ABSTRACT
Introduction Humans and viruses have co-evolved for millennia resulting in a complex host genetic architecture. Understanding the genetic mechanisms of immune response to viral infection provides insight into disease etiology and therapeutic opportunities.
Methods We conducted a comprehensive study including genome-wide and transcriptome-wide association analyses to identify genetic loci associated with immunoglobulin G antibody response to 28 antigens for 16 viruses using serological data from 7924 European ancestry participants in the UK Biobank cohort.
Results Signals in human leukocyte antigen (HLA) class II region dominated the landscape of viral antibody response, with 40 independent loci and 14 independent classical alleles, 7 of which exhibited pleiotropic effects across viral families. We identified specific amino acid (AA) residues that are associated with seroreactivity, the strongest associations presented in a range of AA positions within DRβi at positions 11, 13, 71, and 74 for Epstein-Barr Virus (EBV), Varicella Zoster Virus (VZV), Human Herpes virus 7, (HHV7) and Merkel cell polyomavirus (MCV). Genome-wide association analyses discovered 7 novel genetic loci outside the HLA associated with viral antibody response (P<5.0×10-8), including FUT2 (19q13.33) for human polyomavirus BK (BKV), STING1 (5q31.2) for MCV, as well as CXCR5 (11q23.3) and TBKBP1 (17q21.32) for HHV7. Transcriptome-wide association analyses identified 114 genes associated with response to viral infection, 12 outside of the HLA region, including ECSCR: P=5.0*10-15 (MCV), NTN5: P=1.1×10-9 (BKV), and P2RY13: P=1.1×10-8 EBV nuclear antigen. We also demonstrated pleiotropy between viral response genes and complex diseases; from autoimmune disorders to cancer to neurodegenerative and psychiatric conditions.
Conclusions Our study confirms the importance of the HLA region in host response to viral infection and elucidates novel genetic determinants beyond the HLA that contribute to host-virus interaction.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research was supported by funding from the National Institutes of Health (US NCI R25T CA112355 and R01 CA201358 PI: Witte). Maike Morrison was funded by the University of California San Francisco Amgen Scholars Program.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This research was conducted with approved access to UK Biobank data under application number 14105 (PI: Witte).
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
All association results for SARS-CoV-2 (testing positive vs. testing negative) have been removed from this version.
Data Availability
The UK Biobank in an open access resource, available at https://www.ukbiobank.ac.uk/researchers/. This research was conducted with approved access to UK Biobank data under application number 14105 (PI: Witte).