

WHO

Conflict of Interest

The authors declare no conflicts of interest.

References

42. Thomson E, Sanders P. Chile Charts New Path With Rolling Lockdowns, Immunity Cards. Bloomberg. 2020 April 22.

Address for correspondence: Amna Tariq, Department of Population Health Sciences, Georgia State University School of Public Health, Atlanta GA, 30303 email: atariq1@student.gsu.edu

Contact number: 470-985-6352
Table 1. Timeline of the implementation of the social distancing interventions in Chile as of April 28th, 2020.

<table>
<thead>
<tr>
<th>Date</th>
<th>Control interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 13th, 2020</td>
<td>Ban on large social gatherings implemented in Chile (11)</td>
</tr>
<tr>
<td>March 16th, 2020</td>
<td>Closures of day care, schools and universities in Chile (12, 13)</td>
</tr>
<tr>
<td></td>
<td>Mandatory quarantine of high risk individuals returning from Iran, China, West Europe and South Korea</td>
</tr>
<tr>
<td>March 18th, 2020</td>
<td>Declaration of national emergency</td>
</tr>
<tr>
<td></td>
<td>Closure of country borders (12, 13)</td>
</tr>
<tr>
<td></td>
<td>Telework implemented</td>
</tr>
<tr>
<td>March 19th, 2020</td>
<td>Closure of mall and department stores with the exception of supermarkets, pharmacies, banks and grocery stores (13)</td>
</tr>
<tr>
<td>March 21st, 2020</td>
<td>Closure of non-essential business including theatres, restaurant, bars and gyms (13)</td>
</tr>
<tr>
<td>March 22nd, 2020</td>
<td>Night time curfew implemented (13)</td>
</tr>
<tr>
<td>March 26th, 2020</td>
<td>Intermittent lockdown initiated (implemented at municipality level) (13)</td>
</tr>
<tr>
<td>April 8th, 2020</td>
<td>Orders on mandatory use of facemasks in public transport (10)</td>
</tr>
<tr>
<td>April 17th, 2020</td>
<td>Orders on mandatory use of facemasks in all public spaces (10)</td>
</tr>
</tbody>
</table>
Figure 1: Daily incidence curve for all COVID-19 confirmed cases in Chile as of April 28th, 2020 (9).
Figure 2: Best fit of the sub-epidemic wave model to the COVID-19 epidemic in Chile as of April 28th, 2020. Our results predict an epidemic wave comprised by 3 sub-epidemics. The top panels display the empirical distribution of the parameter estimates \((r, p, K_0, q)\). Bottom panels show the model fit (left), the sub-epidemic profile (center), and the residuals (right). Black circles correspond to the data points. The best model fit (solid red line) and 95% prediction interval (dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual bootstrapped curves assuming a Poisson error structure. Different sub-epidemics comprising the epidemic wave are plotted using different colors.
Figure 3: Reproduction number with 95% CI estimated using the GGM. The estimated reproduction number of the COVID-19 epidemic in Chile as of March 29th, 2020 is, 1.6 (95% CI: 1.5, 1.6).
Figure 4: 20-days ahead forecast of the COVID-19 epidemic in Chile by calibrating the GGM until March 30th, 2020. Blue circles correspond to the data points, the red solid line indicates the best model fit and the red dashed lines represent the 95% prediction interval. The vertical black dashed line represents the time of the start of the forecast period.
Figure 5: Laboratory results for the COVID-19 tests conducted in Chile as of April 28th, 2020. Blue color represents the negative test results and the yellow color represents the positive test results. The orange solid line represents the positivity rate of COVID-19 in Chile.