Analysis of the time and age dependence of the case fatality ratio for COVID-19 in 7 countries with a high total to positive test ratio suggests that the true CFR may be significantly underestimated for the United States in current models

Jessica Rothman¹*, David Eidelberg² M.D., Samantha Rothman³, Theodore Holford⁴ Ph.D., Douglas L Rothman⁵ Ph.D.

¹ Department of Biostatistics. Ph.D. Student. Yale University School of Public Health, New Haven, CT.

² Center for Neurosciences, Institute of Molecular Medicine, Northwell Health, Manhasset, New York

³ Departments of Mathematics and Computer Science. Tulane University, New Orleans, LA.

⁴ Departments of Biostatistics, and Statistics and Data Science. Yale University School of Public Health and Yale University Graduate School of Arts and Sciences, New Haven, CT.

⁵ Departments of Radiology and Biomedical Engineering. Yale University School of Medicine, New Haven, CT.

*Corresponding Author
Background. Knowing the true infected and symptomatic case fatality ratios (IFR and CFR) for COVID-19 is of high importance for epidemiological modeling and public health planning, but is difficult to calculate for countries and regions where there is limited testing for the disease. The large majority of reports have used modeling to correct the reported values for missed infections. However even for the same region, a wide range in the calculated correction factors have been proposed, for example from 6.6 to 50 for the United States which presently has a non-corrected CFR of 5.96%. The large correction factors have been justified based on findings in countries with extensive testing and case tracking, and therefore likely to capture most symptomatic cases, of CFR values below 1.0% early in their outbreaks. However as of May 7, 2020, the reported CFR values for 7 of these countries had risen several fold and had a wide CFR range of 0.6 – 4.3%. We tested whether this variation could be explained based upon a common age dependence of the CFR and the age distribution of cases in each country.

Methods. We calculated the corrected CFR for these 7 countries using standard time between diagnosis to death methods and a new method that uses the closed case CFR time course. Corrected CFR values for cases between ages 0 – 69, 70 – 79, and 80 and above were then separately calculated for each country. A linear model was generated that predicts the total CFR based on the mean and variation of these coefficients and the age distribution of cases. The model was tested by linear regression of each countries CFR against case percentage 70 and over. It was further tested by calculating the CFR and IFR for China and New York City and calculating the percent of the population that has been infected by COVID-19 based on number of deaths up to April 22, 2020.

Results. Corrected CFR values by both methods were consistent and ranged from 0.58% to 5.0%. The large majority of deaths in each country were in the 70 and above groups (81% +/- 8%). Despite the range in corrected CFR values, 89% of the variation was explained by age distribution. Using the linear model, we calculated an IFR for NYC of 1.88% (95% CI of mean: 1.36%- 2.23%) and predicted that as of April 22, 2020 between 14.69% and 22.01% of the adult population in NYC had been infected by COVID-19. This prediction was in good agreement with recent studies performing random testing (15.3% - 21%). In contrast, previous IFR estimates predicted a minimum infected population percentage between 29% - 222%.

Conclusion. We conclude that a model using age specific corrected CFR values from countries with extensive testing, based on the total to positive test ratio, provides a conservative but robust estimate of the true CFR and IFR values that is between 2 to 14 fold higher than previous estimates for the US. Furthermore, there is an extraordinarily high dependence of CFR with age that should be taken into account in measures targeted at mitigating the health and societal impact of the pandemic.

Acknowledgments. The authors acknowledge invaluable assistance from Julia Rothman in harvesting the time course data used to perform the analysis from multiple sources. Gerard Bossard provided expert review and editing of portions of the manuscript. DLR acknowledges being pointed to valuable references and helpful suggestions for the paper from Gail Rothman, John Rothman, Jeff Evelhoch, Gerard Sanacora, Kevin Behar, Marcia Johnson, Barbara Gulanski and Anthony Basile. The authors did not receive support for this work.
Introduction

Knowing the fraction of individuals infected with COVID-19 who will die or require hospitalization is critical for epidemiological modeling and public health policy. Obtaining an accurate estimate of the fatality ratio for all symptomatic cases (referred to as the case fatality ratio, CFR) and infected cases (IFR) is complicated by mild and asymptomatic cases not being detected and the time lag between diagnosis and death.(1) For COVID-19, the reported (often referred to as the naïve CFR (nCFR)) from China by the WHO was 3.5 +/- 0.2 % as of March 3, 2020.(2) Several reports have attempted to estimate the true, referred to as the corrected, IFR and CFR from this data as well as data from other countries. As shown in Table 1, with one exception, the corrected CFR values for China are between 0.85% and 1.4% which are all substantially lower than the reported Chinese nCFR value.(3–7) For the United States and United Kingdom, even lower corrected CFR and IFR values have been reported ranging from 0.125% to 0.9%.(3,5,8–11) Support for these lower values has been provided by comparison with reported nCFR values of less than 1% early in the outbreak from countries that were believed to have captured almost all of their symptomatic cases due to extensive testing and tracing of contacts.(4,8,9,12) Another cited example is the Diamond Princess cruise ship, in which all passengers were tested, for which early nCFR/IFR reports were in the 0.3% to 1.1% range.(4,6,8,9)

To determine whether these countries continued to have a low nCFR later in their outbreaks, we reexamined the reported number of deaths and nCFR values outbreaks on May 7, 2020 for Australia, Austria, Germany, Iceland, Israel, New Zealand, and South Korea. In all cases these countries continued to have a high degree of testing and tracking of contacts as shown by their ratio of total tests to positive tests ranging from 16:1 to 127:1 versus 7:1 for the United States and 8:1 for the United Kingdom, (Appendix 4). Therefore, their final reported nCFR values, when all cases are complete, are potentially close to their true CFR value if all symptomatic cases were tested. Because all of the examples continue to accrue new cases and deaths, we used two approaches to compensate for the delay between disease onset and dying to estimate the corrected CFR.(3) In one approach, we used a probability distribution function (fd) for the estimated probability of a fatality versus days after diagnosis as has been used previously.(1,3,6) We also independently estimated the corrected CFR from the closed case CFR, which is the CFR based on cases that have either recovered or died, based on the observation that in these countries it had converged to a near constant value considerably higher than the nCFR at the same time.(3) The methods gave corrected CFR values that were in good agreement for all countries (Table 2) and our simulations showed that they could be effectively used to estimate the corrected CFR even early when the reported nCFR values are several fold lower.

