Profiling COVID-19 pneumonia progressing into the cytokine storm syndrome: results from a single Italian Centre study on tocilizumab versus standard of care.

Authors: Luca Quartuccio1, prof, MD, PhD, Arianna Sonaglia1, MD, Dennis McGonagle2, prof, MD, PhD, Martina Fabris3, MD, Maddalena Peghin4, MD, Davide Pecori4, MD, Amato De Monte5, MD, Tiziana Bove5,6, prof, MD, Francesco Curcio2, prof, MD, PhD, Flavio Bassi5, MD, Salvatore De Vita1*, prof, MD, Carlo Tascini4*, MD

*equally collaborated to this work.

Affiliations: 1 Clinic of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, Udine, Italy; 2 National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, UK; 3 Institute of Clinical Pathology, ASUFC, Udine, Italy; 4 Infectious Diseases Unit, ASUFC, Udine, Italy; 5 Department of Anesthesia and Intensive Care, ASUFC, Udine, Italy; 6 Department of Medicine, Anesthesia and Intensive Care Clinic, University of Udine, Udine, Italy.

Correspondence to:
Luca Quartuccio, MD, PhD
Clinic of Rheumatology, ASUFC
Department of Medicine (DAME), University of Udine, Udine, Italy
Email to: luca.quartuccio@asufc.sanita.fvg.it
Phone: +39 0432559808
Fax to: +39 0432559472

Keywords: coronavirus, COVID-19, tocilizumab, anakinra, mortality

Manuscript word count: 2850

Tables: 4

Figures: 1
Abstract [243 words]

Background
Approximately 5% of patients with coronavirus disease 2019 (COVID-19) develop a life-threatening pneumonia that often occurs in the setting of increased inflammation or “cytokine storm”. Anti-cytokine treatments are being evaluated but optimal patient selection remains unclear.

Methods
Between February 29 to April 6, 2020, 111 consecutive hospitalized patients with COVID-19 pneumonia were evaluated in a single centre retrospective study. Patients were divided in two groups: 42 severe cases (TOCI) with adverse prognostic features including raised CRP and IL-6 levels, who underwent anti-cytokine treatments, mostly tocilizumab, and 69 standard of care patients (SOC).

Findings
In the TOCI group, all received anti-viral therapy and 40% also received glucocorticoids. In TOCI, 62% of cases were ventilated and there were 3 deaths (17.8±10.6 days, mean follow up) with 7/26 cases remaining on ventilators, without improvement, and 17/26 developed bacterial superinfection. One fatality occurred in the 15 TOCI cases treated on noninvasive ventilation and 1 serious bacterial superinfection. Of the 69 cases in SOC, there was no fatalities and no bacterial complications. The TOCI group had higher baseline CRP and IL-6 elevations (p<0.0001 for both) and higher neutrophils and lower lymphocyte levels (p= 0.04 and p=0.001, respectively) with the TOCI ventilated patients having higher markers than non-ventilated TOCI patients.

Interpretation
Higher inflammatory markers, more superimposed infections and worse outcomes characterized ventilated TOCI cases compared to ward based TOCI therapy. Despite the confounding factors, this study suggests that therapy time in anti-cytokine randomized clinical trials will be key.

Funding
This research received no external funding.

Conflicts of Interest: “The authors declare no conflict of interest.”
Introduction
Commencing in December 2019, an outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, and is now a global pandemic. About twenty-five percent of patients have serious disease that requires hospitalization. A fraction of them, in particular older patients and those with chronic underlying conditions, may have worse outcomes, with a very severe pneumonia which may progress to acute respiratory distress syndrome (ARDS) or end-organ failure that may be associated with a cytokine storm syndrome. Laboratory features associated with the development of ARDS and progression from ARDS to death included neutrophilia, coagulation dysfunction [e.g., higher lactate dehydrogenase (LDH) and D-dimer]. In a small retrospective study (21 cases) the most severe 11 cases more frequently showed markedly higher levels of interleukin (IL)-2R, IL-6, IL-10, and TNF-α with the absolute numbers of CD4+ and CD8+ T lymphocytes being markedly lower. Starting from the first preliminary experience on the apparent efficacy of tocilizumab in COVID-19 pneumonia, many global multicenter trials are now ongoing to test anti-cytokine treatments in patients with severe COVID-19 pneumonia with cytokine storm syndrome features.

