Neutrophil extracellular traps and thrombosis in COVID-19

Yu Zuo¹, Melanie Zuo², Srilakshmi Yalavarthi¹, Kelsey Gockman¹, Jacqueline A. Madison¹, Hui Shi¹,³, Jason S. Knight¹‡, and Yogendra Kanthi⁴,⁵‡,

‡ Jason S. Knight and Yogendra Kanthi are co-corresponding authors

Affiliations
¹ Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
² Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
³ Division of Rheumatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
⁴ Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
⁵ Division of Cardiology, Ann Arbor Veterans Administration Healthcare System, Ann Arbor, Michigan, USA

Correspondence: Jason S. Knight, MD, PhD Yogendra Kanthi, MD
jsknight@umich.edu ykanthi@umich.edu

Competing interests: The authors have no financial conflicts to disclose.
ABSTRACT
Here, we report on four patients whose hospitalizations for COVID-19 were complicated by venous thromboembolism (VTE). All demonstrated high levels of D-dimer as well as high neutrophil-to-lymphocyte ratios. For three patients, we were able to test sera for neutrophil extracellular trap (NET) remnants and found significantly elevated levels of cell-free DNA, myeloperoxidase-DNA complexes, and citrullinated histone H3. Neutrophil-derived S100A8/A9 (calprotectin) was also elevated. Given strong links between hyperactive neutrophils, NET release, and thrombosis in many inflammatory diseases, the potential relationship between NETs and VTE should be further investigated in COVID-19.
INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the disease known as coronavirus disease 2019 (COVID-19). It most commonly presents with influenza-like illness and viral pneumonia, but in its most severe manifestation progresses to acute respiratory distress syndrome (ARDS) and multi-organ failure. To date the viral pandemic has resulted in more than two million infections worldwide (https://coronavirus.jhu.edu/map.html).

In COVID-19, elevated levels of blood neutrophils predict severe respiratory disease and unfavorable outcomes. Neutrophil-derived neutrophil extracellular traps (NETs) play a pathogenic role in many thrombo-inflammatory states including sepsis, thrombosis, and respiratory failure. NETs are extracellular webs of chromatin and microbicidal proteins that are an evolutionarily conserved aspect of innate immune host-defense; however, NETs also have potential to initiate and propagate inflammation and thrombosis. NETs deliver a variety of oxidant enzymes to the extracellular space, including myeloperoxidase, NADPH oxidase, and nitric oxide synthase, while also serving as a source of extracellular histones that carry significant cytotoxic potential. NETs are drivers of cardiovascular disease by propagating inflammation in vessel walls. Furthermore, when formed intravascularly, NETs can occlude arteries, veins, and microscopic vessels. Early studies of COVID-19 suggest a high risk of morbid arterial events, and the risk of venous thromboembolism (VTE) is increasingly revealing itself as more data become available.

Descriptive and mechanistic studies to date that examine COVID-19 pathophysiology have focused on monocytes and lymphocytes more so than neutrophils and their effector products—including NETs. Here, we describe four cases of VTE in patients hospitalized with COVID-19 and provide evidence for neutrophil hyperactivity.

RESULTS

We identified four patients admitted to a large academic medical center with COVID-19 who also developed VTE (either deep vein thrombosis or pulmonary embolism) despite immediate initiation of prophylactic-dose heparin. Three of the patients were diagnosed with VTE within 48 hours of admission. All three had markedly elevated D-dimers and neutrophil-to-lymphocyte ratios. For two of the early VTE patients, we were able to access sera for measurement of NET remnants. Three different NET-associated markers (cell-free DNA, myeloperoxidase-DNA complexes, and citrullinated-histone H3) were elevated in both patients.
We also detected elevated levels of the classic marker of neutrophil activation, S100A8/A9 (also known as calprotectin). Neither patient had positive testing for antiphospholipid antibodies.