As shown in Table 1, for the countries examined despite early low reported nCFR values and very high levels of testing (Appendix 4) we calculated a wide range of corrected CFR values from 0.6% to 5.0%. These values are well above the majority of CFR and IFR values estimated for the United States and United Kingdom.(5,10,13,14) Despite this range, the large majority of the variation between countries was explained by the fraction of each country’s cases in the age ranges of 70 – 79 and 80 and above (Table 1, Figure 6). These age groups accounted on average for over 80% of the reported deaths. The finding of a strong correlation of the corrected CFR
with age also supports the hypothesis that the testing in each country was sufficient to capture the majority of their symptomatic cases.

Using the corrected CFR for these groups and the population under 70, we developed a linear model for predicting the CFR and IFR values for countries and regions with limited testing. From this model we estimated the corrected CFR for China using the linear model from the case age distribution data reported February 11, 2020 (WHO release) at 2.19% (95% CI of the mean: 1.54%-2.85%). As shown in Table 1, this value is higher than the majority previous estimates for China, but falls within their range when the 1.5 fold increase in total number of deaths recently reported by the Chinese government is taken into account.(2)

There is a much wider range of CFR and IFR estimates for US and UK populations, with the lowest values being almost 40 times below the highest CFR we calculated (Germany)(4,5,8–11) We therefore tested our model by calculating the percent of the population who has been infected with COVID-19 in New York City and comparing it to the results of recent random serological testing studies. New York City was chosen because it is undergoing a large outbreak, and therefore it is likely that the percentage of infected individuals is sufficiently high that false positives and negatives in antibody tests used would not have a large effect on the study outcome.(15,16) We predicted as of April 22, 2020 a minimum and maximum infected population percentage of 14.69% and 22.01% respectively, in good agreement with the measured values at that time of 15.3% and 21%.(16,17). In contrast, using previous reported IFR values gave minimum estimates between 29% - 222% (see Figure 7).(5,8–11,15,16)

Due to the impossibility of knowing, except in rare circumstances, what percentage of infections were captured, our estimates of the CFR and IFR represent conservative upper bounds. However, the similarities of the age specific CFR values between countries and the ability to predict recent random testing results support that using the method to estimate CFR and IFR values in regions where a similar level of testing was not performed could provide a conservative but robust upper estimate of the true values.
<table>
<thead>
<tr>
<th>Report</th>
<th>nCFR</th>
<th>corrected CFR (cCFR)</th>
<th>IFR</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bendavid et al.(8)</td>
<td>3.90%</td>
<td></td>
<td>0.12-0.2%</td>
<td>Santa Clara County, California</td>
</tr>
<tr>
<td>Oxford(10)</td>
<td></td>
<td></td>
<td>0.1-0.36%</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>DHHS model early April, 2020</td>
<td>3.09%</td>
<td>0.25%</td>
<td>0.125%</td>
<td>United States</td>
</tr>
<tr>
<td>DHHS model mid-April, 2020</td>
<td>5.60%</td>
<td>0.50%</td>
<td>0.25%</td>
<td>United States</td>
</tr>
<tr>
<td>Ioannidis et al.(4)</td>
<td></td>
<td>0.13%</td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>JHU(9)</td>
<td></td>
<td>0.60%</td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>Pei and Shaman(18)</td>
<td></td>
<td>0.56%</td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>Modi et al.(11)</td>
<td>10.20%</td>
<td></td>
<td>0.50%</td>
<td>New York City</td>
</tr>
<tr>
<td>Modi et al.*(11)</td>
<td></td>
<td>0.88%*</td>
<td></td>
<td>New York City</td>
</tr>
<tr>
<td>Imperial College(19)</td>
<td></td>
<td>0.90%</td>
<td></td>
<td>From Verity 2020</td>
</tr>
<tr>
<td>Mizumoto et al.(3)</td>
<td>1.80%</td>
<td>0.90%</td>
<td></td>
<td>China (Hubei province)</td>
</tr>
<tr>
<td>Mizumoto et al.(3)</td>
<td>0.43%</td>
<td>0.90%</td>
<td></td>
<td>China (outside Hubei)</td>
</tr>
<tr>
<td>Li et al.(20)</td>
<td>3.60%</td>
<td>0.90%</td>
<td>0.40%</td>
<td>China</td>
</tr>
<tr>
<td>Russell et al.(6)</td>
<td>3.50%</td>
<td>1.10%</td>
<td>0.50%</td>
<td>China</td>
</tr>
<tr>
<td>Verity et al.(5)</td>
<td>3.70%</td>
<td>1.38%</td>
<td>0.60%</td>
<td>China</td>
</tr>
<tr>
<td>Wu et al.(21)</td>
<td>4.5%</td>
<td>1.40%</td>
<td></td>
<td>China (Wuhan)</td>
</tr>
<tr>
<td>Wu et al.(22)</td>
<td>0.85%</td>
<td>0.85%</td>
<td></td>
<td>China (outside Wuhan)</td>
</tr>
<tr>
<td>Hauser et al.(7)</td>
<td>2.40%</td>
<td>3.00%</td>
<td></td>
<td>China (Hubei province)</td>
</tr>
<tr>
<td>Baud et al.**(23)</td>
<td>3.60%</td>
<td>5.60%</td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Present Work</td>
<td>1.41%</td>
<td>1.58%</td>
<td></td>
<td>Australia</td>
</tr>
<tr>
<td></td>
<td>3.89%</td>
<td>4.25%</td>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td></td>
<td>4.36%</td>
<td>5.00%</td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td>0.56%</td>
<td>0.58%</td>
<td></td>
<td>Iceland</td>
</tr>
<tr>
<td></td>
<td>1.47%</td>
<td>2.16%</td>
<td></td>
<td>Israel</td>
</tr>
<tr>
<td></td>
<td>2.28%</td>
<td>2.65%</td>
<td></td>
<td>South Korea</td>
</tr>
<tr>
<td></td>
<td>1.41%</td>
<td>1.55%</td>
<td></td>
<td>New Zealand</td>
</tr>
<tr>
<td></td>
<td>3.50%</td>
<td>2.19%</td>
<td>1.10%</td>
<td>China (Feb 11, 2020)</td>
</tr>
<tr>
<td></td>
<td>10.20%</td>
<td>3.60%</td>
<td>1.80%</td>
<td>New York City (April 22, 2020)</td>
</tr>
</tbody>
</table>

