
César V. Munayco¹#, Amna Tariq²#, Gabriela G Soto-Cabezas¹, Mary F. Reyes¹, Andree Valle¹, Leonardo Rojas-Mezarina³, César Cabezas³, Manuel Loayza¹, Peru COVID-19 working group, Gerardo Chowell²

¹ joint first authors

¹ Centro Nacional de Epidemiología, Prevención y Control de Enfermedades, Peruvian Ministry of Health, Lima, Peru.

² Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA

³ Instituto Nacional de Salud, Peruvian Ministry of Health, Lima, Peru.

Peru COVID-19 working group

<table>
<thead>
<tr>
<th>Nombre</th>
<th>E-mail</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dante Castro Garro</td>
<td>dante.tcg@gmail.com</td>
<td>Investigación Epidemiológica</td>
</tr>
<tr>
<td>Kevin Martel Vasquez</td>
<td>kevin.martel@upch.pe</td>
<td>Investigación Epidemiológica</td>
</tr>
<tr>
<td>Edith Solis Castro</td>
<td>esolis@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Isabel Sandoval Ordinola</td>
<td>isandoval@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Javier Masias Mimbea</td>
<td>jmasias@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Kely Meza Cornejo</td>
<td>kmeza@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Fabiola Caruajulca Quijano</td>
<td>fcaruajulca@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Lenin La Torre Rosillo</td>
<td>llatorre@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Luis Ordoñez Ibarguen</td>
<td>lordonez@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Mario Vasquez Domínguez</td>
<td>mvasquez@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Rommell Veintimilla Gonzalez</td>
<td>rommellvgs@gmail.com</td>
<td>PREEC</td>
</tr>
<tr>
<td>Seminario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martha Calderón Silva</td>
<td>mcalderon@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Mayra Saavedra Dreyfus</td>
<td>msaavedra@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Miguel Luna Pineda</td>
<td>mluna@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Milagros Durand</td>
<td>mdurand@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Noemí Janampa</td>
<td>njanampa@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Jesus Chuquihuaccha</td>
<td>jchuquihuaccha@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Susan Mateo Lizarbe</td>
<td>smateo@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>David Enriquez Cusi</td>
<td>denriquez@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Idania Mamani Pilco</td>
<td>imamani@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Alex Jaramillo</td>
<td>ajaramillo@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Karina Vargas</td>
<td>kvargas@dge.gob.pe</td>
<td>PREEC</td>
</tr>
<tr>
<td>Oswaldo Cabanillas</td>
<td>ocabanillas@dge.gob.pe</td>
<td>Alerta-Respuesta</td>
</tr>
<tr>
<td>Juan Arrasco</td>
<td>jarrasco@dge.gob.pe</td>
<td>Alerta-Respuesta</td>
</tr>
<tr>
<td>María Vargas</td>
<td>mvargas@dge.gob.pe</td>
<td>Vigilancia en Salud Pública</td>
</tr>
</tbody>
</table>
Willy Ramos
wramos@dge.gob.pe
Inteligencia sanitaria

* Corresponding author

Amna Tariq
Department of Population Health Sciences
Georgia State University School of Public Health
Atlanta GA, 30303
atariq1@student.gsu.edu
Contact number: 470-985-6352
Abstract

The COVID-19 pandemic that emerged in Wuhan China rapidly spread around the world. The daily incidence trend has been rapidly rising in Latin America since March 2020 with the great majority of the cases reported in Brazil (28320) followed by Peru (11475) as of April 15th, 2020. Although Peru implemented social distancing measures soon after the confirmation of its first case on March 6th, 2020, the daily number of new COVID-19 cases continues to increase. We assessed the early COVID-19 transmission dynamics and the effect of social distancing interventions in Lima, Peru.

We estimate the transmission potential of COVID-19, R, during the early phase of the outbreak, from the daily series of imported and autochthonous cases by the date of symptoms onset as of March 30th, 2020. We also assessed the effect of social distancing interventions in Lima by generating short-term forecasts grounded on the early transmission dynamics before interventions were put in place.

Prior to the implementation of the social distancing measures in Lima, we estimated the reproduction number at 2.3 (95% CI: 2.0, 2.5). Our analysis indicates that school closures and other social distancing interventions have helped stem the spread of the virus, with the nearly exponential growth trend shifting to an approximately linear growth trend after the national emergency declaration.