Nevertheless, robust data to predict the outcome of COVID-19 pneumonia after the hospital admission are still lacking, though they are urgently needed in order to facilitate the assessment of anti-cytokine treatment efficacy in worse prognosis patient groups and not milder disease. The aim of this retrospective study was to evaluate baseline laboratory and immunological features in patients hospitalized for COVID-19 pneumonia and to explore such parameters in relationship to standard of care (SOC group) therapy versus anti-cytokine therapy, mainly tocilizumab, (TOCI group) that was mostly used either in ventilated patients in the ICU or non-invasively ventilated patients, mostly in the ward setting. Our single centre experience and approach showed that the milder hospitalized SOC group fared well as did cases with cytokine storm treated with tocilizumab outside of the ICU setting without ventilator support. Severe complications including protracted bacterial infections complicated tocilizumab in the ICU setting but not ward-based tocilizumab therapy. Our preliminary findings suggest that randomized trials should target non-ICU patients to prevent cytokine storm evolution.

Methods
This study was undertaken to identify laboratory features for more serious COVID-19 disease (i.e., to determine which cases that might theoretically benefit from anti-cytokine drugs). In this monocentric retrospective case-control study, the clinical and immunological characteristics of 111 consecutive patients with COVID-19 were analyzed. Patients were admitted to our hospital from February 29 to April 6, 2020. All but 6 patients presented to our hospital with 6 cases transferred from three other hospitals (all of whom eventually received tocilizumab).

Oral or written consent was obtained from patients. The study was conducted in accordance with the ethical principles of the Helsinki Declaration. All the patients in TOCI group were already treated with tocilizumab before the subsequent enrolment into the retrospective part of the TOCIVID-19 Italian study (EudraCT: 2020-001110-38), a single arm, open-label trial on the efficacy and safety of tocilizumab in COVID-19 pneumonia.

Besides clinical evaluation, the level of CRP and IL-6, when available, guided the decision towards anti-cytokine treatments. Clinical decisions for the treatment of all these patients were taken usually within the first week after the admission, and during this time, the laboratory tests were repeated. Demographic, clinical and laboratory characteristics and treatment as well as outcome data were
obtained from electronic medical records. Identification of cases of COVID-19 virus was based on the detection of unique sequences of virus RNA by nucleic acid amplification tests (NAAT) such as RT-PCR with confirmation by nucleic acid sequencing. The following genes were investigated: E gene for screening and then RdRp and N genes of SARS-CoV-2 for confirmation.7

The following laboratory data were performed at the admission: white blood cell count (WBC) (cell/microL), neutrophil count (cell/microL), lymphocyte count (cell/microL), including flow cytometry analysis with antibodies for the following subpopulations: CD19+ B cells, CD3+CD4+ T cells, CD3+CD8+ T cells, CD56+ NK cells, platelet count (cell/microL), C-Reactive Protein (CRP) (mg/L), D-dimer (ng/ml), LDH (IU/L), creatine kinase (IU/L). Serum IL-6 (pg/ml) was measured by CE IVD electrochemiluminescence immunoassay (Elecsys IL6, Cobas, physiological range < 7pg/ml) with results being available within 48 hours.

Descriptive statistics summarized data using the mean and standard deviation or median and interquartile range (IQR), as appropriate based on the variable distribution, or frequency rates and percentages for dichotomous variables; consequently, comparisons between TOCI and SOC groups were made by parametric tests (t-test for two independent samples) or no parametric tests (Mann-Whitney test) for continuous variables. Proportions for categorical variables were compared using the χ2 test, although the Fisher exact test was used when the data were limited. Bivariate correlation was made by two tailed Pearson or Spearman tests. All statistical analyses were performed using SPSS version 13·0 software (SPSS Inc). For unadjusted comparisons, a 2-sided α of less than ·05 was considered statistically significant. No corrections were made for multiple comparisons due to the explorative nature of the study.

When the laboratory parameters were available, the patients were classified into two groups: the first group comprised 42 cases who developed a serious COVID-19 disease that were deemed suitable for tocilizumab 8 mg/kg intravenously as a single infusion. In TOCI failures, two patients were then treated with anakinra 200 mg/day subcutaneously for three consecutive days. A second group of 69 cases who received supportive therapy [standard of care group (SOC)] comprised those initially admitted to the hospital for COVID-19, and who were treated with SOC based on clinical and laboratory features (see Table 1).