*: Time corrected for NYC new cases per day
**: Not time corrected based on case data

Table 1: Reported nCFR, corrected CFR, and corrected IFR values for China, the United Kingdom and the United States. The table summarizes reported corrected CFR and IFR values, the nCFR value at the time of the report, and the country/region. Details are available in the cited references. (3–11,13,20–29) Studies are listed by their first author or by the location of the modeling group that reported them. Abbreviations: DHHS: Department of Health and Human Services, USA; Oxford: Oxford College, U.K.; Imperial College: Imperial College, U.K.
Sources of data
Data were obtained from data compiling sites (Worldometer, Statista) and the Australian, Austrian, German, Iceland, Israeli, South Korean, and New Zealand government websites. (12–14, 24–27, 29, 30) Data was also obtained from the New York City Department of Health website. (17, 31)

Definitions
\(t \)
A given day after the start of the outbreak

\(j \)
Day person got infected; represents the start of a new cohort

\(C \)
Case: only individuals who are symptomatic

\(I \)
Infection: individuals who are symptomatic or asymptomatic

\(n_C(j) \)
Number of new cases on day \(j \)

\(N_C(t) \)
Cumulative number of cases on day \(t \) after the start of the outbreak:

\[N_C(t) = \sum_{j=1}^{t} n_C(j) \]

\(n_D(j) \)
Number new deaths on day \(j \)

\(N_D(t) \)
Cumulative number of deaths on day \(t \) after the start of the outbreak

\(N_I(t) \)
Cumulative number of infections on day \(t \) after the start of the outbreak

\(N_{CC}(t) \)
Cumulative number of closed cases (died or recovered) on day \(t \)

\(N_{Rf}(t) \)
Cumulative number of recovered cases on day \(t \)

\(nCFR \)
The uncorrected, often referred to as naïve, measured ratio of cumulative number of deaths divided by the cumulative number of cases on a given day \([N_D(t)/N_C(t)]\)

Closed case CFR

Same as \(nCFR \) but measured using only data from closed cases (either recovered or dead) given by \([N_D(t)/N_{CC}(t)]\)

\(cCFR \)
The corrected case fatality rate (\(cCFR \)) is the value of CFR that would be measured if the entire population with symptomatic infections was included

\(IFR \)
The infection fatality ratio (\(IFR \)) given by the ratio of cumulative number of deaths divided by the cumulative number of infected \([N_D(t)/N_I(t)]\); can only be achieved if the entire population is tested accurately

\(f_D(t) \)
Probability density function of death times at \(t \) days after diagnosis

\(F_D(t) \)
Cumulative distribution function obtained from \(f_D(t) \)

Calculations

Estimation of the corrected CFR based on correction of the reported \(nCFR(t) \) for the delay between diagnosis and fatality and from the closed case CFR. We used two independent methods to estimate the corrected CFR. In one method we corrected the reported \(nCFR(t) \) for the time delay between diagnosis and death based on previously reported approaches. (3, 5–7, 21, 23, 32, 33) The second method was based on our observation that in all countries analyzed the closed case CFR (see definitions) converged to a near constant value prior to the \(nCFR \). A closed case is defined as a case that has been designated as recovered or has died. Unlike the \(nCFR \), it is not impacted by changes in the percentage of the infected population that is tested during the duration of the epidemic. As shown in Appendix 3, provided that the median times to
death and for recovery stay approximately constant during the outbreak the closed case CFR will converge to the final value prior to the nCFR.

We implemented a time delay to death correction method using an \(f_D \) derived from reported log-normal fits of data obtained from China between December and late January of the percentage of deaths of COVID-19 patients per day after diagnosis.\(^{1,3,5,6,33}\) Data was used only from patients who were hospitalized outside of Hubei province to avoid the potential problem that adequate medical care was likely not available within the province and especially in Wuhan early in the outbreak.\(^{3,7,21}\) For the cohort of cases diagnosed on day \(j \), the \(f_D \) at day \(t \) is described by,

\[
[1] \quad f_D(t - j) = \text{Lognormal}(\ln Mu, \ln SD)
\]

The calculated cumulative number of deaths from the cohort diagnosed on day \(j \) on day \(t \) was calculated from the cumulative distribution \((F_D) \) which is the integral of Eq. [1] from day \(j \) to day \(t \) multiplied by the number of new cases on day \(j \) and the corrected CFR,

\[
[2] \quad n_{Dj}(t) = \text{corrected CFR} \times n_{Cj} \times F_D(t-j)
\]

where \(t > j \).

We note that Eq. [2] is equivalent to a convolution integral of \(f_D(t-j) \) with a delta function centered at day \(j \) with an area of CFR*\(n_{Cj} \).

Total calculated number of deaths on day \(t \) was then obtained by adding together the deaths from each cohort,

\[
[3] \quad N_D(t) = \sum_{j=1}^{J} n_{Dj}(t)
\]

Where \(J \) is the total number of cohorts.

We then calculated the predicted value of nCFR(t) on day \(t \) using Eq. [3] and the cumulative cases up to that day where \(N_D(t) \) is calculated,

\[
[4] \quad \text{nCFR}(t) = \frac{n_D(t)}{\sum_{j=1}^{J} n_{Cj}}
\]

The value of the corrected CFR was then calculated by adjusting the value of the corrected CFR in Eq. [2] until the calculated nCFR(t) on the last day of the outbreak analyzed was equal to the reported value.

