ABSTRACT
Projections of the near future of daily case incidence of COVID-19 are valuable for informing public policy. Near-future estimates are also useful for outbreaks of other diseases. Short-term predictions are unlikely to be affected by changes in herd immunity. In the absence of major net changes in factors that affect reproduction number (R), the two-parameter exponential model should be a standard model – indeed, it has been standard for epidemiological analysis of pandemics for a century but in recent decades has lost popularity to more complex compartmental models. Exponential models should be routinely included in reports describing epidemiological models as a reference, or null hypothesis. Exponential models should be fitted separately for each epidemiologically distinct jurisdiction. They should also be fitted separately to time intervals that differ by any major changes in factors that affect R. Using an exponential model, incidence-count half-life (t1/2) is a better statistic than R. Here an example of the exponential model is applied to King County, Washington during Spring 2020. During the pandemic, the parameters and predictions of this model have remained stable for intervals of one to four months, and the accuracy of model predictions has outperformed models with more parameters. The COVID pandemic can be modeled as a series of exponential curves, each spanning an interval ranging from one to four months. The length of these intervals is hard to predict, other than to extrapolate that future intervals will last about as long as past intervals.
Competing Interest Statement
The authors have declared no competing interest.
Clinical Trial
NA
Funding Statement
No external funding was received.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Study is human subjects exempt.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data was obtained from the King County Department of Health website. Data is provided as a supplemental file.
https://www.kingcounty.gov/depts/health/covid-19/data/daily-summary.aspx
Abbreviations
- IDM
- Institute for Disease Modeling
- PHSKC
- Public Health — Seattle & King County
- R
- reproduction number
- R2
- coefficient of determination
- SIR
- Susceptible, Infected and Recovered