Results

Patients’ characteristics and outcome

Patients were predominantly male (77/111, 69·4%) with a mean age of 58·5±13·6 years. Patients in TOCI were slightly older than SOC (p=0·02) (table 1). Arterial hypertension was recorded in 41 patients (36·9%). Charlson’s index equal or more than 2 was recorded in 17/111 patients (15·3%), with no differences between groups (table 1). The median time from the onset of the first symptoms of COVID-19 to the hospital admission was 6 days (3-8·5), with no differences between groups (Table 1). Globally, at the hospital admission, resting oxygen saturation equal or below 93% was available for 45 patients (40·5%).

Antiviral treatments were employed in 100% of TOCI group and 80% of SOC group (Table 1). Antimalarials were used in 92 patients (82·9%) and low molecular weight heparin at prophylactic dose in 46 (41·4%) (Table 1). Antibiotics were concomitantly administered in 39 patients (35·1%). Also, nearly 40% of TOCI group received glucocorticoids but none of the SOC group did (Table 1).
Among TOCI group, 18 (43%) patients were originally referred to the Infectious Disease Unit with 3 being subsequently transferred to ICU before tocilizumab administration (Figure 1) with 24/42 patients (57%) ICU transfers within 24 hours of hospital admission. The majority of patients received tocilizumab in the ICU (27/42, 64.3%) with the remaining 15 cases receiving TOCI on the ward. Tocilizumab was administered after a mean time of 8.4±3.7 days from disease onset as add-on treatment. Of the 27 patients that were transferred to ICU, 26 (96.3%) were intubated with subsequent tracheostomies in 8 (7.2%), while only one was on noninvasive ventilation.

There were no fatalities in the SOC group (Figure 1). Overall, at April 18, 2020, 4/42 TOCI patients had died (9.5%). Of the TOCI ventilated patients 15/26 (57.7%) had a good outcome. When combined with fatality rate, 11/26 (42.3%) patients in the TOCI ventilated group can be deemed as non-responders. By contrast, 15/16 (93.7%) TOCI non-ventilated patients can be deemed as responders with a single fatality (Figure 1). Importantly, at the hospital admission, TOCI patients who required invasive ventilation showed higher levels of inflammation markers, higher LDH and lower lymphocyte count than non ventilated TOCI patients (Table 2).

Eighteen out 111 patients (16.2%) experienced bacterial superinfection that were almost exclusively in the TOCI group (Figure 1). Three out of four deaths and 17/18 bacterial complications occurred in ICU (all 3 deaths as well as all the bacterial complications occurred in patients on ventilators or in the non-ventilated TOCI group (Figure 1).

While all the patients in the SOC group recovered, in the TOCI group, 9/42 (21.4%) patients completely recovered, and 21/42 (50%) patients showed a clear and rapid improvement after tocilizumab. A rapid improvement on anakinra after tocilizumab occurred in one case. In the 21 recovered TOCI treated group complicating infections arose in 11 (52.4%). In the remaining 12 non-responder patients, four of them died, including one treated with anakinra after tocilizumab failure, and almost all showed co-morbidities including hypertension, obesity, ischemic heart disease or diabetes, or experienced superinfections, which substantially complicated the subsequent course.

Retrospective laboratory marker comparison between treatment groups

Table 1 summarizes the main comparisons between the two groups. Briefly, the two groups were significantly different in terms of age, being TOCI group older than SOC group (62.4±11.8 years vs 56.2±14.2 years, p=0.02). Importantly, there was no difference in the duration from symptom onset and hospital admission (table 1). At hospital admission, TOCI group showed a significantly higher level of systemic inflammation as resulted by the significant difference of CRP levels [mg/L, median (IQR)] [79.05 (47.8-186.2) vs 24.1 (7.3-72.6) p<0.0001], and IL-6 levels [pg/mL, median (IQR)] [63.5 (37.25-135.5) vs 18.5 (10.25-33), p<0.0001]. Also, some other laboratory features mirrored a higher level of systemic disease and organ damage in TOCI group, such as LDH [IU/L, median (IQR)] [625 (482-829) vs 442 (375-577), p=0.001] and CK [IU/L, median (IQR)] [134 (84.5-365.5) vs 93 (57-146), p=0.007].