The COVID-19 epidemic in Lima followed an early exponential growth trend, which slowed down and turned into an almost linear growth trend after broad scale social distancing interventions were put in place by the government.

Key words

COVID-19; SARS-CoV-2; Transmission potential; Short-term forecast; Reproduction number; Generalized growth model;
1. Introduction

The COVID-19 pandemic that emerged in the city of Wuhan in China in December 2019 (Nishiura, Jung, et al., 2020) has invaded nearly every nation of the world (Mizumoto, Kagaya, & Chowell, 2020; Worldometer, 2020), becoming the most important public health emergency of the last century after the 1918-1920 influenza pandemic. In particular, the novel coronavirus (SARS-CoV-2) has an ability to exert substantial severe disease and mortality burden especially among individuals older than 60 years and those with prior health conditions including hypertension, cardiovascular disease, obesity and diabetes (Adler, 2020; Team, 2020). As of April 15th, 2020, the trajectory of the pandemic varies significantly around the world ranging from relatively contained outbreaks in Thailand, Taiwan and Hong Kong to explosive epidemics characterized by initial exponential growth periods in some hotspots in the United States and European countries including Italy, Spain, UK, and France (Ebbs, 2020; Griffiths, 2020; Minder, 2020).

By April 15th, 2020, SARS-CoV-2 is generating local transmission in over 200 countries with over 2.2 million cases and 150 thousand deaths reported globally (WHO, 2020). The COVID-19 pandemic was confirmed to have reached Latin America in February 2020 with gradual expansion in the region until March 2020 when the COVID-19 incidence curve started to grow more rapidly. By April 15th, 2020, the US still has the highest number of COVID-19 reported cases (637196) globally whereas in Latin America, Brazil has reported the highest number of cases (28320) followed by Peru (11475) (Worldometer, 2020).

Peru, a country located in western South America, reported its confirmed imported index case in Lima on March 6th, 2020, a Peruvian with a travel history to France, Spain and Chez Republic (Aquino & Garrison, 2020). By April 15th, 2020, a total of 11475 cases including 254 deaths have been reported by the Peruvian government. Lima, the capital of Peru has the highest number of COVID-19 reported cases (8412) within Peru (MOH, 2020). To respond to the growing number of COVID-19 cases in Peru, the government shuttered schools on March 11th, 2020. The next day, the government banned gatherings of more than 300 people and suspended all international flights from Europe and Asia. On March 16th, 2020, the government declared a national emergency and closed country borders (Explorer, 2020). Subsequently, on March 17th, 2020 the president of Peru
announced the beginning of community transmission of SARS-CoV-2 in the country, and ordered a curfew in the region on March 18th, 2020 to avoid night time socializing to prevent disease transmission (Explorer, 2020; Writing, 2020).

In order to combat the spread of the COVID-19 epidemic in Lima, the capital and largest city of Peru, estimates of the transmission potential of COVID-19 can guide the intensity of interventions including the reproduction number, R, during the early transmission phase (Nishiura & Chowell, 2009, 2014). Moreover, using the epidemiological data and mathematical modeling, it is possible to gauge the impact of control interventions including school closures and a national emergency declaration in Lima by assessing short-term forecasts grounded on the trajectory of the epidemic prior to the implementation of control interventions (Funk, Camacho, Kucharski, Eggo, & Edmunds, 2018; Shanafelt, Jones, Lima, Perrings, & Chowell, 2018).

2. Methods

2.1. Data

We analyzed the daily number of COVID-19 confirmed cases by date of symptoms onset in Lima, Peru by March 30th, 2020. Individual-level case details including whether the case was locally acquired or imported were also made available from the Centro Nacional de Epidemiología Prevención y control de Enfermedades (CDC Perú) and the National Institute of Health of the Ministry of Health, Peru. We also examined the daily testing rate and the positivity rate from the daily number of positive and negative PCR test results until March 30th, 2020.

2.2.Model

We generate short term forecasts in real time using the generalized growth model (GGM) that relies on two parameters and characterizes the early ascending phase of the epidemic allowing to capture a range of epidemic growth profiles including sub-exponential (polynomial) and exponential growth. GGM characterizes epidemic growth by estimating two parameters (i) the intrinsic growth rate, \(r \) and (ii) a dimensionless “deacceleration of growth” parameter, \(p \). The latter parameter modulates the epidemic growth patterns including the sub-exponential growth (\(p<1 \)) and exponential growth dynamics (\(p=1 \)). The GGM model is given by the following differential equation:
\[
\frac{dC(t)}{dt} = C'(t) = rC(t)^p
\]

Where \(C'(t)\) describes the incidence over time \(t\). The cumulative number of cases at time \(t\) is given by \(C(t)\) while \(r\) is a positive parameter denoting the growth rate (1/time) and \(p \in [0,1]\) is a “deceleration of growth” parameter (Chowell, 2017; Viboud, Simonsen, & Chowell, 2016).

