VENTILATORY SUPPORT IN SARS-VOC-2 DURING INTENSIVE THERAPY

Pereira-Rodríguez Javier Eliecer¹, Quintero-Gomez Juan Camilo², Lopez-Florez Otilio³, Waiss-Skvirsky Sandra Sharon⁴, Velásquez-Badillo Ximena⁵.

ABSTRACT

Introduction: The SARS-CoV-2 disease outbreak has now become a pandemic. Critical patients with COVID-19 require basic and advanced respiratory support. Therefore, the objective was to describe the ventilatory support strategies in SARS-CoV-2 during intensive therapy.

Materials and methods: A systematic review of observational studies of the available scientific literature was performed in accordance with the recommendations of the Cochrane collaboration and the criteria of the PRISMA Declaration.

Results: Fifteen observational studies were included that gave a study population of 4,081 patients. Mechanical ventilation is the main respiratory support treatment for critically ill patients, which should be administered as soon as normal oxygenation cannot be maintained, and despite the fact that there is no current consensus on the parameters of mechanical ventilation, the evidence collected suggests the use of Fio2 on average 50%, PEEP of 14 cmH₂O, lung compliance of 29-37 ml per cm of water, driving pressure between 12-14 cm of water and a plateau pressure of 22-25 cm of water.

Conclusions: IL-6 is shown as a possible marker of respiratory failure and a worse prognosis as well as obesity. In addition, the use of prone position, neuromuscular blockade, pulmonary vasodilators, ECMO, and mechanical ventilation based on the clinical conditions and needs of the patient with COVID-19 are strategies that could benefit patients entering intensive therapy for SARS-CoV-2.

Key words: COVID-19, SARS-CoV-2, mechanical ventilation.
RESUMEN

Introducción: El brote de enfermedad por SARS-CoV-2 actualmente se ha convertido en una pandemia. Pacientes críticos con COVID-19 requieren soporte respiratorio básico y avanzado. Por lo tanto, el objetivo fue describir las estrategias de soporte ventilatorio en SARS-CoV-2 durante terapia intensiva.

Materiales y métodos: Se realizó una revisión sistemática de estudios observacionales de la literatura científica disponible de acuerdo con las recomendaciones de la colaboración Cochrane y los criterios de la Declaración PRISMA.

Resultados: Se incluyeron 15 estudios observacionales que otorgaron una población de estudio de 4.081 pacientes. La ventilación mecánica es el principal tratamiento de apoyo respiratorio para pacientes críticos, que debe administrarse tan pronto como no se pueda mantener la oxigenación normal y a pesar de que no existe un consenso actual sobre los parámetros de ventilación mecánica, la evidencia recolectada sugiere el uso de Fio2 en promedio del 50%, PEEP de 14 cmH2O, compliance pulmonar de 29-37 ml por cm de agua, driving pressure entre 12-14 cm de agua y una presión plateau de 22-25 cm de agua.

Conclusiones: La IL-6 se muestra como un posible marcador de falla respiratoria y peor pronostico al igual, que la obesidad. Además, el uso de posición prona, bloqueo neuromuscular, vasodilatadores pulmonares, ECMO y una ventilación mecanica basada en las condiciones clínicas y necesidades del paciente con COVID-19 son estrategias que podrían beneficiar a los pacientes que ingresan a terapia intensiva por SARS-CoV-2.

Palabras clave: COVID-19, SARS-CoV-2, ventilación mecanica.
INTRODUCCIÓN

SARS-CoV-2 es una enfermedad infecciosa por coronavirus recientemente descubierta en humanos, la cual proviene de la familia del coronavirus y afecta la población mundial, convirtiéndose en una calamidad pública.

La epidemia de enfermedad por coronavirus fue primero reportada en Wuhan, China el 31 de diciembre de 2019, y ahora se ha convertido en una pandemia, afectando a la población mundial. Según el último informe de la Organización Mundial de la Salud (OMS) 1 para marzo 30, 2020, 215 territorios habían reportado casos confirmados de COVID-19, 1’655.378 en la Región de las Américas (98.723 decesos), 1’707.946 en la Región Europea (155.552 decesos), 255.728 en la Región del Medio Oriente del Este (8.878 decesos), 159.662 casos en la Región del Océano Pacífico Oriental (6.470 decesos), 95.314 en la Región del Asia Oriental (3.356 decesos), 42.626 en la Región Africana (1.369 decesos).