The TOCI group showed a significantly higher neutrophil count (cells/microL) [4565 (3062-56190) vs 3670 (2285-4905), p=0.04], lower lymphocyte count [cell/microL, median (IQR)] [685 (545-1022.5) vs 940 (760-1195), p=0.001], CD4+ T cell [244.5 (158.75-406.25) vs 370 (269.5-497), p=0.02], CD8+ T cell subpopulation [77 (48-195.75) vs 180 (111-366), p=0.004]. Also, neutrophil to lymphocyte ratio (NLR) was significantly higher in TOCI group than in SOC group [5.6 (3.5-11.8) vs 3.6 (2.2-5.4), p=0.001]. The TOCI group also showed basal higher levels of LDH (p=0.001) and CK (p=0.007), possibly indicating cardiac injury that is a known bad prognostic sign.
Table 3A reports the correlations between CRP levels and the levels of the other biomarkers in the whole population (TOCI+SOC) and in the whole population after excluding those patients with the worst clinical presentation at the admission (N=24). A moderate to high correlation (>0.5) was found between CRP and the following variables: D-dimer, LDH, neutrophil count and NLR (table 2).

By excluding those patients admitted to the ICU within 24 hours (i.e., the most serious) (table 3B), CRP and IL-6 remained statistically significant as discriminant variables between the two groups (p=0.009 and p=0.0002, respectively) (Table 3). Yet, correlations between CRP and IL-6, total white blood cell count, neutrophil count, NLR, LDH were still significant (table 3B).

Furthermore, the same analysis in the whole cohort by splitting the two group (N=42 for TOCI and N=69 for SOC), showed that baseline CRP value correlated with IL-6, D-dimer, LDH, WBC, neutrophil count and NLR only in the SOC group, while in the TOCI group, baseline CRP correlated only with LDH, WBC, neutrophil and NLR (data not shown).

Discussion

Our retrospective study was designed to evaluate which baseline standardized laboratory features in hospitalized COVID-19 pneumonia may facilitate optimal employment of experimental anti-cytokine therapy. To our knowledge, since the first Chinese reporting of tocilizumab have been reported in the international literature, with only one case series of 15 patients, globally suggesting some benefits in seriously ill patients. More clearly, our data suggested that tocilizumab treatment in patients with cytokine storm features may be more effective outside of the ICU setting in non-ventilated patients. However, there were differences in the degree of inflammation between non-ventilated and ventilated patients treated with tocilizumab, so it cannot be inferred that use of tocilizumab prior to ICU admission is superior, given the generally milder inflammation in the former group. Also, serious superimposed bacterial infections were largely confined to the ICU. More worryingly, half the ICU ventilated patients treated with TOCI remain ventilated or have died with only half of this group showing meaningful clinical improvement so far.

Our findings confirmed that the milder patient group receiving standard of care therapy without the utilization of tocilizumab all made full recoveries. Our findings do point towards trials focused on the earlier use of such therapeutic strategies. Notably, our SOC and TOCI groups were different in terms of co-treatments, which could have affected the overall outcome, and all of the TOCI cases also received antiviral therapy. These findings are preliminary and the results of ongoing randomized controlled trials will definitely clarify anti-cytokine use.

In our study, neutrophilia, lymphopenia, in particular low CD8+ T cell count rather than CD4+ T cell, higher CRP, higher LDH and higher CK showed the highest significance to distinguish the two patient groups at initial hospital admission. Also, serum IL-6 was significantly higher in the TOCI group, thus reflecting the very high inflammatory state of those patients at baseline. Very recently, IL-6 serum levels were also closely correlated with viral load in critically ill patients and it is important to point out that all our patients belonging to TOCI group received anti-viral agents. Notably, baseline CRP and IL-6 continued to distinguish the two groups (TOCI versus SOC) even after excluding the most seriously ill patients from analyses. Thus, these biomarkers could useful for decision making. Notably, a higher NLR has been recently associated with mortality in hospitalized patients for COVID-19, and an imaging study showed that monocyte to
lymphocyte ratio was significantly higher in imaging progression patients20. It is well known that NLR is a biomarker for poor outcome even in various cancers21. Our study supports this role of NLR as baseline biomarker for poor prognosis in COVID-19. Moreover, a new risk factor scoring system, which can identify patients with low risk of disease progression, includes the lymphocyte count among the selected variables22.