2.3. Short term forecast to assess interventions

We calibrate the GGM model to the daily case incidence by the date of symptoms onset for Lima. The data by onset dates for Lima is available from February 29\(^{th}\), 2020. Therefore, our model was calibrated using case series from February 29\(^{th}\)-March 15\(^{th}\), 2020, prior to the implementation of national emergency in Lima.

The best fit model solution is estimated by using a non-linear least square fitting approach (full details provided in (Chowell, 2017)). This process searches for the set of model parameters that minimizes the sum of squared differences between the observed data \(y_{t1} = y_{t2}, y_{t3}, \ldots y_{tn}\) and the corresponding model solution given by \(f(t_i, \theta)\): where \(\theta_{GGM} = (r,p)\) correspond to estimated set of parameters of the GGM model. Thus, the objective function for the best fit solution of \(f(t_i, \theta)\) is given by

\[
\hat{\theta} = \text{arg min} \sum_{i=1}^{n}(f(t_i, \theta) - y_{ti})^2
\]

The initial condition is fixed to the first observation in the data. Next, we derive uncertainty around the best fit model solution as well as the confidence intervals of the parameters utilizing a parametric bootstrapping approach assuming a Poisson error structure as described in ref (Chowell, 2017).

2.4. Reproduction number from case incidence using the generalized-growth model

The reproduction number, \(R\), quantifies the variation in the average number of secondary cases generated by a primary case during the early ascending phase of an outbreak before the implementation of interventions or behavior changes in a completely susceptible population (Anderson & May, 1991; Chowell et al., 2015; Nishiura, Chowell, Heesterbeek, & Wallinga, 2010;
Yan & Chowell, 2019. Estimates of R indicate if the disease transmission sustains (R>1) or the disease trend is declining (R<1). Therefore, it is imperative to maintain the R<1 to contain an outbreak. The reproduction number is estimated by calibrating the GGM to the early growth phase of the epidemic (16 days) (Viboud et al., 2016), using the information on the gamma distribution of the generation interval of SARS-CoV-2 with a mean of 4.41 days and a standard deviation of 3.17 days (Nishiura, Linton, & Akhmetzhanov, 2020; You et al., 2020). Then we simulate the progression of local incident cases by onset dates from the calibrated GGM model incorporating the imported cases and apply the discretized probability distribution of generation interval using renewal equation given as (Nishiura & Chowell, 2009, 2014; Paine et al., 2010):

\[
R_{0i} = \frac{I_i}{\sum_{j=0}^{I_i} (I_{i-j} + \alpha J_{i-j}) \rho_i}
\]

We denote the local incidence at calendar time \(t_i\) by \(I_i\), the incidence of imported cases at calendar time \(t_i\) by \(J_i\), and the discretized probability distribution of the generation interval by \(\rho_i\). In this equation the numerator represents the total new cases \(I_i\), and the denominator represents the total number of cases that contribute to the new cases \(I_i\) at time \(t_i\). The relative contribution of imported cases to the secondary disease transmission is represented by the parameter \(0 \leq \alpha \leq 1\). We perform a sensitivity analyses by setting \(\alpha = 0.15\) and \(\alpha = 1.0\) to assess the contribution of imported cases to the secondary disease transmission (Nishiura & Roberts, 2010). This is followed by the derivation of the uncertainty bounds around the curve of R directly from the uncertainty associated with the parameter estimates (r, p). We estimate R for 300 simulated curves assuming a Poisson error structure (Chowell, 2017).