Según el Centro Europeo de Control y Prevención de Enfermedades, como de mayo 10, 2020, había casi 4 millones (3’986.119) de casos de COVID-19 y 278.814 decesos a nivel mundial. Algunos de los países con el mayor número de decesos para la misma fecha fueron: Estados Unidos (78.794), Reino Unido (31.587), Italia (30.395), España (26.478), Francia (26.310), Brasil (10.627), entre otros. Similarmente, un análisis ECDPC con 17 países de Europa determinó que los síntomas clínicos más reportados fueron fiebre (47%), tos seca o productiva (25%), dolor de garganta (16%), fatiga general (6%) y dolor (5%); la hospitalización ocurrió en 30% (13.122 de 43.438) de los casos reportados en 17 países, y los casos requiriendo atención en cuidados intensivos o apoyo respiratorio representaron 2.179 de 49.282 (4%)².

Entendiendo que todavía no hay claridad sobre el tratamiento para pacientes con coronavirus, ha sido descrito basado en la patofisiología de COVID-19 requiriendo necesidades de apoyo de vida avanzado, que van desde la suplementación de oxígeno a través de ventilación no invasiva, a ventilación mecánica invasiva y soporte vasopresor; algunos complicaclones secundarias descritas en casos confirmados incluyen cardiomiopatía, embolismo pulmonar, y muerte súbita³.⁴.

Basado en los datos disponibles, se ha definido que la infección viral es capaz de producir una reacción inmune excesiva en el huésped, generando lo que se llama "cuerda de la tormenta de citocinas", un efecto de daño extensivo en cascada; Interleucina 6 (IL-6) es el principal proteína proinflamatoria producida por los leucocitos en casos de COVID-19, y que actúa sobre un gran número de células y tejidos. De esta manera, y en contraste con otros tipos de coronavirus descritos anteriormente, SARS-CoV-2 ha
shown greater systemic involvement than others, mainly of respiratory origin associated with pneumonia5,6.

In one of the first reports on the disease, chest computed tomography (CT) was performed on patients with COVID-19, where pneumonia with abnormal findings was evident in all cases. About a third of them (13.32\%) required intensive care unit (ICU) care, and there were 6 (15\%) fatal cases. From this, the needs for assistance and support in the ICUs of all the countries of the world has increased. Likewise, each time the cases of acute respiratory distress syndrome (ARDS) and SARS-CoV-2-associated pneumonia continue to grow, which has forced the assistance of mechanical ventilation in these cases7,8,9.

A report by the Intensive Care National Audit and Research Center (ICNARC)10 in the United Kingdom described the results of an observational cohort study with 165 patients in critical care units. Of the 165 patients, 79 (47.9\%) died and 86 (52.1\%) were discharged alive from the ICU. On the other hand, 58.8\% of the patients required advanced respiratory support, 50.3\% basic respiratory support, 20.6\% advanced cardiovascular support, 84.2\% basic cardiovascular support, 17\% renal support and 2.4 \% required neurological support.

The percentage of patients with SARS-CoV-2 who require advanced ventilatory support, such as mechanical ventilation (MV), is high. However, there are currently no specific protocols for the management of MV in these patients. On the other hand, the need for updating based on scientific evidence on the assistance and management of mechanical ventilation in patients with SARS-CoV-2 has increased. Thus, this study aims to describe the ventilatory support strategies in SARS-CoV-2 during intensive therapy.

MATERIALS AND METHODS

Design

A systematic review was performed with a descriptive analysis of retrospective chronology of clinical trials, case reports, systematic reviews and meta-analyzes, available and published in indexed databases. Research that included experimental studies with human beings had informed consent under the ethical considerations of Helsinki11, for the regulation of experimental studies in living beings.
Search strategy
The search for scientific documents was developed under the considerations and criteria of the PRISMA Flow Chart12 (Transparent Reporting Items for Systematic Reviews and Meta-Analyzes) for the identification, screening, eligibility and inclusion of studies in systematic reviews.
Different databases were reviewed for the identification of prospective documents based on the criteria of the PRISMA Diagram for text search. These search criteria are defined as: records identified through the database search, additional records identified through other sources, records after duplicates have been removed, selected records, full-text articles evaluated for eligibility, and finally studies included in qualitative synthesis. The databases identified for searching scientific studies included: PubMed and PubMed Central.

Boolean descriptors and operators
Descriptors associated with the variables described in the study title were used: mechanical ventilation & COVID-19; and the boolean operators: AND & OR. Thus, the search strategy was as follows: ("respiration, artificial" [MeSH Terms] OR ("respiration" AND "artificial") OR "artificial respiration" OR ("mechanical" AND "ventilation") OR "mechanical ventilation" []) AND ("COVID-19" OR "COVID-2019" OR "severe acute respiratory syndrome coronavirus 2" OR "severe acute respiratory syndrome coronavirus 2" OR "2019-nCoV" OR "SARS-CoV-2" OR "2019nCoV "OR (((" Wuhan "AND (" coronavirus "[MeSH Terms] OR" coronavirus ")) AND (2019/12 OR 2020))).