Lymphocyte biology probably plays a great role in the pathogenesis of COVID-19 disease4,23,24,25. Since CD4+ T cells and CD8+ T cells are a crucial arm against infections26, our findings also indicated that the lymphopenia in the TOCI group may be relevant for the emergence of secondary infections. Given that, treatment with tocilizumab might favor the persistence of the virus and iatrogenic infections. Anakinra, which we used after failure of tocilizumab in two patients, may be safer and more flexible than repeating tocilizumab infusion in seriously ill patients. Again, anti-cytokine treatments were always administrated with antiviral treatment in our series.

A role for anticoagulation is increasingly recognized in severe COVID-19 infection27,28. In our study, a significant correlation between CRP and D-dimer, as well as with LDH and neutrophil count (and NLR) was shown. Very recent data showed that low molecular weight heparin or unfractionated heparin at prophylactic doses are associated with a reduced short-term mortality in more severe COVID-19 patients28, and most of our patients, particularly, in ICU, were administered heparin which may have impacted on the overall outcome. Moreover, inflammatory diseases carry a higher risk of thrombosis, and this is clearly documented in chronic autoimmune diseases29. It remains to be seen whether the possible efficacy of anti-cytokine therapy may be even to mitigate against immunothrombosis. On the other hand, increased levels of LDH and CK may also reflect the level of the organ damage in a systemic disease, as occurs in the macrophage activation syndrome30, where a hypercoagulable state often complicates the course, and it may be the case for COVID-19. Thus, it is not surprisingly that LDH has been already noticed as biomarker of severity as long as neutrophils, in COVID-193,31.

This study has several limitations. It is an explorative retrospective not powered study, with some missing data due to the emergency context in which it has been realized. This is not a randomized controlled trial, thus no conclusions on the efficacy and safety of treatment approach employed can be provided. Six patients were transferred from other hospitals so original baseline values from the first admission were unavailable. About 50% of the TOCI group were admitted to the ICU within 24 hours from admission, thus they already presented a more serious disease at the time of admission. In general, the follow-up was limited from the hospital admission to the discharge from our hospital, but the final long-term outcome was not the aim of this study. Finally, measurement of viral load was not available. Nevertheless, the cohort is monocentric and the whole cohort herein described showed very similar characteristics to those reported by Wang et al2, thus supporting the robustness of this analysis, though preliminary.

To conclude, our study showed that TOCI treated patients COVID-19 pneumonia were at the highest risk of cytokine storm32. Our study suggested that tocilizumab use prior to ventilation in ICU may be optimal since 50% of such cases died, remain ventilated and serious superinfection. Whether the use of tocilizumab prior to ventilation will be vindicated in randomized trials is of major interest. Timing of anti-cytokine therapy is a key issue. Our findings also showed that cases receiving tocilizumab on ventilation generally had higher levels of inflammation than non-ventilated TOCI treated subjects, possibly suggesting that the latter group has an intrinsically milder disease with a better prognosis.
Contributions
LQ designed data collection tools, monitored data collection for the whole study, wrote the statistical analysis plan, cleaned and analysed the data, drafted and revised the paper. He is guarantor. AS collected the data, analysed the data, and revised the paper. FC, MF, TB, ADM, FB, MP, DP collected the data, analysed the data, and revised the paper. SDV, DM analysed the data, drafted and revised the paper. CT designed data collection tools, analysed the data, revised the paper.

Acknowledgements
We thank the following colleagues for their valued contribution to this work: Ginevra De Marchi, MD, Miriam Isola, prof, BS, Sara Zandonella, MD, Ivan Giovannini, MD, Elena Treppo, MD, Donatella Colatutto, MD, Marco Binutti, MD, Giulia Del Frate, MD, Roberto Agarinis, MD, Valeria Manfrè, MD, Daniela Cesselli, prof, MD, Roberta Giacomello, BS, Federica D’Aurizio, MD, Michele Zuliani, MD, Corrado Marescalco, MD.

Funding info
This research received no external funding.

Ethical approval information
The study was conducted in accordance with the ethical principles of the Helsinki Declaration. Patients’ consents for using data for research purpose were obtained at the time of hospital admission.