We identified a fourth patient who developed VTE several weeks into his hospitalization. This 66-year-old man’s course was complicated by respiratory failure requiring mechanical ventilation beginning on day 6. He received prophylactic-dose heparin throughout his hospitalization, but was nevertheless diagnosed on day 20 with extensive right-lower-extremity deep vein thrombosis. We were able to test serum from day 8 of his hospitalization for NET remnants (Table 2). Interestingly, markers of neutrophil activation including NET remnants were already significantly elevated on day 8 (Table 2); this is in contrast to D-dimer and neutrophil count, which were only mildly elevated. Both D-dimer and neutrophil count were mild and did not require treatment.

Table 1: Characteristics of three patients diagnosed with VTE soon after admission

<table>
<thead>
<tr>
<th></th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>44</td>
<td>38</td>
<td>67</td>
</tr>
<tr>
<td>Clinical status</td>
<td>mechanical vent.</td>
<td>mechanical vent.</td>
<td>high-flow oxygen</td>
</tr>
<tr>
<td>Type of VTE</td>
<td>bilateral LE DVT</td>
<td>bilateral LE DVT</td>
<td>PE</td>
</tr>
<tr>
<td>Hospital day</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D-dimer (<0.59 mg/L)</td>
<td>>35</td>
<td>>35</td>
<td>>35</td>
</tr>
<tr>
<td>CRP (≤0.6 mg/dl)</td>
<td>31.6</td>
<td>30.8</td>
<td>13.9</td>
</tr>
<tr>
<td>ANC (≥7.2 K/µl)</td>
<td>17.4</td>
<td>8.1</td>
<td>6.4</td>
</tr>
<tr>
<td>ALC (≥1.2 K/µl)</td>
<td>0.7</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>N-to-L ratio</td>
<td>24.9</td>
<td>14.7</td>
<td>12.8</td>
</tr>
<tr>
<td>Cell-free DNA (<1.1 µg/ml)*</td>
<td>2.75</td>
<td>3.01</td>
<td>n/a</td>
</tr>
<tr>
<td>MPO-DNA (<0.91 µg/ml)*</td>
<td>9.42</td>
<td>0.95</td>
<td>n/a</td>
</tr>
<tr>
<td>Cit-histone H3 (<27.7 ng/ml)*</td>
<td>36.3</td>
<td>41.2</td>
<td>n/a</td>
</tr>
<tr>
<td>S100 A8/A9 (<1427 ng/ml)*</td>
<td>22259.18</td>
<td>9503</td>
<td>n/a</td>
</tr>
<tr>
<td>Antiphospholipid antibodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aCL IgG/IgM/IgA</td>
<td>negative</td>
<td>negative</td>
<td>n/a</td>
</tr>
<tr>
<td>aβ2GPI IgG/IgM/IgA</td>
<td>negative</td>
<td>negative</td>
<td>n/a</td>
</tr>
<tr>
<td>aPS/PT IgG/IgM</td>
<td>negative</td>
<td>negative</td>
<td>n/a</td>
</tr>
</tbody>
</table>

*defined as mean + 2 standard deviations for 30 healthy volunteers

VTE=venous thromboembolism; LE=lower extremity; DVT=deep vein thrombosis; PE=pulmonary embolism; CRP=C-reactive protein; ANC=absolute neutrophil count; ALC=absolute lymphocyte count; MPO=myeloperoxidase; Cit-histone H3=citrullinated-histone H3; aCL=anticardiolipin; aβ2GPI=anti-β2GPI; aPS/PT=anti-phosphatidylserine/prothrombin

n/a=data not available
elevated by the time the patient was diagnosed with deep vein thrombosis on day 20 (Table 2).
The patient did not have elevated levels of antiphospholipid antibodies.