Selection of studies
The selection of articles was made by the different authors of the study. At first, one author (JCQ-G) identified prospective studies, later a second author (OL-P) carried out the screening or screening process, a third researcher (SSW-S) applied eligibility criteria, and finally full text analysis and included by previous collaborators. To reduce study selection and inclusion bias, each of the research collaborators independently reviewed the studies chosen to analyze the full text using the PRISMA Checklist13, to finally agree on the studies to include in the sample (n). On the other hand, a fourth researcher.
Selection criteria

Eligibility criteria were defined in the PRISMA Checklist, according to the design characteristics of the included studies and characteristics of the reported population. Among the general criteria applied to all the studies, the place of publication, year of publication, type of literature, language of publication, study design, methodology, nature and characteristics of the population were taken into account.

From the above, studies published in indexed databases, documents available to date, scientific article-type texts, experimental and descriptive design research on the application and management of mechanical ventilation in humans with coronavirus acquired in the current pandemic. Some data such as sex, age, anthropometric characteristics, ethnicity and comorbidities were not filtered; one author (JEPR) verified that the ethical recommendations were complied with in each of the included investigations; all the collaborators verified the application of inclusion criteria.

Data collection and extraction

The data were extracted into a selection matrix for the identified, screened, chosen and finally included studies, designed by the authors through “Excel” spreadsheets. Data from the studies chosen in the systematic review were collected on information analysis sheets. The information on the studies included in the review was described using characterization tables on text sheets.

Type of participants

Subjects of both genders, from any region of the world with confirmed diagnosis for COVID-19, who received supplemental oxygen from invasive or non-invasive mechanical ventilation were included.

RESULTS

Selection of studies and characteristics

After the initial search, 1,128 titles were identified regarding the use of mechanical ventilation in patients with COVID-19. A total of 104 documents were selected that described cases of patients who required mechanical ventilation due to the severe hypoxemia generated by the coronavirus. Subsequently, 64 studies were chosen for full-text review (study objective, interventions carried out, results obtained and conclusions).
Finally, 15 observational studies were included15-29 (figure 1) after the full text review, on mechanical ventilation in COVID-19 that were published between February 9, 2020 and April 15, 2020; 3 clinical cohort studies20,26,27 and 12 retrospective clinical studies15-19,21-25,28,29. In this way, the sample size (n) of each included study, the main diagnosis, the information collection methodology, the time, results and conclusions of each study included in the systematic review were determined (table 1).

\textbf{Fig. 1.} Illustration of the PRISMA Flowchart for the Identification, selection, eligibility and inclusion of studies in systematic reviews.
Table 2. Characteristics of the interventions of the included studies (n = 15)