Ethical approval for the present retrospective observational study was given by “Comitato Etico Unico Regionale (CEUR)”, with the following registration number: CEUR-2020-Os-102.

Patients treated with tocilizumab were then enrolled into the observational part of the TOCIVID-19 Italian study (EudraCT: 2020-001110-38), a single arm, open-label trial on the efficacy and safety of tocilizumab in COVID-19 pneumonia.

Data sharing statement
The data that support the findings of this study are available on request from the corresponding author, [LQ].

Research in context
There is an urgent need for early detection and diagnosis of COVID-19 in patients with suspected disease, and also markers of prognosis. We searched PubMed for research on covid-19 published after 3 January 2020 to April 18, by combining COVID-19 search terms (COVID-19, SARS-CoV-2, novel corona) with methodological search terms (prognostic, prediction model, algorithm, score). Earlier reports suggest that patients with elevated inflammatory markers, including IL-6, and organ damage markers are at higher risk of more severe morbidity and mortality under covid-19. Our study showed that subjects with poor prognostic markers treated with TOCI fell into two groups; an ICU treated group and ward treated group. The ward treated group showed better responses and less infections. This group may be the best for evaluating the impact of anti-cytokine therapy in COVID-19 pneumonia with evidence of severe systemic inflammatory reactions.

Added value of this study
Our strategy for anti-cytokine selection showed no mortality in the cytokine non-treated group. Our strategy provided evidence for some benefit of anti-cytokine therapy in severe COVID-19 especially when therapy is used prior to ventilation. The risk of serious infection, non-response or death is more than 50% for ventilated tocilizumab treated patients in ICU and is much lower if therapy given prior to ventilation. The study also confirmed that the known poor risk factors for COVID-19 infection were present in the TOCI treated rather than in the good prognosis standard of care group.
Implications of all the available evidence
In COVID-19, targeting earlier the downstream inflammation with effective treatments should improve the survival rate in the most serious disease. Larger studies on multicenter cohorts are needed to develop an international standardized risk score for COVID-19 progression.

References

Table 1. Main comparisons between treatment groups at day 0 (hospital admission).

<table>
<thead>
<tr>
<th></th>
<th>TOCI (N=42)</th>
<th>Number of available observations, N (%)</th>
<th>SOC (N=69)</th>
<th>Number of available observations, N (%)</th>
<th>P value</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>BIOLOGIC</th>
<th>SOC</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean±SD</td>
<td>62·4±11·8</td>
<td>56·2±14·2</td>
<td>0·02</td>
</tr>
<tr>
<td>Gender, male (%)</td>
<td>33 (78·6)</td>
<td>44 (63·8)</td>
<td>0·1</td>
</tr>
<tr>
<td>Days from onset to admission, median (IQR)</td>
<td>6 (3·25-7)</td>
<td>7 (3-9·5)</td>
<td>0·18</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>20 (47·6)</td>
<td>21 (30-4)</td>
<td>0·11</td>
</tr>
<tr>
<td>Charlson’s index ≥ 2 (%)</td>
<td>5 (11·9)</td>
<td>12 (17-4)</td>
<td>0·44</td>
</tr>
<tr>
<td>Antvirals (%)*</td>
<td>42 (100)</td>
<td>54 (78·3)</td>
<td>0·003</td>
</tr>
<tr>
<td>Antimalarials (%)</td>
<td>39 (92·9)</td>
<td>53 (76·8)</td>
<td>0·05</td>
</tr>
<tr>
<td>Glucocorticoids* (%)</td>
<td>16 (38·1)</td>
<td>0</td>
<td><0·0001</td>
</tr>
<tr>
<td>Antibiotics# (%)</td>
<td>12 (28·6)</td>
<td>9 (23·1)</td>
<td>0·07</td>
</tr>
<tr>
<td>LMWH (%)</td>
<td>31 (73·8)</td>
<td>15 (21·7)</td>
<td><0·0001</td>
</tr>
<tr>
<td>WBC count (cells/microL), median (IQR)</td>
<td>5540 (4270-7140)</td>
<td>5230 (3705-6305)</td>
<td>0·14</td>
</tr>
<tr>
<td>Neutrophil count (cells/microL), median (IQR)</td>
<td>4565 (3062·5-6190)</td>
<td>3670 (2285-4905)</td>
<td>0·04</td>
</tr>
<tr>
<td>Lymphocytes count (cells/microL), median (IQR)</td>
<td>685 (545-1022·5)</td>
<td>940 (760-1195)</td>
<td>0·001</td>
</tr>
<tr>
<td>Neutrophil/lymphocyte ratio, median (IQR)</td>
<td>5·6 (3·5-11·8)</td>
<td>3·7 (2·2-5·4)</td>
<td>0·001</td>
</tr>
<tr>
<td>CD4+ T cells (cells/microL), median (IQR)</td>
<td>244·5 (158·75-406·25)</td>
<td>370 (269·5-497)</td>
<td>0·02</td>
</tr>
<tr>
<td>CD8+ T cells (cells/microL), median (IQR)</td>
<td>77 (48-195·75)</td>
<td>180 (111-366)</td>
<td>0·004</td>
</tr>
<tr>
<td>CD19+ B cells (cells/microL), median (IQR)</td>
<td>97 (67·5-110·5)</td>
<td>112·5 (83-174·5)</td>
<td>0·12</td>
</tr>
<tr>
<td>CD56+ NK cells (cells/microL), median (IQR)</td>
<td>128 (56-208·5)</td>
<td>150 (131-237)</td>
<td>0·16</td>
</tr>
<tr>
<td>Platelet count (cells/microL), median (IQR)</td>
<td>157000 (125500-195500)</td>
<td>166000 (136000-216500)</td>
<td>0·24</td>
</tr>
<tr>
<td>CRP (mg/L), median (IQR)</td>
<td>79·05 (47·77-186·22)</td>
<td>24·1 (7·35-72·6)</td>
<td><0·0001</td>
</tr>
</tbody>
</table>