Table 2: Characteristics of a fourth patient diagnosed with VTE during hospitalization

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 8</th>
<th>Day 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical status</td>
<td>nasal cannula</td>
<td>mechanical vent.</td>
<td>mechanical vent.</td>
</tr>
<tr>
<td>VTE</td>
<td>none</td>
<td>none</td>
<td>DVT</td>
</tr>
<tr>
<td>D-dimer (<0.59 mg/L)</td>
<td>0.31</td>
<td>0.43</td>
<td>18.1</td>
</tr>
<tr>
<td>CRP (≤0.6 mg/dl)</td>
<td>1.3</td>
<td>14.6</td>
<td>n/a</td>
</tr>
<tr>
<td>ANC (≤7.2 K/µl)</td>
<td>3.9</td>
<td>4.6</td>
<td>10.9</td>
</tr>
<tr>
<td>ALC (≥1.2 K/µl)</td>
<td>0.4</td>
<td>0.7</td>
<td>1.2</td>
</tr>
<tr>
<td>N-to-L ratio</td>
<td>9.8</td>
<td>6.6</td>
<td>9</td>
</tr>
<tr>
<td>Cell-free DNA (<1.10 µg/ml)*</td>
<td>n/a</td>
<td>1.36</td>
<td>n/a</td>
</tr>
<tr>
<td>MPO-DNA (<0.91 µg/ml)*</td>
<td>n/a</td>
<td>3.68</td>
<td>n/a</td>
</tr>
<tr>
<td>Cit-histone H3 (<27.7 ng/ml)*</td>
<td>n/a</td>
<td>28.0</td>
<td>n/a</td>
</tr>
<tr>
<td>S100 A8/A9 (<1427 ng/ml)</td>
<td>n/a</td>
<td>3352</td>
<td>n/a</td>
</tr>
<tr>
<td>Antiphospholipid antibodies</td>
<td>n/a</td>
<td>negative</td>
<td>n/a</td>
</tr>
</tbody>
</table>

*defined as mean + 2 standard deviations for 30 healthy volunteers
n/a=data not available

VTE=venous thromboembolism; DVT=deep vein thrombosis; CRP=C-reactive protein; ANC=absolute neutrophil count; ALC=absolute lymphocyte count; MPO=myeloperoxidase; Cit-histone H3=citrullinated-histone H3; aCL=anticardiolipin; aβ2GPI=anti-β2GPI; aPS/PT=anti-phosphatidylserine/prothrombin

DISCUSSION

Hyperactivity of the coagulation system is a common finding of severe COVID-19. Indeed, many patients have a profile to suggest a prothrombotic diathesis including high levels of fibrin degradation products (D-dimer), elevated fibrinogen levels, and low antithrombin levels.

Here, we report four cases of COVID-19-associated VTE. We measured three markers commonly used to detect NET remnants in blood (cell-free DNA, myeloperoxidase-DNA complexes, and citrullinated-histone H3), as well as a fourth marker, S100A8/A9 (calprotectin), which is commonly used to track neutrophil activation. All tests were elevated in patients diagnosed with VTE, including as early as 12 days prior to detection of VTE in one case. Given the known link between NETs and venous thrombosis in many inflammatory diseases, these data suggest that the role of NETs in COVID-19-associated thrombophilia warrants systematic
investigation. While a recent report suggested antiphospholipid antibodies may be drivers of thrombosis in some COVID-19 patients23, such antibodies were not detected here.

Examples of NETs as drivers of thrombosis are myriad, as intravascular NET release is responsible for initiation and accretion of thrombotic events in arteries, veins, and microvessels, where thrombotic disease can drive end-organ damage in lungs, heart, kidneys, and other organs26, 27. Mechanistically, DNA in NETs may directly activate the extrinsic pathway of coagulation28, while NETs also present tissue factor to initiate the intrinsic pathway29. Serine proteases in NETs such as neutrophil elastase dismantle brakes on coagulation such as tissue factor pathway inhibitor30. Bidirectional interplay between NETs and platelets might also be critical for COVID-19-associated thrombosis as has been characterized in a variety of disease models27, 28.

Approaches to combating NETs31, 32 include the dismantling of NETs with deoxyribonucleases and strategies that prevent initiation of NET release such as neutrophil elastase inhibitors and peptidylarginine deiminase 4 inhibitors. As we await definitive antiviral and immunologic solutions to the current pandemic, we posit that anti-neutrophil therapies may be part of a personalized strategy for some individuals affected by COVID-19. Furthermore, those patients with hyperactive neutrophils may be at particularly high risk for VTE and might therefore benefit from more aggressive anticoagulation while hospitalized.