<table>
<thead>
<tr>
<th>Author</th>
<th>n</th>
<th>Type of study</th>
<th>Population</th>
<th>Methodology</th>
<th>Duration</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrasa H, et al.(^\text{15})</td>
<td>48</td>
<td>Retrospective clinical case study</td>
<td>P patients with COVID-19 hospitalized</td>
<td>I was you identify with rum patients from two public hospitals in Vitoria admitted to the ICU with confirmed infection by SARS-CoV-2. The data reported here was available on March 31, 2020. Mortality was assessed in those who completed 7 days of ICU stay.</td>
<td>-</td>
<td>All patients were admitted for hypoxemic respiratory failure and none received non-invasive mechanical ventilation. Forty-five (94%) underwent intubation, 3 t nasal high-flow oxygen therapy, 1 (2%) extracorporeal membrane oxygenation (ECMO), and 22 (49%) required a prone position. After 15 days, 14/45 (31%) intubated patients died (13% in one week), 10 (22%) were extubated, and 21/45 (47%) underwent mechanical ventilation. Six patients had documented coinfection.</td>
<td>A correct oxygenation strategy to avoid non-invasive mechanical ventilation saves lives. Seven-day mortality in SARS-CoV-2 requiring intubation was less than 15%, and 80% of patients still required mechanical ventilation. After 15 days of ICU admission, half of the patients remained intubated, while a third died.</td>
</tr>
<tr>
<td>Bhatraju PK, et al.(^\text{16})</td>
<td>24</td>
<td>Retrospective clinical study</td>
<td>P acientes critical illness COVID-19</td>
<td>Clinical data were obtained by reviewing medical records. The data reported here is available until March 23, 2020. Each patient had at least 14 days of follow-up.</td>
<td>2 weeks</td>
<td>We identified 24 patients with confirmed Covid-19. The mean age (± SD) of the patients was 64 ± 18 years, 63% were men and symptoms began 7 ± 4 days before admission. The most common symptoms were cough and shortness of breath; 50% of the patients had fever on admission and 58% had diabetes mellitus. All the patients were admitted for hypoxemic respiratory failure; 75% (18 patients) required mechanical ventilation.</td>
<td>During the first 3 weeks of the Covid-19 outbreak in the Seattle area, the most common reasons for ICU admission were hypoxemic respiratory failure leading to mechanical ventilation, hypotension requiring treatment with vasopressors, or both.</td>
</tr>
<tr>
<td>*Chen J, et al.(^\text{17})</td>
<td>101</td>
<td>Retrospective clinical case study</td>
<td>P deceased patients with COVID-19</td>
<td>R is eclut aron all cases of death COVID-19 on December 30, 2019 on February 16, 2020 in the intensive care unit of the Hospital Wuhan Jinyintan. Demographics, basic -</td>
<td>6 weeks</td>
<td>All patients received antibiotic treatment, 63 (62.38%) used restricted antibiotics, 23 (22.78%) used antifungal medications, 84 (83.17%) used non-invasive ventilator or high-flow oxygen therapy equipment, and 76.24% used mechanical ventilation. invasive. 7 patients</td>
<td>Critical COVID-19 can cause fatal respiratory distress syndrome and multiple organ failure with a high mortality rate.</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Study Design</td>
<td>Patients</td>
<td>Hospitalization</td>
<td>Duration</td>
<td>Results/Findings</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--------------</td>
<td>----------</td>
<td>----------------</td>
<td>----------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Chen M, et al.</td>
<td>2019</td>
<td>Clinical case study</td>
<td>P patients hospitalized with COVID-19</td>
<td>7 weeks</td>
<td>Based on severity, oxygenation index, body weight, age, underlying diseases, adequate amount of methylprednisolone applied in severe / critical on-demand COVID-19 patients, improved blood oxygen and decreased rate utilization of invasive mechanical ventilation, medical and medical case fatality rate. The most common indications for invasive mechanical ventilation should be strictly controlled in critically ill patients with COVID-19.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grasselli G, et al.</td>
<td>2019</td>
<td>Retrospective clinical study</td>
<td>P patients with COVID-19</td>
<td>4 weeks</td>
<td>Among 1,300 patients with available respiratory support data, 1,287 (99% [95% CI, 98% -99%]) required respiratory support, including 1,150 (88% [95% CI, 87% -90%]) who received ventilation mechanical and 137 (11% [95% CI, 9% -12%]) who received non-invasive ventilation. The median end-expiration positive pressure (PEEP) was 14 (IQR, 12-16) cm H2O, and Fio2 was greater than 50% in 89% of patients. Median Pao2 / Fio2 was 160 (IQR, 114-220). The median level of PEEP was not different between younger patients (n = 503 aged ≤63 years) and older patients (n = 514 aged ≥64 years) (14 [IQR, 12-15] vs 14 [IQR, 12-16] cm H2O, respectively; median</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
difference, 0 [95% CI, 0-0]; \(P = 0.94 \). The median Fio2 was lower in younger patients: 60% (IQR, 50%-80%) vs. 70% (IQR, 50%-80%) (median difference, -10% [95% CI, -14% to 6%]; \(P = .006 \), and the median Pao2 / Fio2 was higher in younger patients: 163.5 (IQR, 120-230) versus 156 (IQR, 110-205) (median difference, 7 [IC 95 %, -8 to 22]; \(P = .02 \)).

| Grein J, et al. \(^{20} \) | 53 | Clinical cohort study | P patients hospitalized with COVID-19 | Patients with SARS-CoV-2 had an oxygen saturation of 94% or less while breathing room air or oxygen received. Patients received a 10-day Remdesivir cycle, consisting of 200 mg given intravenously on day 1, followed by 100 mg daily for the remaining 9 days of treatment. |
| At the start of the study, 30 patients (57%) received mechanical ventilation and 4 (8%) received extracorporeal membrane oxygenation. During a median follow-up of 18 days, 36 patients (68%) had an improvement in the oxygen support class, including 17 of 30 patients (57%) who received mechanical ventilation who were extubated. A total of 25 patients (47%) were discharged and 7 patients (13%) died; mortality was 18% (6 of 34) among patients who received invasive ventilation and 5% (1 of 19) among those who did not receive invasive ventilation. |
| 64% of Remdesivir-treated patients were receiving invasive mechanical ventilation at baseline, including 8% receiving ECMO, and mortality in this subgroup was 18% (compared to 5.3% in patients receiving non-invasive oxygen.). |

