Summary
To optimize epidemiologic interventions, predictors of mortality should be identified. The US COVID-19 epidemic data −reported up to 3-31-2020− were analyzed using kernel regularized least squares regression. Six potential predictors of mortality were investigated: (i) the number of diagnostic tests performed in testing week I; (ii) the proportion of all tests conducted during week I of testing; (iii) the cumulative number of (test-positive) cases through 3-31-2020, (iv) the number of tests performed/million citizens; (v) the cumulative number of citizens tested; and (vi) the apparent prevalence rate, defined as the number of cases/million citizens. Two metrics estimated mortality: the number of deaths and the number of deaths/million citizens. While both expressions of mortality were predicted by the case count and the apparent prevalence rate, the number of deaths/million citizens was ≈3.5 times better predicted by the apparent prevalence rate than the number of cases. In eighteen states, early testing/million citizens/population density was inversely associated with the cumulative mortality reported by 31 March, 2020. Findings support the hypothesis that early and massive testing saves lives. Other factors –e.g., population density–may also influence outcomes. To optimize national and local policies, the creation and dissemination of high-resolution geo-referenced, epidemic data is recommended.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
None
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Supplementary data is available and attached.