Optimization of the parameters of \(f_D \). The function \(f_D \) was based upon the reported best right corrected log-normal least square fits of measured onset (day of positive test) to fatality distributions for Chinese patients outside of Wuhan who were infected in December and January by Linton et al. and Mizumoto et al.\(^{3,33}\) The best fitting distributions from these sources were very similar with Linton reporting a best fit median of 13.2 days with a 95% CI of 11.5 to 15.3 days and Mizumoto et al. reporting a best fit median (estimated from their reported log-mean
value) of approximately 13 days. (33–35) Because two other studies fitting to a different distribution function reported higher mean and extrapolated median values, we decided to examine median values of 14, 17, and 21 days. The SD reported by all studies, based on gamma fits, was very similar, and equivalent to a logSD of approximately 0.50 as reported by Mizumoto. (34,35)

For the least square fits, we first determined the corrected CFR from the data from Germany using the time correction method described above for each of the distribution functions. Germany was chosen because of the large number of cases compared to the other countries analyzed which minimizes statistical fluctuations early in the outbreak of the reported nCFR(t) curve. A goodness of fit was then determined by calculating the least squares total residual by squaring the differences between our calculated nCFR(t) (using the corrected CFR) and the reported nCFR(t) values and summing those squares. The optimum parameter values were determined based upon evaluating medians of 14, 17, and 21 days and for each value of the median varying logSD from 0.25 to 0.75.

Model for calculating the corrected CFR based on the age distribution of positive cases in the population and the age specific CFR values. Studies have reported that the nCFR for COVID-19 strongly increases with age. (5–7,9–11,15,21,22,32–34) We determined for each country the corrected CFR values for the fraction of a country’s populations of age 0-69, 70-79, and 80 and above based on reports of the number of deaths and number of cases in each age range. The population below 70 years old was not further subdivided due to the relatively low number of deaths in this group in the countries with the least number of cases. The total reported corrected CFR is then expressed by,

$$\text{corrected CFR} = \text{cCFR(0-69)} \times p(0-69) + \text{cCFR(70-79)} \times p(70-79) + \text{cCFR(80+)} \times p(80+)$$

where \(p() \) is the proportion of the population in the relevant age group and the terms, \(\text{cCFR()} \), are the corresponding corrected CFR for the population in that age-group. Table 3 gives the values we calculated from the reported data of each country for \(\text{cCFR(0-69)} \), \(\text{cCFR(70-79)} \), and \(\text{cCFR(80+)} \).

Under the assumption that the age specific corrected CFR values for each country analyzed was close to the true value we used Eq.[5] to calculate the true corrected CFR for New York City and China. In both cases there was a large outbreak but inadequate testing to capture all symptomatic cases and infected cases. To perform the calculation, we used the mean coefficients of all countries analyzed for \(\text{cCFR(0-60)} \), \(\text{cCFR(70-79)} \), and \(\text{cCFR(80+)} \), and the reported values. The corrected CFR for New York City and China were then determined based on their `reported values of \(p(0-69) \), \(p(70-79) \), and \(p(80+) \).

Determination of the variation in the corrected CFR between countries explained by the age distribution of cases. We tested how much of the variation in the corrected CFR between countries was due to age distribution. The corrected CFR was broken into two components, one from cases 70 years old and above (\(\text{cCFR}_{70+} \)) and the other from cases 69 years old and below (\(\text{CFR}_{0-69} \).
corrected CFR = cCFR_{0-69} + cCFR_{70+}

The terms in Eq. [6] were calculated for each country from the following expressions:

[7A] \(\text{cCFR}_{70+} = \text{cCFR}(70+)*p(70+) \)

[7B] \(\text{cCFR}_{0-69} = \text{cCFR}(0-69)*p(60-69) \)

To determine how much of the variation in cCFR_{70+} between countries that can be explained by \(p(70+) \), we calculated the \(R^2 \) of the least squares regression.

We further broke down cCFR_{70+} to understand how much of the variation could be explained by the population in the 70-79 age group and 80+ age groups separately using Eq. [7C]:

[7C] \(\text{cCFR}_{70+} = \text{cCFR}(70-79)*p(70-79) + \text{cCFR}(80+)*p(80+) \)

We adjusted for the percentage of cases who were 80+ out of the percentage of cases age 70+, \(\frac{p(80+)}{p(70+)} \), as shown in Eq. [8A]. The reported values for \(\frac{p(80+)}{p(70+)} \) ranged from 0.24 to 0.53 with a mean of 0.40 (Table 3). In order to assess whether the remaining variation in cCFR_{70+} was due to this range in \(\frac{p(80+)}{p(70+)} \), we calculated an adjusted value of cCFR_{70+} for each country by normalizing \(\frac{p(80+)}{p(70+)} \) to 0.40 as given in Eq. [8B].

[8A] \(\text{cCFR}_{70+A} = [\text{cCFR}(70-79)*(1-\left(\frac{p(80+)}{p(70+)}\right)) + \text{cCFR}(80+)*\left(\frac{p(80+)}{p(70+)}\right)] \)

[8B] \(\text{cCFR}_{70+A} = [\text{cCFR}(70-79)*0.60 + \text{cCFR}(80+)*0.40] \)

To determine how much of the variation in cCFR_{70+A} between countries can be explained by \(\left(\frac{p(80+)}{p(70+)}\right) \), we calculated the \(R^2 \) of the least squares regression.