<p>| * Herold T, et al. (^{21}) | 40 | Clinical case study | P patients hospitalized with COVID-19 | The clinical findings of patients with symptomatic infection proven by COVID-19 verified by PCR hospitalized in our institution from February 29 to March 27, 2020 were analyzed. |
| Patients requiring 13/40 mechanical ventilation (32.5%) did not differ in age, comorbidities, radiological findings, respiratory rate, or qSofa score. However, the elevation of interleukin-6 (IL-6) was strongly associated with the need for mechanical ventilation ((p = 1.2.10^{-5})). Furthermore, the maximum level of IL-6 (cut 80 pg / ml) for each patient during the disease |
| The IL-6 is an effective marker that could predict respiratory failure early with high accuracy and help physicians to correctly assign patients at an early stage. |</p>
<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Study Type</th>
<th>Primary Outcome</th>
<th>Secondary Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jia-Kui Sun, et al.</td>
<td>22</td>
<td>Retrospective clinical study</td>
<td>Predicted respiratory failure with high precision (p = 1.7.10^-8, AUC = 0.98). The risk of respiratory failure for patients with IL-6 levels ≥ 80 pg/ml was 22 times higher compared to patients with lower levels of IL-6.</td>
<td>Patients with worse grades of LGA had worse clinical variables, higher incidence of septic shock and mortality at 28 days. Sequential Organ Failure Assessment (SOFA) scores (95% CI, 1,374-2,860; P <0.001), white blood cell counts (WBC) (95% CI, 1,037-1,379; P = 0.014), duration of mechanical ventilation (VM) (95% CI, 1,020-1,340; P = 0.025) were risk factors for the development of severe grade II LGA.</td>
</tr>
<tr>
<td>Jiang X, et al.</td>
<td>55</td>
<td>Retrospective clinical study</td>
<td>Patients with worse grades of LGA had worse clinical variables, higher incidence of septic shock and mortality at 28 days. Sequential Organ Failure Assessment (SOFA) scores (95% CI, 1,374-2,860; P <0.001), white blood cell counts (WBC) (95% CI, 1,037-1,379; P = 0.014), duration of mechanical ventilation (VM) (95% CI, 1,020-1,340; P = 0.025) were risk factors for the development of severe grade II LGA.</td>
<td>Patients with worse grades of LGA had worse clinical variables, higher incidence of septic shock and mortality at 28 days. Sequential Organ Failure Assessment (SOFA) scores (95% CI, 1,374-2,860; P <0.001), white blood cell counts (WBC) (95% CI, 1,037-1,379; P = 0.014), duration of mechanical ventilation (VM) (95% CI, 1,020-1,340; P = 0.025) were risk factors for the development of severe grade II LGA.</td>
</tr>
</tbody>
</table>

Demographic data, laboratory parameters, LGA grades, clinical severity, and results were collected. The primary end points were LGA incidence and 28-day mortality, the secondary end points were organ dysfunction and the incidence of septic shock.

Patients with worse grades of LGA had worse clinical variables, higher incidence of septic shock and mortality at 28 days. Sequential Organ Failure Assessment (SOFA) scores (95% CI, 1,374-2,860; P <0.001), white blood cell counts (WBC) (95% CI, 1,037-1,379; P = 0.014), duration of mechanical ventilation (VM) (95% CI, 1,020-1,340; P = 0.025) were risk factors for the development of severe grade II LGA.

The incidence of LGA was 86.7% and hospital mortality was 48.2% in critically ill patients with COVID-19. SOFA scores, WBC counts, and duration of MV were risk factors for the development of severe grade II LGA.