3. Results

3.1. COVID-19 testing rates and positivity rate

Figure 1 shows the daily number of positive and negative laboratory test results and the positivity rate during March 4th-March 30th, 2020. The total number of PCR tests performed for this time period were 11518 (1127 positive results and 10307 negative results). The average daily number of PCR tests performed in Lima was estimated at ~188 between March 4th-March 15th, 2020 whereas the number of tests performed between March 16th-March 30th, 2020 increased to ~617 tests per day. Subsequently, the positivity rate (percentage of positive cases among the positive and negative cases) has ranged from 0.6-23.9 % between March 4th-March 30th, 2020.
3.2. Local and imported incidence trends

The COVID-19 epidemic curve by the date of symptoms onset, stratified by the local and imported incidence case counts is shown in Figure 2. On average ~6 imported cases and ~16 local cases have been reported daily between March 16th-March 30th, 2020 in Lima. A total of 2783 autochthonous cases and 151 imported cases have been reported in Lima as of March 30th, 2020.

3.3. Reproduction number, R

We estimated the reproduction number using the first 16 epidemic days prior to the implementation of social distancing interventions which includes the national emergency declaration on March 16th 2020. The local incidence curve by the date of onset displays near exponential growth dynamics with the scaling of growth parameter, p, estimated at 0.9 (95% CI: 0.8, 1.0) and the intrinsic growth rate, r, estimated at 0.3 (95% CI: 0.3, 0.5). The estimate of the reproduction number is 2.3 (95% CI: 2.0, 2.5) when \(\alpha = 0.15 \) (Figure 3). When \(\alpha = 1.0 \), the reproduction number slightly decreases to 2.0 (95% CI: 1.7, 2.3) (Table 1).

3.4. Assessing the impact of social distancing interventions

In order to assess the impact of social distancing interventions in Lima, including school closures on March 11th, 2020 and the declaration of national emergency on March 16th, 2020, we generate a 20-day ahead forecast for Lima based on the daily incidence curve until the declaration of the national emergency in Lima. The 16-day calibration period of the model yields an estimated growth rate, r, at 0.8 (95%CI: 0.6, 1.1) and a scaling of growth rate parameter, p, at 0.8 (95%CI: 0.7, 0.9). The 20-day ahead forecast suggests that the effect of the school closure and the national emergency declaration slowed down the spread of the virus as shown in Figure 4. Indeed, the scaling of growth parameter declined to 0.53 (95% CI: 0.48, 0.58), consistent with an approximately linear incidence growth trend during the intervention period.

4. Discussion

The current estimates of the early transmission potential in Lima for the first 16 days of the epidemic indicates sustained local transmission in the region after accounting for multiple case importations with the estimate of reproduction number R at \(\sim 2.3 \) (95% CI: 2.0, 2.5) which is
comparable to estimates of the reproduction number for China, Korea, and Iran that lie in the range of 1.5-7.1 (Hwang, Park, Kim, Jung, & Kim, 2020; Mizumoto, Kagaya, & Chowell, 2020; Muniz-Rodriguez et al., 2020; Read, Bridgen, Cummings, Ho, & Jewell, 2020; Shim, Tariq, Choi, Lee, & Chowell, 2020; Wu, Leung, & Leung, 2020). In contrast, a recent study on Singapore’s COVID-19 transmission reported a lower estimate of R at ~0.7, which has been explained as a result of the implementation of a sweeping social distancing interventions (Tariq et al., 2020).

The initial scaling of growth parameter in Lima indicates a nearly exponential growth pattern, consistent with the early spread of the COVID-19 epidemic in Iran and the exponential growth pattern of COVID-19 displayed by the Chinese province of Hubei (Muniz-Rodriguez et al., 2020; Roosa et al., 2020). In comparison sub-exponential growth patterns of COVID-19 have been observed in Singapore (p~0.7), Korea (p~0.76) and other Chinese provinces excluding Hubei (p~0.67) as described in recent studies (Roosa et al., 2020; Shim et al., 2020; Tariq et al., 2020).

Although Lima has been quick to take aggressive measures against COVID-19, Peru remains one of the hardest hit countries in Latin America (Tegel, 2020). Despite the closure of country borders on March 16th, 2020 imported cases in Lima have increased with an average of ~6 imported cases reported between March 16th-March 30th, 2020 in comparison to an average of ~4 imported cases reported per day before March 16th, 2020. As of April 2nd, 2020, Peru has adopted the gender-based quarantine measures for a week, where men and women were assigned particular days of the week to leave the house to buy groceries and medicine, in an attempt to further slow the spread of COVID-19 in the region (Westcott et al., 2020). The 20-day ahead forecast of our GGM model calibrated to 16 days suggest that the social distancing measures, including closure of schools and the declaration of national emergency are helping slow down the virus spread in Lima. Moreover, the scaling of growth parameter, p was estimated at ~0.5 (95%CI: 0.5,0.6) after the implementation of social distancing measures, consistent with a linear incidence growth trend. However, the COVID-19 case incidence continues to accumulate despite the quarantine and lockdowns in the region highlighting the need to enhance social distancing measures to further contain the outbreak.

