Predicting SARS-CoV-2 infection trend using technical analysis indicators

Marino Paroli and Maria Isabella Sirinian

Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Italy

ABSTRACT

COVID-19 pandemic is a global emergency caused by SARS-CoV-2 infection. Without efficacious drugs or vaccines, mass quarantine has been the main strategy adopted by governments to contain the virus spread. This has led to a significant reduction in the number of infected people and deaths and to a diminished pressure over the health care system. However, an economic depression is following due to the forced absence of worker from their job and to the closure of many productive activities. For these reasons, governments are lessening progressively the mass quarantine measures to avoid an economic catastrophe. Nevertheless, the reopening of firms and commercial activities might lead to a resurgence of infection. In the worst-case scenario, this might impose the return to strict lockdown measures. Epidemiological models are therefore necessary to forecast possible new infection outbreaks and to inform government to promptly adopt new containment measures. In this context, we tested here if technical analysis methods commonly used in the financial market might provide early signal of change in the direction of SARS-CoV-2 infection trend in Italy, a country which has been strongly hit by the pandemic. We conclude that technical analysis indicators can be usefully adopted to this aim.

INTRODUCTION

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the etiological agent of Coronavirus Disease 2019 (COVID-19) (1). At the time of writing, COVID-19 pandemic is a global emergency with more than 280,000 deaths worldwide (https://data.europa.eu/euodp/en/home). With no effective antiviral drugs and no vaccines available, prevention of COVID-19 relies upon detection and isolation of symptomatic cases and restrictive mass quarantines (2). Mass quarantine, however, poses a serious risk of a second crisis in the form of an economic recession.
Therefore, governments are cautiously allowing the progressive come back to work without certainty that further infection waves will not occur. Different epidemiological models are used to forecast real-time the number of new cases and identify possible pandemic outbreaks. These include compartmental models, agent-based models and metapopulation models (4-5). However, any epidemiological model has its own limitation, and the addition of new predictive tools is desired. Technical analysis (TA) is a methodology used in the stock market aimed to forecast the direction of prices through the study of statistical trends of post-market data (6). TA is based on the use of mathematical tools called indicators developed to generate signals to buy or to sell a certain financial security. These tools include indicators which are plotted over the top of the prices on a stock chart like Simple Moving Averages (SMEs) or oscillate between a local minimum and maximum being plotted above or below a price chart like Moving Average Convergence/Divergence (MACD) and the Relative Strength Index (RSI) (7-8). We examined here the capacity of different TA indicators to predict the SARS-CoV-2 spreading using daily reported new cases of infection for our analysis.

METHODS

Data of new daily infection cases were obtained from the official website of European Union (9). TA indicators used in this study included a) combined use of fast (3-day) and slow (20-day) Simple Mean Averages (SMAs). The crossing between the fast and the slow SMAs either to the upside or the downside were considered as signs of trend reversals; b) Moving Average Convergence Divergence (MACD). MACD indicator consists of the MACD line calculated by subtracting the 26-day Exponential Moving Average (EMA) from the 12-day EMA of a series of progressive data. Nine-day EMA of the MACD line (signal line) is then calculated and plotted on top of the MACD line. Finally, MACD histogram is calculated by subtracting the signal line from the MACD line. A trend reversal to the upside is signaled when the MACD line crosses above its signal line, while a reversal trend to the downside is signaled when the MACD line crosses below the signal line. Additionally, signals of a trend reversals are revealed when the MACD line cross the zero axis. c) the 14-day Relative Strength Index (RSI) was calculated according to the standard formula:

\[RSI = 100 - \left(100/1 + \frac{RS}{RS}\right) \]

where RS is the ratio between the average of the absolute increase of values upper and down the previous day in a 14-day timeframe. Plotting RSI values results in a line that fluctuates between 0 and 100 values. Cross of the 50 value by the RSI line either to the upside or the downside are considered reversal signals of the current trend; f) divergence between trends of MACD histogram and daily new infections histogram was also analyzed. All TA
indicators were calculated according to the appropriate formula using the Microsoft Excel spreadsheet program.

RESULTS

Data analyzed ranged from April 20 to May 8, 2020. The combined use of slow and fast SAMs showed a signal toward the downside on April 1, 2020 (Fig. 1A). MACD indicator showed an earlier sign of trend reversal to the downside on March 30, 2020. This reversal was confirmed later on April 20 when MACD line crossed the zero-axis line (Fig. 1B) RSI showed a sign of inversion crossing the “50” line on March 30, 2020 (Fig. 1C). In figure 2 a divergence between trends of the new daily infections (downward) and the MACD histogram (upward) is shown.

DISCUSSION

Technical analysis is a means to examine and forecast how stock market trend. TA is based on the idea that if previous market patterns can be identified a fairly accurate prediction of future price trajectories can be made, and this is obtained by the use of mathematical tools called market indicators. This approach is opposed to fundamental analysis which is focuses on the true values of assets (6). A series of TA indicators were tested here for their ability to predict SARS-Cov-2 infection spread using as data the number of daily reported new infections in analogy to stock quote prices. Open-data on infections obtained by the European official site concerned Italy, a country profoundly struck by the pandemic. We found that all indicators considered here provided reversal signals which were easily spotted on charts. This led us to the conclusion that TA indicators can be useful to obtain real-time information on how SARS-CoV-2 infection is spreading. It is worth to note that prompt signals of a trend inversion can provide essential information to governments to adopt prompt measures to contain the pandemic and to identify new outbreaks. Although TA is not intended to be a substitute of classical epidemiological models, we believe that any new method able to predict the infection trend deserve consideration. This is true especially during such an emergency situation where at present neither the biology of the virus nor the host immunological response is fully understood. A major limitation of this study is the intrinsic nature of the data. The reported number of daily new cases is at least in part inaccurate since a consistent number of new infections can be missed due to the presence of asymptomatic subjects (10). Underreporting of cases due to several factors is a major limitation of any epidemiological model. Moreover, the number of diagnostic tests taken daily may fluctuate significantly.
of infection can vary among areas of the same country (11). This has been particularly evident in Italy where in Lombardy region cases account for about half of total cases of the whole country. Nevertheless, we suggest that TA indicators might provide reliable real-time information of how SARS-Cov-2 infection is spreading to implement in adequate advance new containment measures when needed.

REFERENCES

FIGURE LEGENDS

Figure 1. A) Fast SMA crosses the slow SMA from above indicating that the trend is changing in a downward direction. Histograms represent the new daily cases of infection in Italy during the indicated period; B) Trend reversal to the downside is signaled earlier by crossing of MACD line by the signal line from above and later by the crossing of zero-axis by the MACD line; C) RSI crosses the “50” line indicating a downturn.

Figure 2. A divergence between the number of new daily cases and MACD histogram is represented.