The transmission from person to person SARS-CoV-2 and suggested that patients with COVID-19 grave may be more likely to have older, present lymphopenia and infiltration bilateral pulmonary receive multiple treatments and stay longer in the hospital.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Study Type</th>
<th>Patient Description</th>
<th>Study Details</th>
<th>Duration</th>
<th>Findings</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ling L, et al.</td>
<td>Retrospective clinical study</td>
<td>Patients with COVID-19</td>
<td>Clinical data from three multidisciplinary intensive care units in Hong Kong. All critical adult patients with confirmed COVID-19 were admitted to the ICU in Hong Kong between January 22 and February 11, 2020.</td>
<td>4 weeks</td>
<td>Six patients (75%) required mechanical ventilation, six patients (75%) required vasopressors, and two (25%) required renal replacement therapy. None of the patients required prone ventilation, nitric oxide, or extracorporeal membrane oxygenation. The mean times for shock reversal and extubation were 9 and 11 days, respectively. At 28 days, one patient (12%) had died and the remaining seven (88%) survived the ICU discharge. Only one of the survivors (14%) still required oxygen at 28 days.</td>
<td>Critically ill patients with COVID-19 often require a moderate duration of mechanical ventilation and vasopressor support. Most of these patients recover and survive until ICU discharge with supportive care using lung protection ventilation strategies, avoiding excess fluids, screening and treating bacterial coinfection and timely intubation.</td>
</tr>
<tr>
<td>Qi D, et al.</td>
<td>Retrospective clinical study</td>
<td>Patients hospitalized with COVID-19</td>
<td>In this study multiple centers, a total of 267 patients were enrolled with COVID-19 confirmed by RT-PCR in real time in Chongqing on January 19 to February 16, 2020.</td>
<td>4 weeks</td>
<td>Invasive mechanical ventilation in the prone position, non-invasive mechanical ventilation, high-flow nasal cannula oxygen therapy was adopted only in severe patients with respiratory failure (5 [10.0%], 35 [70.0%], 12 [24.0%]). Ventilation is the main respiratory support treatment for critically ill patients, which should be administered as soon as normal oxygenation cannot be maintained.</td>
<td></td>
</tr>
<tr>
<td>Shi S, et al.</td>
<td>Clinical cohort study</td>
<td>Patients with COVID-19 disease</td>
<td>Clinical laboratory, radiological and treatment data were collected and analyzed. The results of patients with and without cardiac injury were compared. The association between cardiac injury and mortality was analyzed.</td>
<td>-</td>
<td>Higher proportions of patients with cardiac injury required non-invasive mechanical ventilation (38 of 82 [46.3%] versus 13 of 334 [3.9%]; P < .001) or invasive mechanical ventilation (18 of 82 [22.0%] vs 14 of 334 [4.2%; P < .001]) than those without heart injury. Complications were more common in patients with heart damage than in those without heart damage and included acute respiratory distress syndrome (48 of 82 [58.5%] vs 49 of 334 [14.7%]; P < .001), acute kidney damage (7 of 82 [8.5%] vs 1 of 334 [0.3%; P < .001]), electrolyte abnormalities (13 of 82 [15.9%] vs 1 of 334 [0.3%; P < .001]).</td>
<td>Patients with heart injury had higher mortality than those without heart injury (42 of 82 [51.2%] versus 15 of 334 [4.5%]; P < .001). In a Cox regression model, patients versus those without heart injury had an increased risk of death.</td>
</tr>
</tbody>
</table>
Simonnet A, et al. 27

Study clinical cohort P patients with COVID-19 hospitalized This study was analiz or the relationship between the clinical features, including the body mass index (BMI), and the requirement for invasive mechanical ventilation (VMI) in 124 consecutive patients admitted to intensive care SARS-CoV-2, in a single French center.

Overall, 85 patients (68.6%) required IMV. The proportion of patients requiring IMV increased with BMI categories (p < 0.01, Chi-square test for trend), and was higher in patients with BMI > 35 kg/m² (85.7%). In the multivariate logistic regression, the need for IMV was significantly associated with male sex (p < 0.05) and BMI (p < 0.05), regardless of age, diabetes, and hypertension.

This cohort study showed that obesity is a factor in the severity of SARS-CoV2 disease, which has a greater impact in patients with a BMI ≥35 kg/m².

Wei-jie G, et al. 28

Retrospective clinical study Patients with acute disease associated with 2019-nCoV Laboratory confirmed data from 1,099 patients with SARS-CoV-2 in 31 provinces/municipalities until 29 January 2020.

L therapy oxygen, mechanical ventilation, intravenous antibiotics and oseltamivir therapy started in 38.0%, 6.1%, 7.5% and 35.8% of patients, respectively. All of these therapies were started in significantly higher percentages of severe cases (all P < 0.05). Significantly more severe cases received mechanical ventilation (non-invasive: 32.37% vs. 0%, P < 0.001; invasive: 13.87% vs. 0%, P < 0.001) compared to non-severe cases. Systemic corticosteroids were administered in 18.6% of cases and more in the severe group than in the non-severe patients (44.5% vs. 13.7%, p < 0.001). In addition, extracorporeal membrane oxygenation was adopted in 5 severe cases, but none in non-severe cases (P
During hospital admission, the most common complication was pneumonia (79.1%), followed by ARDS (3.37%) and shock (1.00%).

3. 4 Retrospective clinical study
Patients with COVID-19 admitted to ICU
R is astrea run data until 5 March 2020. The cases were divided into cohort patients received noninvasive ventilation (INV) and cases requiring invasive mechanical ventilation (IMV). The characteristics between the two groups were compared.

The complication rate was higher in VMI cases. Lymphopenia and neutrophilia occurred in most cases in both groups on the day of admission, however, lymphocyte levels progressively decreased and more severe lymphopenia occurred in the IMV group. Greater amounts of plasma IL-6 and IL-10 were found in both groups on the day of admission, whose progressive decrease occurred in cases of NIV compared to cases of IMV, and the levels were higher in cases of IMV during hospitalization.

Lymphocytopenia, neutrophilia, and increased IL-6 and IL-10 occurred in patients infected with SARS-CoV-2 in the ICU, however, their dynamics were significantly different in cases of IMV and NIV during hospitalization.

