STUDY TITLE: EFFECTIVENESS OF MULLIGAN JOINT MOBILIZATIONS AND TRUNK STABILIZATION EXERCISES VERSUS ISOMETRIC KNEE STRENGTHENING IN THE MANAGEMENT OF KNEE OSTEOARTHRITIS: STUDY PROTOCOL FOR A RANDOMIZED CONTROLLED TRIAL.

AUTHORS: Shaikh Nabi Bukhsh Nazir, Syed Shahzad Ali, Saeed Akhtar

1. Post graduate student, Institute of Physical Medical & Rehabilitation, Dow University of Health Sciences, Karachi, Pakistan.
2. Assistant Professor, Institute of Physical Medical & Rehabilitation, Dow University of Health Sciences, Karachi, Pakistan.
3. Assistant Professor, Institute of Physical Medical & Rehabilitation, Dow University of Health Sciences, Karachi, Pakistan.

Correspondence:
Dr. Shaikh Nabi Bukhsh Nazir (PT),
Department of Physiotherapy,
Institute of Physical Medicine & Rehabilitation
Dow University of Health Sciences
Karachi, Pakistan.
Cell: 0343-2883538
Email: nabibux_903@hotmail.com
Effectiveness of Mulligan joint mobilizations and trunk stabilization exercises versus isometric knee strengthening in the management of knee osteoarthritis: study protocol for a randomized controlled trial

Abstract

Knee Osteoarthritis (KOA) patients have a huge negative impact on gait parameters and altered biomechanics in many components, including impairments of dynamic lower limb alignment and lumbopelvic movement control. The understanding of these components seems to be very crucial and there is need to add these unfocused components in treatment regimens in the research setting to see its effects; before using as a routine treatment regime in Clinical practice for patients with KOA. This study protocol focuses on whether Mulligan joint mobilization with movement provides evident effects on decreasing pain and restoring the joint biomechanics. Trunk stabilization exercises improve the stability of the trunk which distributes the weight of the body evenly on both feet biomechanically. The treatment effects of both treatments are inconclusive. Accordingly, the study aims to determine the efficacy of Mulligan joint mobilizations and trunk stabilization exercises versus isometric knee strengthening for KOA. It is a study protocol of a three-arm randomized control trial. Initial screening of the subjects will be carried out by a referring consultant. Subjects who fulfill the study criteria will be randomly allocated into three groups After an explanation of study objective and obtaining informed consent. Group 1 will receive mulligan mobilization with kinesiotaping and knee strengthening. Group 2 will receive trunk stabilization exercise, knee strengthening, and Kinesiotaping. Group 3 will receive knee strengthening along with kinesiotaping. All participants will be evaluated using visual analogue scale, Knee injury and Osteoarthritis Outcome Score, stair climb test and 6-minute walk test at 1st, 3rd and 6th week. The results of this study will answer a clearly focused question investigated in KOA patients. Finding of this study will serve as a guide to inform clinical decision making for healthcare professionals, researcher, and patients.

Trial registration: NCT04099017

Keywords: Osteoarthritis, knee joint, manual therapy, kinesiotape, exercise therapies, isometric contraction.
Background

Walking difficulty is a common problem experienced by individuals with knee osteoarthritis (KOA). This restricts their ability to participate in activities of daily living (ADLs). The prevalence of walking difficulty in KOA was found to be 30%, which correlates not only with an increased institutionalization rate and health care cost, but also with decreased quality of life. KOA is also associated with metabolic and systemic diseases such as hypercholesterolemia, high blood glucose levels, and high blood pressure; which can lead to greater health implication and can further increase the economic burden. There is a need to devise a cost effective treatment strategy to limit functional decline, joint pain and stiffness.\(^1\)

People with osteoarthritis tend to avoid activity due to severe pain, however, exercise has proven to be an effective treatment for this condition, producing improvements in pain and physical function which occurs by improving the strength of the muscles surrounding the knee joint. Twenty four sessions of therapeutic exercise provide the most beneficial effects in improving the functional outcomes of pain and disability, but it has not been tested on walking capacity of 6-minute walk test.\(^2\) Multimodal exercise programs proximal to knee provides better pain relief than knee strengthening alone.\(^3\)\(^-\)\(^4\)

Weakness around the trunk muscles plays a crucial role in the development of knee pain, which is also linked with decreased strength of the trunk side flexor, hip abductor, lateral rotator and extensor muscles.\(^5\)\(^-\)\(^8\) When trunk stabilization combined with knee strengthening exercises would be attributed to the improvement of the lumbopelvic control and walking capacity of the KOA patient, the evidence to support these suggestions is limited.\(^9\)\(^-\)\(^10\) There is limited evidence to suggest a link between improvement of lumbopelvic control and walking capacity of a KOA patient due to a combination of knee strengthening and trunk stability exercises.