Simulation of the closed case CFR(t). To understand the basis for the apparent early convergence of the closed case nCFR to the corrected CFR value, we calculated the cumulative number of recoveries versus day after the outbreak using the above approach. Based on recent reports, the \(f_D \) for recovery is similar to that of fatality but with a median shifted several days later. We examined the effect of the median shift on the closed case CFR(t) curves by testing a range of values for the shift.(5,32) The closed case CFR(t) was calculated using the following formula,

\[
\text{closed case CFR}(t) = \frac{N_D(t)}{N_R(t) + N_D(t)}
\]

Calculation of the percentage of the adult population of New York City that has been infected with COVID-19 on April 22, 2020. We used our model to estimate the true corrected CFR for New York City using the reported percentages of cases above 0-69, 70 – 79, and 80+ years old in Eq. [5] with the CFR() coefficients derived from the countries we analyzed. (31)
We then estimated the true IFR by dividing by 2 based on reports that up to half of the infected cases in Iceland and the Diamond Princess cruise ship are asymptomatic. Due to testing of a large fraction of the population and all of the passengers respectively, the majority of symptomatic cases and asymptomatic cases were likely to be captured.(6,13,34)

To estimate the total number of infected individuals in the population, we divided the time corrected number of fatalities reported up to April 22, 2020.(31) The time correction factor (CF$_t$) was calculated from the new cases per day as described above. We assumed based upon a relatively constant number of tests over this period that the captured cases would be proportional to the total number in the population.(31,36,37) The total number of infections on that day is then is then given by,

$$\text{Number of infections} = \frac{N_D(T) \cdot CF_t}{2^{\frac{1}{C_{FR}}}}$$

For the total number of deaths, we used the confirmed cases to get a minimum estimate and the confirmed plus probable deaths for a maximum estimate.

To determine the percent of the adult population infected, we then divided the maximum and minimum number of infections by the number of adults (over age 18) in New York City.(36) The adult population was used due to the random testing not including children who are known to have a much lower symptomatic and total infection rate than adults.(13,24–27) We also compared our calculations with other models using their reported IFR values (Table 1) and Eq. [10].

Results

Increase in the reported nCFR(t) versus day after the start of the outbreak in five countries. We found in all countries examined that the reported nCFR has risen throughout the COVID-19 outbreak. As shown in Fig. 1, the value of the reported nCFR(t) for Germany rose from a low value of 0.12% on March 10, 2020 to its present value of 4.36% on May 7, 2020. Our estimate of the final CFR of 5.0% is shown as a dashed horizontal line. Figure 2 shows a similar plot using the South Korean data, which rose from a low of 0.55% on March 8, 2020 to its value on May 7, 2020 of 2.28%. The values shown are plotted from 10 days after the first 100 cases were reported to avoid large fluctuations due to the low early number of deaths. In Appendix 3, we show that the nCFR versus day curves for Austria, Australia, Iceland, Israel, and New Zealand exhibit the same trend.
Figure 1. Reported nCFR(t) increases with time after outbreak for Germany. The nCFR has continuously increased with time after the outbreak from a lowest value of 0.12% on March 10, 2020 to its present value on May 7, 2020 of 4.36%. The dashed horizontal line at 5.0% is our estimate of the final CFR from the closed case CFR value.

Figure 2. Reported nCFR(t) versus day after outbreak for South Korea. The nCFR for South Korea is also seen to be continuously increasing from a minimum of 0.55% on March 8, 2020 to 2.28% on May 7, 2020. Our estimate of the corrected CFR of 2.7% is shown as a dashed blue horizontal line.

Increase in number of deaths on the Diamond Princess cruise ship since February 17, 2020. The Diamond Princess cruise ship is unique in that a large contained group had a significant number of infections and were all tested. Early reported nCFR values of this and other cruise ships with outbreaks have been used to support low corrected CFR values.(4,8) Russell et al.
(2020) analyzed the number of deaths per day from Feb. 17, 2020 through March 3, 2020 and using a similar time correction approach to ours, estimated that the final nCFR (equivalent to corrected CFR since all cases were tested) would be 2.1% with 15 deaths. Figure 3 plots the cumulative number of deaths on each day after the ship docked. As of April 17, 2020, the number of deaths is now 15 in agreement with this prediction.

Figure 3. Total number of deaths from February 17, 2020 to April 17, 2020 for the Diamond Princess cruise ship. The solid horizontal line is the number of deaths predicted if the true CFR was 2.1% as predicted by Russell et al. using a similar time to death correction to ours. The red dashed lines are the 95% CI for the estimate. As with the countries examined the number of deaths continues to increase with time.

The reported closed case nCFR converges to a constant value before the nCFR. We found that for the countries we examined the closed case CFR appears to have converged to a constant value prior to nCFR. In Figure 4, we plot the reported closed case nCFR(t) and nCFR(t) curves from Germany as an example, showing clearly that the closed case nCFR has converged 48 days prior to May 7, 2020 while the nCFR continues to increase. Appendix 2 shows that a similar convergence has occurred for Australia, Austria, Iceland, Israel, New Zealand, and South Korea.
Figure 4. Closed case CFR(t) and nCFR(t) versus day for Germany. As shown by the top curve the closed case fatality ratio appears to be converging to a near constant value. In contrast the nCFR continues to climb and as of May 7, 2020, is still well below the closed case CFR.

Estimation of the corrected CFR from the closed case CFR and time to fatality correction of the reported nCFR. As described in Calculations, we calculated the corrected CFR using two methods. As shown in Table 2, the closed case CFR and standard time correction methods gave similar results for all of the countries examined.

<table>
<thead>
<tr>
<th>Country</th>
<th>Closed Case CFR</th>
<th>Time- Corrected CFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>1.58</td>
<td>1.42</td>
</tr>
<tr>
<td>Austria</td>
<td>4.26</td>
<td>4.20</td>
</tr>
<tr>
<td>Germany</td>
<td>5.02</td>
<td>5.05</td>
</tr>
<tr>
<td>Iceland</td>
<td>0.57</td>
<td>0.58</td>
</tr>
<tr>
<td>Israel</td>
<td>2.16</td>
<td>1.72</td>
</tr>
<tr>
<td>New Zealand</td>
<td>1.55</td>
<td>1.51</td>
</tr>
<tr>
<td>South Korea</td>
<td>2.65</td>
<td>2.32</td>
</tr>
</tbody>
</table>

Table 2. Comparison of the corrected CFR values calculated using the closed case CFR and time to fatality correction methods. (12–14, 24–27, 29)
Assessment of the accuracy of determining closed case CFR by time correction early in an outbreak when the reported nCFR is several fold below the final value. In order to determine whether the nCFR(t) curve, despite its several fold increase over time in the countries examined, could be explained by a single corrected CFR value, we performed simulations in which we generated predicted nCFR(t) curves for different CFR values. Figure 5A and 5B show the simulated nCFR(t) and $N_D(t)$ curves for Germany using corrected CFR values of 0.5%, 1.0%, 2.0%, 3.0%, 4.0%, 5.0% (the final corrected CFR value denoted by an asterisk) and 6.0%. It is seen that the simulated nCFR(t) curve using this value is in good agreement with the reported nCFR(t) data even when the reported nCFR was well below 1.0%. In contrast, the curves consistent with previous corrected CFR estimates in the 0.5% to 1.0% range (Table 1) poorly fit the reported nCFR(t) data at all times. We found similar results for the other countries analyzed (Appendix 2) although with more variation in countries with low numbers of total cases (e.g. Australia, Iceland, New Zealand) possibly due to statistical fluctuations in the number of deaths at early times.