LGA: acute gastrointestinal injury; SOFA: Sequential Organ Failure Assessment Score; WBC: white blood cell counts; CI: confidence interval; PEEP: positive pressure at the end of expiration; FiO2: inspiratory fraction of oxygen; PaO2: partial pressure of oxygen; ICU: intensive care unit; VNI: non-invasive ventilation; IMV: invasive mechanical ventilation; IL-6: interleukin 6; MRS: acute respiratory syndrome; LMWH: low molecular weight heparin r; ECMO: extracorporeal membrane circulation; RT-PCR: reverse transcription polymerase chain reaction; BMI: body mass index; CRRT: continuous renal replacement therapies.

Mechanical ventilation in patients with COVID-19

Mechanical ventilation is the main respiratory support treatment for critically ill patients, which should be administered as soon as normal oxygenation cannot be maintained. The use of mechanical ventilation in critically ill COVID-19 patients remains a strategy for improving ventilation and mitigating the impact on acute respiratory distress syndrome developed by many patients with coronavirus. Currently, there is little evidence on the needs for MV in patients with coronavirus and the prognosis for improvement. Critically ill patients with COVID-19 often require a moderate duration of mechanical ventilation and vasopressor support.
Strategies

Invasive mechanical ventilation in the prone position15,16,26, non-invasive mechanical ventilation15-17,19,21,23,24,26-29, high flow nasal cannula oxygen therapy15,23,26 and extracorporeal membrane oxygenation (ECMO)15,17,20,29, are some strategies in critically ill patients with SARS-CoV-2 who develop respiratory failure; as well as the use of neuromuscular blockade, inhaled pulmonary vasodilators and vasopressors16.

Mortality

On the other hand, a high percentage of patients with SARS-CoV-2 who enter the ICU require prolonged mechanical ventilation15,16,17 and a higher percentage requires invasive mechanical ventilation15-17,19,20,23,24,25-28. Mortality in patients with invasive mechanical ventilation (~18\% to 33.3\%) seems to be greater compared to non-invasive mechanical ventilation (~5\% a 10\%)15,17 and even behaves up to 26\%19.

Parameters

Although there is no current consensus on the parameters of mechanical ventilation in patients with COVID-19, most studies suggest the volume-controlled / assisted ventilatory mode, the use of elevated Fio2 from day 1 of mechanical ventilation, among 60\% and 90\%16,19, although the mean in the different studies was Fio2 50\%19, a \textit{pulmonary compliance} to 29-37 ml for cm to water16, positive pressure at the end of expiration (PEEP) of 14 (IQR, 12-16) cm H2O, plateau pressure of less than 30ml H2o, a \textit{driving pressure} (the difference between the plateau pressure to the PEEP) of 12-14 cm of water16,19 and a pressure \textit{plateau} of 22-25 cm of water16,19 are the guidelines recommended by the evidence collected.

Comorbidities and injuries

Patients with cardiac injury and COVID-19 require more mechanical ventilation support than those without cardiac injury26; 46.3\% non-invasive and 22\% invasive mechanical ventilation26. On the other hand, higher values of body mass index (IMC> 35 kg / m2) are associated with higher invasive mechanical ventilation requirements27. Similarly, higher levels of systemic blood pressure are associated with higher demand for MV and higher mortality19,22,27.
Furthermore, the elevation of interleukin-6 (IL-6) is strongly associated with the need for mechanical ventilation. Furthermore, the maximum level of IL-6 (cut 80 pg/ml) for each patient during the disease predicts respiratory failure with high precision. The risk of respiratory failure for patients with IL-6 levels ≥ 80 pg/ml is 22 times higher compared to patients whose levels of IL-6 are lower. Also, the incidence of acute gastrointestinal injury (LGA) in critically ill patients with COVID-19 undergoing prolonged MV is frequent (86.7%)\(^{21}\).

Lymphocytopenia and neutrophilia occur in most cases, however, lymphocyte levels progressively decrease and lymphopenia occurs, which is more severe in patients with IMV\(^{29}\). Likewise, the rate of patients undergoing continuous renal replacement therapy for multiple organ failure and kidney injury in patients with SARS-CoV-2 is high\(^{17,24,26}\). Furthermore, critical COVID-19 can cause fatal respiratory distress syndrome and multiple organ failure with a high mortality rate\(^{17}\) and very frequently pneumonia (79.1%), followed by ARDS (3.3%) and shock (1.0%)\(^ {28}\).

Other strategies
The use of methylprednisolone applied in critically ill COVID-19 patients appears to improve blood oxygen, reduce the rate of use of IMV, and the mortality rate\(^ {18}\).

DISCUSSION
This systematic review highlights the needs for basic and advanced respiratory support in patients with SARS-CoV-2. The respiratory care in COVID-19 described by Meza, C. et al. (2020)\(^ {30}\) seeks to generate lung protection strategies by decreasing tidal volumes, plateau pressure, respiratory rates, driving pressure values and prone ventilation, as well as implementing high PEEP values, which have shown improvement in hypoxemia and survival in patients with acute respiratory distress syndrome, the same characteristics described in this article based on the needs for protective mechanical ventilation in patients with coronavirus and with a prognosis for improvement.