Legend: SD, standard deviation; WBC, white blood cells; CRP, C-reactive protein; LDH, lactate dehydrogenase; CK, creatine kinase; LMWH, low molecular weight heparin; BIOLOGIC, anti-cytokine treatment group; SOC standard of care group.
*Lopinavir/Ritonavir (L/R) in 56 patients (all as first-line antiviral treatment); Darunavir/Cobicistat (D/C) in 57 patients (as first-line antiviral treatment in 40, as second-line in 17); Remdesivir in 3 patients, all as second- or third-line treatment. Seventeen patients switched from L/R to D/C due to side effects.

**Hydroxychloroquine in 87 patients; chloroquine in 5 patients.

***Glucocorticoids were always administered intravenously at the dose of 1 mg/kg of methylprednisolone in the first two days, then steroids were tapered and finally suspended in 7 days.

#as prophylactic treatment, before tocilizumab therapy.
<table>
<thead>
<tr>
<th></th>
<th>TOCI on NIV/O2 (N=16)</th>
<th>TOCI on ventilators (N=26)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP, mg/L</td>
<td>59·3 (21·6-112·7)</td>
<td>114·6 (5·25-210)</td>
<td>0·04</td>
</tr>
<tr>
<td>IL-6, pg/ml</td>
<td>58 (28·45-78·5)</td>
<td>78·8 (46·161)</td>
<td>0·06</td>
</tr>
<tr>
<td>WBC, cell/microL</td>
<td>4425 (3210-6115)</td>
<td>6180 (5230-8130)</td>
<td>0·009</td>
</tr>
<tr>
<td>Neutrophil, cell/microL</td>
<td>3130 (2310-4885)</td>
<td>7235 (5430-9072)</td>
<td>0·01</td>
</tr>
<tr>
<td>Lymphocyte, cell/microL</td>
<td>1020 (635-1165)</td>
<td>650 (445-775)</td>
<td>0·01</td>
</tr>
<tr>
<td>NLR</td>
<td>3·5 (2·5-5·1)</td>
<td>8·2 (4·7-15·7)</td>
<td>0·001</td>
</tr>
<tr>
<td>LDH, IU/L</td>
<td>494 (246·5-599)</td>
<td>744 (580·75-1057)</td>
<td>0·001</td>
</tr>
<tr>
<td>CK, IU/L</td>
<td>101 (78·179)</td>
<td>197 (104·5-382·75)</td>
<td>0·13</td>
</tr>
</tbody>
</table>