![Figure 5A. Simulated and reported $N_D(t)$ versus day curves for the Germany.](image)

The black curve is the reported data. The best match to the reported data throughout most of the outbreak is for the final corrected CFR of approximately 5.0% which is the same as the measured closed case CFR on May 7, 2020.
Figure 5B. Simulated and reported nCFR(t) versus day curves for Germany. The reported nCFR(t) curve is plotted in black. Even though the reported nCFR(t) curve rises continuously it is well matched throughout the duration by the calculated nCFR(t) curve (blue) with the final corrected CFR of 5.0%. This corrected CFR is over 10 fold higher than the reported nCFR values early in the outbreak.

Determination of how much of the variation in the corrected CFR between countries can be explained by the percentage of cases 70 years old and above. Several reports have indicated that there is a sharp increase in the CFR from COVID-19 above approximately 70 years old and that cases 70 years old and above account for the majority of fatalities.\(^{(6,15)}\) However, the reported values may be biased due to countries prioritizing testing of high risk individuals in older age ranges. In order to assess these values under the conditions where minimum bias in testing would be expected, we tabulated (Table 3) for each country the values of the corrected CFR for each age group (CFR(0-69), CFR(70-79), CFR(80+), CFR(70+)), the percentage of the case population in each group (p(0-69), p(70-79), p(80+), p(70+)) and the contribution of each group to the overall corrected CFR (CFR(0-69), CFR(70-79), CFR(80+), CFR(70+)).

Figure 6A plots the component of the cCFR for each country contributed by cases 0-69 years old (cCFR\(_{0-69}\), green) and for the cases 70 years old and above (cCFR\(_{70+}\), blue) versus p(70\(^{+}\)). It is seen that for all countries cCFR\(_{70+}\) is the major component of the CFR with the ratio cCFR\(_{70+}\)/cCFR having a mean value of 81% with an SD of +/- 8% (Table 3, note that this also is the ratio of total deaths in the 70+ age range to total deaths). To determine how much of the variation in this component could be explained by the percentage of cases 70 and above, as opposed to variations in testing, we performed regression analysis against p(70\(^{+}\)) giving:

\[c\text{CFR}_{70^+} = 0.23*p(70^+) - 0.639 \quad R^2 = 0.82 \]

In order to assess whether additional variation could be explained by the relative percentage of cases 80 years old and above (p(80\(^{+}\)) in the 70+ age group we calculated using the measured cCFR(80) values an adjusted cCFR\(_{70+}\) for each country (cCFR\(_{70+A}\)) for a constant ratio of
p(80+)/p(70+) of 0.40, which is the mean value for the countries evaluated (Table 3). As shown in Figure 6B linear regression of cCFR70+,A against p(70+) had a further reduced variation.

\[\text{cCFR}_{70+,A} = 0.195\times p(70+) - 0.263 \quad R^2 = 0.89 \]

In order to further test the importance of age in explaining the variation between countries we calculated the slope for Eq. [12] using the values of CFR(70-79) and CFR(80+) from each country and Eq. [8]. This method gave a mean slope of 0.167 with a 95% CI of the mean of 0.129-0.204, which is within error the same as the slope determined by linear regression value.

Although the age group below 70 years old only accounted for on average 19.1% of the deaths (and the same percentage of the total cCFR as shown in Fig. 6A) we still found that they were a significant factor in overall mortality with an average cCFR0-69 being 0.41% (Table 3). There was also weak dependence of cCFR0-69 with p(70+) (slope = 0.05, R^2 = 0.72).
Figure 6. Linear regression analysis of cCFR$_{70+}$, cCFR$_{70+}A$, and cCFR$_{69-}$ versus percent of cases 70 years old and above (p$_{70+}$).

Figure 6A shows a plot of cCFR$_{70+}$ (blue) and cCFR$_{69-}$ (green) for each country versus X. The total corrected CFR for each country is given by cCFR = cCFR$_{70+}$ + cCFR$_{69}$. It is seen that for all countries the cCFR$_{70}$ term explains the large majority of cCFR (81% +/- 8%). The majority of the variance in cCFR$_{70}$ is explained by cases 70 years old and above ($R^2 = 0.82$). The contribution to cCFR from cases 69 years old and younger showed a weak dependence on X (slope= 0.05, $R^2 = 0.72$).

Figure 6B shows a plot of cCFR$_{70+}A$ (blue) for each country. The value of cCFR$_{70+}A$ for each country was calculated by adjusting the fraction of cases in the 70 and over group who are 80 years old and above to be 40% (p$_{80+}$/p$_{70+}$ = 0.40), which is the mean of the countries examined (Table 3). The higher fraction of the variance explained by age for cCFR$_{70+}A$ ($R^2 = 0.89$) indicates that cases 80 years and over are an important factor in the overall cCFR.

Estimation of the corrected CFR for China as of February 11, 2020 and New York City as of April 22, 2020. We applied the linear model described in Eq. [5] to predict the corrected CFR based on the age distribution of cases in China on February 11, 2020 (WHO).(2) Based on the percentage of cases from 70 to 79 (9%) and 80 and above (3%), the model predicted a corrected CFR of 2.19% with a 95% CI of the mean: 1.54%-2.85%. We performed a similar calculation based on the age distribution of positive cases in New York City as of April 22, 2020 with 9% of cases between 70 and 79 years old and 8% 80 years old and older.(31,36,37) Due to the greater percentage of cases in both categories the corrected CFR for New York City was predicted to be 3.60% with a 95% CI of the mean: 2.73%-4.47%.