On the other hand, other statements\(^ {31}\) mention that mechanical ventilation is capable of producing and aggravating lung damage by the administration of supplemental oxygen in inadequate amounts, highlighting that the effects of hyperoxia in the lungs can lead to the formation of alveolar hyaline membrane, edema, hyperplasia, proliferation of type II pneumocytes, destruction of type I pneumocytes, interstitial fibrosis and pulmonary vascular remodeling, data that resemble those
proposed in the present investigation, associating that the inadequate dosage of oxygen according to the patient's clinical conditions would result counterproductive in its evolution.

Likewise, Vidal, F. & Calderón, V. (2012) affirm that mechanical ventilation in acute respiratory distress syndrome not only involves respiratory disorders but also supposes an elevation of alveolar and transpulmonary pressure, conditioning a significant alteration and overload. For the function of the right ventricle that can fail giving rise to the clinical picture of acute pulmonary cor, it is for this reason that the importance of continuous monitoring of pulmonary and hemodynamic mechanics is highlighted when considering ventilatory strategies; likewise, as mentioned by Gattinoni L. et al. (2020) referring to the phenotypes of SARS-CoV-2 associated pneumonia.

In this way, it is reported in a study that the prone position has a great impact on cardiopulmonary physiology, being a useful and accessible maneuver for most intensive care units, and the findings are also mentioned in the present investigation. Relevant of this technique on terms of survival in patients with relatively severe ARDS (PaO2 / FiO2 ≤ 150mmHg) highlighting that it is necessary to reevaluate the levels of PEEP once the maneuver has been performed, adjusting to the particularities of each clinical situation.

In another study, they mention that the use of muscle relaxants in the hypoxemic patient seeks to improve patient-ventilator synchrony, resulting in conflict with the development of myopathy as well as reducing the benefits of spontaneous breathing, as it was also shown that muscle relaxants, in patients with ARDS criteria treated under deep sedation showed an improvement in thoracic compliance and a decrease in O2 consumption.

That said, the use of non-invasive mechanical ventilation is questioned due to the findings found for its use in patients with ARDS as described by Franca, A. et al. (2014) showing a trend of higher failure and mortality in hypoxemic respiratory failure, also emphasizes that values of respiratory rate >30 rpm in the first hour of NIV are associated with failure in hypoxemic and hypercapnic respiratory failure accompanied by a greater number of infectious complications. Therefore, its use is limited to the different respiratory situations of the patient in which its placement is valued by the respiratory conditions as well as its hemodynamic stability described in the present investigation.

Consequently, Cristancho, W. (2020) mentions the use of extracorporeal membrane oxygenation (ECMO) as an alternative to respiratory care, stating that its early use did not significantly improve mortality in patients with severe ARDS, however when used as a modality of rescue could help
improve survival in patients with acute respiratory syndrome. And what has been said in this research, added to the corroborative evidence that we find from our findings, is to highlight that the actions in intensive care are fundamental for the survival of patients whose consequences have already been mentioned, together with prolonged periods of immobilization and bed rest, among which are those mentioned by the Pan American Health Organization38: Impaired lung function; physical deconditioning and muscle weakness; cofusional symptoms and other cognitive deficiencies; dysphagia and difficulties to communicate; mental health disorders and need for psychosocial support. Therefore, the need for rehabilitation professionals who play an important role in ICUs by facilitating early discharge is considered, which is especially important in a context of scarcity of hospital beds. Likewise, to prevent and intervene in sequelae associated with severe COVID-19. For this reason, rehabilitation professionals should be assigned to ICUs, hospital wards, transition facilities and the community.

However, it should be noted that the limitations of this study refer to the limited scientific evidence on the use of mechanical ventilation in patients with SARS-CoV-2, however, different authors suggest, like this review, that the Invasive mechanical ventilation is associated with a worse prognosis and a higher percentage of mortality when not used correctly and with academic grounds. Similarly, the importance of very good early advanced ventilatory support is highlighted, since it can avoid the use of IMV in patients with COVID-1939-43.

CONCLUSIONS

All SARS-CoV-2 patients require respiratory support and a very high rate requires mechanical ventilation. IL-6 is shown as a possible marker of respiratory failure and a worse prognosis, like that of patients with obesity. In addition, the use of prone position, neuromuscular blockade, pulmonary vasodilators, ECMO, and mechanical ventilation based on the clinical conditions and needs of the patient with COVID-19 are strategies that could benefit patients entering intensive therapy for COVID-19. Likewise, it is highlighted that the use of methylprednisolone seems to reduce mortality and hospital stay.
REFERENCES