Several studies have revealed the positive effects of joint mobilization with exercise in the management of KOA.\(^11\)\(^-\)\(^12\) The American College of Rheumatology (ACR) also recommends for patients with knee OA to receive manual physical therapy in combination with knee strengthening exercises under the supervision of a qualified physiotherapist.\(^13\)

In 1980, Brian Mulligan proposed a joint mobilization technique for the management of various musculoskeletal conditions to reduce movement restriction and joint pain. Mulligan joint mobilization includes active movement and mobilization of the joint which is termed as Mobilization with Movement (MWM). MWM works on the principle of restoring biomechanics of the knee by overcoming positional fault.\(^14\)\(^-\)\(^17\) A recent systematic review highlighted that MWM exhibits immediate effects only on parameters of pain and disability. No study has been done portraying the long-term effectiveness of MWM and well-designed RCT.\(^18\) In addition; taping accompanied with the mobilization helps to support correcting the effects of mobilization and contributes to further reduction in the intensity of pain and the level of disability.\(^19\)\(^-\)\(^20\)

The use of KT remains clinically uncertain over its efficiency in the management of the KOA. There is a need for well-designed RCT to evaluate the effects of elastic taping on pain, disability and sub-maximal exercise performance especially in combination with exercise.\(^21\)

At present, there is no RCT studies the effects of mulligan joint mobilization on 24 supervised exercise sessions. There are limited high-quality methodological studies that are published investigating the effects of mulligan mobilization in the management of KOA;
especially 6-minute walk test (walking difficulty), pain and disability. Therefore, we designed this randomized controlled trial to determine whether the effects of Mulligan joint mobilizations, in comparison to trunk stabilization and isometric knee strengthening, provide better pain relief, improve disability and submaximal exercise performance level in the KOA.

Methods/design

Study design

The three arm randomized controlled trial will be carried out at the Institute of Physical Medicine and Rehabilitation, Dow University of Health Sciences. This study has been approved by the Institutional Review Board (IRB), Dow University of Health Sciences (IRB-1433/DUHS/Approval/2019/118). The randomized controlled study will follow SPIRIT, CONSORT and Tidier guidelines.

Study Population and allocation

Physiatrist and an orthopedic surgeon will perform clinical examination and evaluate the x-rays (that have been taken within a three month time period). Those participants who fulfill the inclusion criteria will be selected from Outpatient department from Institute of Physical Medicine and Rehabilitation, Dow University of Health Sciences, Karachi Pakistan and Outpatient Department of Orthopaedic in Civil Hospital Karachi. Informed consent will be obtained before randomization. All patients who will voluntarily participate in the study will be provided with oral and written explanations about the purpose of the study and the procedures to be used. If a patient agrees to participate, they will sign a consent form.

Inclusion criteria

- Men and women between 40 – 60 years.
- Knee osteoarthritis Grade I and II on Kellgren and Lawrence (K/L) radiological criteria.
- Participants to have a confirmed diagnosis of KOA on the basis of clinical criteria of ACR.
- Those who use medicines i.e. vitamin D, calcium supplements and NSAID (paracetamol)

Exclusion criteria

- Known skin allergies to Kinesiotaping
- Sensory-motor dysfunction of lower extremity
- Severe joint deformity of lower extremity
- Post Traumatic Arthritis
- Constitutional symptoms (Fever, Malaise, Weight Loss and high blood pressure)
- Knee Intraarticular injection in the past 3 months
- With known case of low back pain
- History of spinal surgery
- Subject using assistive devices for ambulation i.e. cane, walkers, sticks
- Body Mass Index > 30 kg/m²
- Received physiotherapy treatment in the past 3 months
- Visual Analogue Scale <4
- Patellofemoral joint arthritis will be excluded
Randomization and allocation concealment

After recruiting the study subjects, they will be randomly allocated to three groups (ratio 1:1:1) using a research randomizer (www.random.org). The schedule will be concealed using sequentially numbered opaque, sealed envelopes. Envelopes will be stored in a locker and opened in sequence within each stratum to reveal group allocation.