The average positivity rate of COVID-19 in Lima was ~8.6% between March 4th-March 30th, 2020. This positivity rate for Lima, Peru, corresponds to the positivity rates derived from Denmark,
Germany and Canada (6-8%) (Meyer & C.Madrigal, 2020). In comparison countries like New Zealand, South Korea and Australia have exhibited lower positivity rates (2%) whereas Italy and the US have shown much higher positivity rates (15-20%) for COVID-19 (Meyer & C.Madrigal, 2020). Moreover, there is a substantial fraction of asymptomatic COVID-19 cases, which could have underestimated our estimates that relied on the daily incidence’s growth trend from symptomatic cases (Mizumoto, Kagaya, Zarebski, & Chowell, 2020; Wei et al., 2020). On the other hand, it is not known up to what extent asymptomatic cases transmit the virus relative to symptomatic cases. Our study underscores the need for active contact tracing efforts, isolation and strict social distancing measures to contain the outbreak and mitigate active disease transmission in Peru.

5. Conclusion

In this study we estimate the early transmission potential of SARS-CoV-2 in Lima, Peru. Our current findings point to sustained transmission of SARS-CoV-2 in the early phase of the outbreak, with our estimate of the mean reproduction number \(\sim 2.3 \). The COVID-19 epidemic in Lima followed an early exponential growth trend, which slowed down and turned into an almost linear growth trend (\(p \sim 0.5 \)) after broad scale social distancing interventions were put in place by the government. While the interventions have slowed the virus spread, the number of new COVID-19 cases continue to accumulate, highlighting the need to continue social distancing and active case finding efforts to mitigate disease transmission in the region.

List of abbreviations

COVID-19
SARS-CoV-2
PCR

Conflict of Interest

The authors declare no conflicts of interest.

Funding

G.C. is partially supported from NSF grants 1610429 and 1633381 and R01 GM 130900.
Author Contributions
A.T., C.V. and G.C. analyzed the data. A.T. and C.M. retrieved and managed data. A.T and G.C. wrote the first draft of the manuscript. A.T. and G.C worked on subsequent versions of the manuscript. All authors contributed to writing and interpretation of results. All authors read and approved the final manuscript.

Ethical approval
Data has been made available and approved for analysis by the Centro Nacional de Epidemiología Prevención y control de Enfermedades (CDC Perú) and the National Institute of Health of the Ministry of Health, Peru.
References

doi:10.2807/1560-7917.ES.2020.25.10.2000180

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimated values at $\alpha = 1.0$</th>
<th>Estimated values at $\alpha = 0.15$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproduction number</td>
<td>2.0 (95% CI: 1.7, 2.3)</td>
<td>2.3 (95% CI: 2.0, 2.5)</td>
</tr>
<tr>
<td>Growth rate, r</td>
<td>0.3 (95% CI: 0.3, 0.5)</td>
<td></td>
</tr>
<tr>
<td>Scaling of growth parameter, p</td>
<td>0.9 (95% CI: 0.8, 1.0)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Mean estimates and the corresponding 95% confidence intervals for the reproduction number, growth rate and the scaling of growth parameter during the early growth phase as of March 15th, 2020.
Figure 1: Laboratory results for the COVID-19 cases in Lima as of March 30th, 2020. Blue color represents the negative cases and the yellow color represents the positive cases. The orange solid line represents the positivity rate of the cases in Lima.
Figure 2: Local and imported incidence for confirmed COVID-19 cases in Lima by the date of symptoms onset as of March 30th, 2020.
Figure 3: The reproduction number with 95% CI estimated by adjusting for the imported cases $\alpha = 0.15$ using the GGM model. The reproduction number based on the incidence curve by March 15th, 2020 is at 2.3 (95% CI: 2.0, 2.5).
Figure 4: 20-day ahead forecast of the COVID-19 epidemic in Lima by calibrating the model until March 15th, 2020. Blue circles correspond to the data points, the red solid line indicates the best model fit and the red dashed lines represent the 95% prediction interval. The vertical black dashed line represents the time of the start of the forecast period.