Estimation of the percentage of the population infected with COVID-19 in New York City. As described in the Calculations, in order to validate the model, we calculated the percentage of the New York City population that has been infected by COVID-19 up through April 22, 2020 in order to compare with recent studies that have performed random testing. We calculated a maximum and minimum value based on whether unconfirmed but probable deaths were included. The inset shows our minimum and maximum calculated values (green bars) of 14.69% (95% CI of mean: 11.85%-19.43%) and 22.05% (95% CI of mean: 17.75%-29.10%) are in
agreement with two recent studies that randomly tested individuals in the NYC adult population of 15.3% and 21%, respectively (blue bars). (15,16) Also plotted are the predictions from previously reported true IFR calculations that have been applied to estimate fatalities in the United States and United Kingdom (Table 1). For the other IFR values only confirmed COVID-19 deaths were included. As seen in the graph other than Modi (2020) and the Imperial College model, the estimated percentages of the population infected are several fold above the reported values. (5,11)

![Graph showing reported percentage of New York City adults infected with COVID-19 versus calculated using our and other reported IFR values.](image)

Figure 7. Reported percentage of New York City adults infected with COVID-19 versus calculated using our and other reported IFR values. As shown in the inset, the predicted maximum and minimum percent of the population in New York City infected with COVID-19 is in good agreement with recent reports based on random testing. (15,16) For comparison, we calculated the percentage of the population infected and predicted using previous reported IFR values for New York City, the United States, and the United Kingdom (see Table 1).

Discussion

To obtain an estimate of the true CFR for COVID-19, we focused on countries with extensive testing of symptomatic and asymptomatic individuals (Appendix 4) and access to modern medical care. These countries have all largely have suppressed their new cases. Our assumption was that the corrected CFR from these countries represents a conservative estimate of their true CFR without the need to introduce potentially large corrections for missed cases. (3–11,20–22,34) We found a range of corrected CFR values for these countries (from 0.7% to 5.0%). However, on average 81% (95% CI of mean: 72.39%–89.26%) of the total CFR was due to the cases 70 years old and above. When we examined the component of the CFR due to this population (cCFR70+) separately, we found that 89% of its variance was explained by a linear model based upon the percentage of cases 70-79 and 80 and above years old. The remaining component of the corrected CFR was relatively stable between countries with a mean value of 0.41% and 95% CI of the mean of 0.21%-0.62%. We tested the model by using it to calculate the true CFR and IFR for New York City where there is a large infected population that has recently undergone several studies performing random testing. Our estimated corrected IFR value for
New York City of 1.80% as of April 22, 2020 was 2 to 16.5 fold higher than previous values that have been applied to the US and UK (Table 1). However, its prediction that between 14.69% and 22.05% of the New York City adult population has been exposed to COVID-19 gave the best agreement with the results of random testing studies in New York City at or near April 22, 2020 (15.3% - 21%, Figure 7).(15–17) In contrast previous IFR values applied to the United States and United Kingdom predicted minimum values between 29% and 222% as shown in Fig. 7. We discuss below the potential sources of difference between our study and previous CFR and IFR calculations and the relative strengths and limitations of our approach.

Our calculated corrected CFR for China was 2.19% with a 95% CI of the mean: 1.54%-2.85%, which was considerably lower than for New York City due to the lower fraction of cases between 70 and 79 and 80 and over years old, but higher than the majority but not all of the previously reported values (Table 1) which ranged from 0.9 to 5.6%. Almost all of the studies that calculated an IFR/CFR using data from China performed a time correction similar to that applied here, so that it is unlikely that the time delay to death significantly contributed to their lower corrected CFR values.(3,5–7,20–23) A more likely factor explaining the differences between values is the correction for missed cases which ranged from 1.0 to approximately 4.(20,23) In addition to uncertainties in determining missed cases a significant amount of the difference can be accounted for when previous values are scaled up by 1.5 fold to match the recent report of the Chinese government of undercounting by 2x.(2)

The reported nCFR(t) versus day data shows clearly that the nCFR(t) values have all risen at least several fold from the early values used to justify low estimates of the IFR for COVID-19 (see Figures 5A, 5B, and Appendix 3).(12,14,24–27,30) We therefore calculated the corrected CFR for each country using both the earlier convergence of the closed case CFR to a final value and a conventional time to death correction method.(5–7,23,32,33) We found that they gave similar values for each country (Table 2). As shown in Figure 2, the closed case CFR for Germany converged to its final value 44 days before May 7, 2020 while the reported nCFR is still rising, and similar early convergence was seen in all of the other countries evaluated (Appendix 1). The simulations in Appendix 3 show that the convergence time to the final corrected CFR value for the closed case CFR primarily depends on the separation of the median days to death versus the median days to recovery. If the medians are the same and the distribution function shape is similar, the convergence, within statistical fluctuation, will be immediate. We also found that the time to death correction method for calculating the corrected CFR worked well at early times when the reported nCFR values were several fold the reported values on May 7, 2020. Therefore, both methods should be useful early in an outbreak to provide a more accurate measure than the uncorrected nCFR.

We did not factor in preexisting conditions in our analysis which has been reported as significantly affecting mortality.(15,17,26,31,36,37) The high R² values we found for the cCFR_70+ component (0.82 and 0.89 when adjusted for cases in the 70 and over and 80 and above groups respectively), which accounts for the large majority of fatalities, suggests that they were similar between the countries we analyzed. However, it is likely that the ability to extrapolate from our findings to other countries would be improved if preexisting conditions and other risk factors that may be differentially present were included in our model.
The corrected CFR between countries for the under 70 years old component (cCFR₀₋₆₉), was considerably lower than the cCFR₇₀ in all cases, mean 0.41% with a 95% CI of the mean: 0.21%-0.62%. There was a shallow dependency on percentage of cases 70 years and above (see Figure 6 and Table 3). A potential explanation for this finding is that these countries also had a higher percentage of cases in the 45 to 69 year old range, which has been shown to have a higher nCFR than for younger groups. (13,24–27) We note that although the majority of deaths in all countries evaluated were in the 70 and older population a 0.41% cCFR₀₋₆₉ is still higher than several overall CFR estimates (Table 1).