Masking

After confirming eligibility, the physiotherapist performing intervention obtained treatment assignment (S.S. Ali). The subject will not be aware of the group allocation and different time slots will be given for each intervention. Another physiotherapist, who will also not be aware of allocation concealment, will record the reading of outcomes at the baseline, after three and six weeks.

Interventions

The intervention frequency will be 4 session in alternate days per week for the duration of 6 weeks.

Total sessions per week = 4 for 6 weeks

Total session = 24
Figure 1: Flow diagram of the planned protocol pathway.
Mulligan joint mobilization

Area: Knee Joint

Mobilization: Non-weight bearing (NWB) to weight-bearing (WB)

Intensity: 6-10 Reps

Frequency: 3 sets/session

Procedural detail:

Joint mobilization will be performed in the sagittal, frontal and transverse direction, glide given will depend on patient adherence to the joint mobilization. Mobilization will progress from NWB & WB according to compliance of patient. 24

Trunk stabilization

Area: Trunk

Type of exercise: Stabilization exercise

Intensity: 6-8 reps

Frequency: 3 sets per session and 30-second duration break between sets

Procedural detail:

i. Participant in this exercise will start in prone position on the bed. They will extend lower limbs without flexing knees, then the legs will be lowered. Patient lumber region will be stabilized while performing this stability exercise in-order to avoid the movements of upper limb.

ii. Back bridge:

The participant will be instructed to lie supine on the bed with knees flexed at 90 degrees, and to lift pelvis to align the spine and thighs.

iii. Unilateral back bridge:

The patient will be instructed to extend unilateral knee by lifting the foot off the ground.

iv. lateral step up:

Standing on the side of a 10-cm step, step up laterally with the leg closest to the step. 25
Knee Strengthening

Area: Knee Joint

Type of exercise: Knee Isometric Strengthening exercises.

Load: maximum isometric contraction

Intensity: 10 reps

Frequency: At 1st week one set of all knee exercise will be performed, which will progress to 2 sets at 3 weeks, and then three sets for the remainder of sessions.

Procedural detail:

i. **Isometric quadriceps exercise:** The patient will lie supine on the bed. A rolled-up towel will be placed under the knee. They will be instructed to press the knee on the towel to maximally activate the quadriceps (isometrically). The participant will hold this position for 5 seconds.

ii. **Straight leg raising (SLR) exercise:** the participant will lie supine on the bed and lift the leg 4 inches above the plinth in order to hold this static position for 10 seconds isometrically.

Kinesio-taping

Muscle stretch method will be applied which involves one Y and two I straps: The Y-shaped tape base will be affixed over the top of patella and then pull the knee to its maximum bending capacity, after which both ends of Y strip will be placed around the patella ending on the tibial tuberosity. Then reinforcing I-tape will be affixed at the origin and insertion of MCL and LCL. The tape will be changed in every session.

Measurement of outcomes

In patients with unilateral osteoarthritis, the affected knee will be examined throughout the study. For bilateral KOA, the most painful knee will be considered for the recording of outcome measures throughout the study.

Visual Analogue Scale

It measures the subjective of pain ranges from 10-cm lines with defined cut off scores. It will be measured at rest and during stairs climb (ascending and descending). Recording of reading will take place at baseline, 3rd week and 6th week

Knee injury and Osteoarthritis Outcome Score (KOOS)

The Knee Injury and Osteoarthritis Outcome Score (KOOS) is a patient-reported outcome measure intended for middle-aged and elderly adults with knee osteoarthritis (OA) and can be
used to monitor disease course and outcomes during the intervention. KOOS holds five subscales and their reliability (1) Pain (r=0.93) (2) other Symptoms (r=0.85) (3) Activities of Daily Living (r=0.95) (4) Sport and Recreation function (r=0.75) and (5) knee-related Quality of Life (r=0.79). Each subscale generates a final score ranging from 0 to 100, where 0 represents “worst” and 100 “best”.

6 Minute Walk Test

The 6-min walk test (6 MWT) is a submaximal exercise test that entails the measurement of distance walked over a span of 6 minutes. Bright colour tapes will be used to mark the 12m walkway at each end. It will be ensured that the environment will be free from hazards and readings will be recorded by a blind assessor. The participant will be instructed to wear comfortable shoes.