Legend: CRP, C-reactive protein; IL, interleukin; LDH, lactate dehydrogenase; CK, creatine kinase; WBC, white blood cell count; NLR, neutrophil to lymphocyte ratio. Data are presented as median (IQR).
Table 3A. Bivariate correlations between CRP levels and other biomarkers.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Spearman’s rho correlation coefficient</th>
<th>P value</th>
<th>Number of observations, N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>0.46</td>
<td><0.0001</td>
<td>90 (81.1)</td>
</tr>
<tr>
<td>D-dimer</td>
<td>0.63</td>
<td><0.0001</td>
<td>39 (35.1)</td>
</tr>
<tr>
<td>LDH</td>
<td>0.62</td>
<td><0.0001</td>
<td>102 (91.9)</td>
</tr>
<tr>
<td>CK</td>
<td>0.23</td>
<td>0.03</td>
<td>94 (84.7)</td>
</tr>
<tr>
<td>Total WBC count</td>
<td>0.49</td>
<td><0.0001</td>
<td>108 (97.3)</td>
</tr>
<tr>
<td>Neutrophil count</td>
<td>0.60</td>
<td><0.0001</td>
<td>103 (92.8)</td>
</tr>
<tr>
<td>Lymphocyte count</td>
<td>-0.26</td>
<td>0.002</td>
<td>103 (92.8)</td>
</tr>
<tr>
<td>NLR</td>
<td>0.57</td>
<td><0.0001</td>
<td>103 (92.8)</td>
</tr>
</tbody>
</table>

Legend: IL, interleukin; LDH, lactate dehydrogenase; CK, creatine kinase; WBC, white blood cell count; NLR, neutrophil to lymphocyte ratio.

Table 3B. Bivariate correlations between CRP levels and other biomarkers by excluding those patients transferred to ICU within 24 hours from the admission (N=24).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Spearman’s rho correlation coefficient</th>
<th>P value</th>
<th>Number of observations, N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>0.42</td>
<td>0.0002</td>
<td>71 (63.4)</td>
</tr>
<tr>
<td>D-dimer</td>
<td>0.62</td>
<td>0.0002</td>
<td>31 (27.9)</td>
</tr>
<tr>
<td>LDH</td>
<td>0.48</td>
<td><0.0001</td>
<td>82 (73.9)</td>
</tr>
<tr>
<td>CK</td>
<td>0.12</td>
<td>0.29</td>
<td>78 (70.3)</td>
</tr>
<tr>
<td>Total WBC count</td>
<td>0.43</td>
<td><0.0001</td>
<td>87 (78.4)</td>
</tr>
<tr>
<td>Neutrophil count</td>
<td>0.50</td>
<td><0.0001</td>
<td>83 (74.8)</td>
</tr>
<tr>
<td>Lymphocyte count</td>
<td>-0.1</td>
<td>0.38</td>
<td>83 (74.8)</td>
</tr>
<tr>
<td>NLR</td>
<td>0.44</td>
<td><0.0001</td>
<td>83 (74.8)</td>
</tr>
</tbody>
</table>

Legend: IL, interleukin; LDH, lactate dehydrogenase; CK, creatine kinase; WBC, white blood cell count; NLR, neutrophil to lymphocyte ratio.
Figure 1. The chart illustrates the outcomes of the two treatment groups.

Legend: TOCI, anti-cytokine group; SOF, standard of care group; MOF, multi-organ failure; ICU, intensive care unit; NIV, noninvasive ventilation; PE, pulmonary embolism.
Overall cohort: 111

TOCI group: 42
- Discharged to home: 10
- Transferred to other wards: 4
 - 1 bacterial infection
 - 2 subsequently discharged
- Transferred to ICU before tocilizumab: 3
- Death: 1
 - 1 on noninvasive ventilation (died for respiratory failure)

SOC group: 69
- Discharged home: 69

Infectious Disease Unit: 18

ICU: 24 (+3 from ward before tocilizumab)
- 26 on ventilators
- 1 on noninvasive ventilation

Transfer to ward after toc: 15
[All 3 pts coming from ward are here]
- 9 bacterial infections

Still alive in ICU: 9
- 2 on NIV
- 7 on ventilators
- 6 bacterial infections

Deaths: 3
- All 3 on ventilators
- 2 bacterial Infections
- 1 MOF+PE