\textbf{METHODS}

\textbf{Human samples.} Blood was collected into serum separator tubes by a trained hospital phlebotomist. After completion of biochemical testing ordered by the clinician, the remaining serum was stored at 4°C for up to 48 hours before it was deemed “discarded” and released to the research laboratory. Serum samples were immediately divided into small aliquots and stored at -80°C until the time of testing. This study complied with all relevant ethical regulations, and was approved by the University of Michigan Institutional Review Board (HUM00179409), which waived the requirement for informed consent given the discarded nature of the samples. Healthy volunteers were recruited through a posted flyer; exclusion criteria for these controls included history of a systemic autoimmune disease, active infection, and pregnancy. For preparation of control serum, blood was collected in a similar manner as the COVID-19 patient samples. These serum samples were divided into small aliquots and stored at -80°C until the time of testing.
Quantification of cell-free DNA. Cell-free DNA was quantified in sera using the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, P11496) according to the manufacturer’s instructions.

Quantification of citrullinated-histone H3. Citrullinated-histone H3 was quantified in sera using the Citrullinated Histone H3 (Clone 11D3) ELISA Kit (Cayman, 501620) according to the manufacturer’s instructions.

Quantification of myeloperoxidase-DNA complexes. Myeloperoxidase-DNA complexes were quantified similarly to what has been previously described. This protocol used several reagents from the Cell Death Detection ELISA kit (Roche). First, a high-binding EIA/RIA 96-well plate (Costar) was coated overnight at 4°C with anti-human myeloperoxidase antibody (Bio-Rad 0400-0002), diluted to a concentration of 1 µg/ml in coating buffer (Cell Death kit). The plate was washed two times with wash buffer (0.05% Tween 20 in PBS), and then blocked with 4% bovine serum albumin in PBS (supplemented with 0.05% Tween 20) for 2 hours at room temperature. The plate was again washed five times, before incubating for 90 minutes at room temperature with 10% serum or plasma in the aforementioned blocking buffer (without Tween 20). The plate was washed five times, and then incubated for 90 minutes at room temperature with 10x anti-DNA antibody (HRP-conjugated; from the Cell Death kit) diluted 1:100 in blocking buffer. After five more washes, the plate was developed with 3,3',5,5'-Tetramethylbenzidine (TMB) substrate (Invitrogen) followed by a 2N sulfuric acid stop solution. Absorbance was measured at a wavelength of 450 nm using a Cytation 5 Cell Imaging Multi-Mode Reader (BioTek). Data were normalized to in vitro-prepared NET standards included on every plate, which were quantified based on their DNA content.

Quantification of antiphospholipid antibodies. Antiphospholipid antibodies were quantified in sera using the Quanta Lite® ACA IgG, ACA IgM, ACA IgA, β2GPI IgG, β2GPI IgM, β2GPI IgA, aPS/PT IgG, aPS/PT IgM Kits (Inova Diagnostics) according to the manufacturer’s instructions. Manufacturer-recommended cut off was used to determine positive values.
REFERENCES

ACKNOWLEDGEMENTS

The work was supported by a COVID-19 Cardiovascular Impact Research Ignitor Grant from the Michigan Medicine Frankel Cardiovascular Center as well as by the A. Alfred Taubman Medical Research Institute. YZ was supported by career development grants from the Rheumatology Research Foundation and APS ACTION. JAM was partially supported by the VA Healthcare System. YK was supported by the NIH (K08HL131993, R01HL150392), Falk Medical Research Trust Catalyst Award, and the JOBST-American Venous Forum Award. JSK was supported by grants from the NIH (R01HL115138), Lupus Research Alliance, and Burroughs Wellcome Fund. YZ and JSK also thank all members of the “COVID-19 NETwork” for their helpful advice and encouragement.

AUTHORSHIP

YZ, MZ, SY, KG, JM, and HS conducted experiments and analyzed data. YZ, MZ, YK, and JSK conceived the study and analyzed data. All authors participated in writing the manuscript and gave approval before submission.