Stairs Climb Test

Stair climb test is used to measure the total time taken by the participant to ascend and descend stair onto with a step length of 16-cm (ICC=0.90). If safety is of concern, the assessor will walk behind the participant going up the stairs and at the side while going down the stairs. If there is no concern for safety, the tester will remain at the start/finish position on the ground landing.

Rescue medicine

Any use of paracetamol will be ascertained at weeks 3 and 6 after randomization.

Adverse events

There have been no significant risks and no such side effects of this treatment intervention apart from a temporary increase in pain, fatigue, muscular strain and skin irritation. In case of any related event, cryotherapy and rest will be considered.

Data management

The subject's name will not be used under any circumstance and each study participant will be allotted a serial number for identity instead. All the individual participant data will be collected during the trial, after de-identification. The principal researcher will have access to participants' personal data. After completing this study, it will remain the property of the Dow University of Health Sciences. Data will be stored up to the time frame of beginning 3 months and ending 3 years following article publication.
Sample size

The sample size was calculated using PASS software. In the pain section, Group1 2.23±0.73, Group2 3.12±0.66, Group3 3.98±0.73 we used this difference to calculate the sample size. We included a power of 99%, confidence interval of 99% and a sample size of 11 per group by using one-way ANOVA. To manage the dropout rate, the sample size is set at 20 per group.

Statistical analysis

Data will be entered and analyzed using SPSS version 23. Demographics comparison of the group will be conducted using One Way Anova analysis for continuous variable i.e. age, Body mass index and symptoms of duration. Chi-square analysis will be used for categorical data in order to compare groups. i.e. gender and K/L criteria. Mean and SD will be calculated of quantitative variables like pain, knee-related function, submaximal exercise capacity and stair climb by using repeated measure ANOVA. For pairwise comparison, post hoc Tukey will be applied. A value of less than 0.05 will be considered significant. Intention to treat analysis will be carried out in this research.

Discussion

A double-blinded randomized controlled trial has been designed to examine the effects of mulligan joint mobilization and trunk stabilization exercise on pain, disability and submaximal exercise performance in the KOA. A systematic review on the effects of orthopaedic manual therapy (OMT) included 11 randomized controlled trials involving 494 patients. Study finds that OMT Combined with strengthening exercise may result in reducing the pain and improving the physical functions in the KOA. However, a clear recommendation for treatment was not possible due to the high heterogeneity in the design, chronicity of the OA was not given in the included trials and lack of information about the affected knee compartment such as patellofemoral or tibiofemoral. The findings of our study are likely to provide clinical relevant information with reduced business, as most painful knee will be selected for the recording of outcome. Both clinical and radiological classification criteria are used in this study in order to correctly diagnose tibiofemoral arthritis.

MWM works on the principle of potential neurophysiological mechanisms that include changes in central pain processing mechanisms and descending pain inhibitory systems. Furthermore, the movement produced while mobilizing the joint can alter the concentration of inflammatory mediators and lead to the deactivation of nociceptors that are activated by this mechanism.

In a cross-sectional study of 220 patients with OA, 95% of the subjects reported a lack of knee confidence in walking; pain during gait and fear of movement. Most MWM was carried out in a weight-bearing position, and at the same time patients received painless joint movement feedback. This feedback can modulate psychological features such as fear of movement which leads to an increase in the walking capacity. Additionally, MWM requires muscle activity in a weight-bearing position, which might have resulted in improved motor performance, which would position the patient well to gain long term benefits from a formal exercise program.
Trunk stabilization or core exercises have been used to improve dynamic lower limb alignment and lumbopelvic movement control. The forces acting on the tibiofemoral joint play an important role in knee injuries. Because the location of the body’s centre of mass is largely influenced by the mass of the trunk, aberrant motions of the pelvis and trunk can affect the orientation of the ground force vector and therefore influence the knee load. For instance, weakness of hip abductor or external rotator deficit moves the centre of gravity to the contralateral pelvis joint which will lead to increase the adjustment of biomechanical forces on the medial compartment of the knee.40-41

Our study has some limitations, including that we are enrolling the participants who are taking medications. Therefore, the result of this study will not be generalized to patients with KOA. Another limitation is that blinding of the physiotherapist is not possible in this study.

References