To calculate the IFR for New York City, we divided the calculated corrected CFR by a factor of 2 based on reports from the Diamond Princess and Iceland that half of COVID-19 cases are asymptomatic. This value may be an overestimate as shown by Mizumoto, because these reports did not take into account the lag between infection and onset of symptoms which led him to revise the true asymptomatic cases to approximately 30% of the total cases. (34) Another potential confound in our approach is that our estimated time to death correction of the number of deaths based on present infections might be off due to an increase in tests per day during the duration we analyzed leading to a relative overestimate of more recent cases. However, based on the New York City Department of Health, the number of tests per day during the period when almost all of the cases were reported was relatively constant. (31,36,37)

Our calculation of the minimum and maximum percentage of the adult population in New York City that has been infected by COVID-19 was in good agreement with the recent studies that performed random testing of segments of the adult population (Figure 7). (15–17) In one study, the percentage of women entering two New York City hospitals to give birth who were infected with COVID-19 was measured with 33 out of 215 having the virus (15.3%). (16) In the second study, the New York City infected population was estimated at 21% from 3000 serological antibody based measurements of passersby at testing stations near public areas in New York City and other regions in New York State with the results reported on April 22, 2020. (15) The New York City findings were replicated from subsequent testing of 5500 cases reported April 28, 2020 (24% infected) and 15,500 cases on May 2, 2020 (19.9% infected). Due to the heterogeneity in COVID-19 deaths and cases within even New York City and the restricted age range of the groups examined (18 – 75 for the New York State study) these reported percent infection values may be overestimates. (31,36) However, given that the large majority of cases in New York City are between ages 18 and 75, it is unlikely that this bias would have a large impact.

As shown in Figure 7, the predicted infection percentage for the adult New York City population using previous IFR values, were all higher than the reported and our estimated values. The closest IFR values to ours were reported by Modi et al. and the Imperial College model. (11,19) The model of Modi estimated the New York City IFR based upon the difference between reported deaths during the outbreak versus a similar period of time and corrected for age distribution of positive cases. (11) No time correction of the number of reported deaths was used in order to obtain a lowest estimate of the death rate. To compare with our predictions, we applied the same time to death correction to the Modi IFR that we used in our model which increased its IFR to 0.88%, similar to the value of 0.90% used in the Imperial College model. (5)
Much lower estimates of the IFR have recently been reported based on serological antibody testing that was performed at testing sites set up in Santa Clara County in early April which based on time corrected total deaths in the county at the time led to estimated IFR values of 0.13% – 0.2%.(8) A potential explanation for the difference is that the actual percentage measuring positive in their study was low, between 2.49 and 4.16%. A recent study that has evaluated available serological testing platforms found that when factors such as time since infection are taken into account the fraction of false positives can exceed this range.(38) The impact of false positives is likely to be less significant for the New York State study because of the much higher true percentage of the New York City population that is infected. The consistency of the New York City serological study has been shown in two successive replications. Furthermore they have consistently reported values in the 1.0% – 2.0% range for several regions in New York State outside of the New York City metro area, which indicates that their false positive rate could not have been much more than 5%.(15,17,31,39)

Having an accurate value of the true CFR and IFR is important for modeling the total number of deaths from COVID-19 as well as the shape of the infection curve. As shown in Figure 7, the number of confirmed COVID-19 positive fatalities in New York City as of April 22, 2020 is well above the number of fatalities predicted by the IFR used in several models, including the United States Department of Health and Human Services (USDHHS) model, even if 100% of the adult New York City population was infected. The dependency of the estimated number of deaths on the IFR in epidemiological models was shown recently using the USDHHS model to be close in some cases to linear, with an increase of IFR from 0.25% to 0.5% approximately doubling projected deaths if all other factors were held constant.(28) This strong dependence of fatality predictions on IFR exemplifies the dire need for accurate values in order to appropriately allocate resources and prepare for future cases and deaths. Our approach is less sophisticated than models that estimate the true IFR and CFR using model based corrections for missed cases. However, the demonstration that most of the variation between countries with extensive testing can be explained by the age distribution of cases, and the ability to accurately predict the New York City COVID-19 infection percentage, supports that it provides a likely high but robust estimate of the true CFR and IFR values. By providing a conservative upper estimate of the CFR and IFR, the method should be useful for epidemiological models of the COVID-19 pandemic.
References

4. Ioannidis JPA. A fiasco in the making? As the coronavirus pandemic takes hold, we are making decisions without reliable data. STAT. 2020. p. 1–13.

http://medrxiv.org/content/early/2020/03/30/2020.03.04.20031104.abstract

9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand [Internet]. Imperial College London. London; 2020. Available from: https://doi.org/10.25561/77482

28. Whyte LE, Zubak-Skees C. Federal Documents: More than 300,000 likely to die if
restrictions are lifted. The Center for Public Integrity. 2020.

Table 3: Age specific fractions of cases, age specific corrected CFR, and contributions of each age group to the overall corrected CFR for each country. Definitions: \(p() \) is the proportion of the population in the relevant age group; \(cCFR(80+) \) is the CFR for cases 80 years old and above; \(cCFR(70-79) \) is the CFR for cases 70 -- 79 years old; \(cCFR(70+) \) is the CFR for cases 70 years old and above; \(cCFR(0-69) \) is the CFR for all cases 69 years old and below; \(cCFR_{70+} \) is the contribution to the overall CFR from all cases 70 years old and above; \(cCFR_{0-69} \) is the contribution to CFR from all cases 69 years old and below. The subscript A refers to \(cCFR_{70+} \) values corrected to have a fraction of 40% of cases 80 years old and above. The value was chosen to match the mean from all countries except New Zealand (which has not reported this value and therefore it was assumed to be the same as the mean of the other countries). Data was obtained from the following references.(1–8)