Potential spreading risks and disinfection challenges of medical wastewater by the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of fangcang hospital

Dayi Zhang¹,*, Haibo Ling², Xia Huang¹, Jing Li³, Weiwei Li², Chuan Yi², Ting Zhang³, Yongzhong Jiang³, Yuning He⁴, Songqiang Deng⁴, Xian Zhang¹, Yi Liu¹, Guanghe Li¹, Jiuhui Qu¹,5,*

1. School of Environment, Tsinghua University, Beijing 100084, P.R. China
2. Hubei Academy of Environmental Sciences, Wuhan 430072, P.R. China
3. Hubei Center for Disease Control and Prevention, Wuhan 430079, P.R. China
4. Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou 215163, P.R. China
5. Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China

Corresponding author

Dr Dayi Zhang
School of Environment, Tsinghua University, Beijing 100084, P.R. China
Email: zhangdayi@tsinghua.edu.cn
Tel: +86(0)10-62773232; Fax: +86(0)10-62795687

Prof Jiuhui Qu
School of Environment, Tsinghua University, Beijing 100084, P.R. China
Email: jhqu@tsinghua.edu.cn
Tel: +86(0)10-62849151; Fax: +86(0)10-62795687
Abstract

The outbreak of coronavirus infectious disease-2019 (COVID-19) pneumonia raises the concerns of effective deactivation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in medical wastewater by disinfectants. In this study, we evaluated the presence of SARS-CoV-2 viral RNA in septic tanks of Wuchang Fangcang Hospital and found their unexpected occurrence after disinfection with sodium hypochlorite. Embedded viruses in faeces particles might be released in septic tanks, behaving as a source of SARS-CoV-2 and potentially contributing to its spread through drainage pipelines. Current recommended disinfection strategy (free chlorine above 6.5 mg/L after 1.5-hour contact) needs to be reevaluated to completely remove SARS-CoV-2 viral RNA in non-centralized disinfection system and effectively deactivate SARS-CoV-2. The effluents showed negative results for SARS-CoV-2 viral RNA when overdosed with sodium hypochlorite but had high a level of disinfection by-product residuals, possessing significant ecological risks.
1. Introduction

The outbreak of coronavirus infectious disease-2019 (COVID-19) pneumonia since 2019 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it has rapidly spread throughout 202 countries around the world. Till 28th April 2020, there are over 3 million confirmed cases and over 200,000 deaths globally, and the number is still increasing rapidly. There is clear evidence of human-to-human transmission of SARS-CoV-2. Besides direct contact and respiratory routes, faecal transmission might be an alternative route owing to the presence and survival of SARS-CoV-2 in patient’s faeces. As municipal wastewater pipe network receives huge amounts of wastewater from residents and treated sewage from hospitals, SARS-CoV-2 from non- or inefficient-disinfected wastewater can persist for a prolonged time in pipe network, becoming a secondary spreading source. It brings urgent requirement and careful consideration of disinfection strategies to prevent SARS-CoV-2 from entering drainage pipe network.

Disinfection is of great importance to eliminate or deactivate pathogenic microorganisms. Traditional disinfection strategies include ultraviolet germicidal irradiation and biocidal agents, e.g., gaseous ozone, alcohol, formaldehyde, hydrogen peroxide, peroxyacetic acid, povidone iodine and chlorine-based disinfectant. Chlorine-based disinfectants are widely used for their broad sterilization spectrum, high inactivation efficiency, low price, and easy decomposition with little residue. Nevertheless, overuse of chlorine-based disinfectants brings concerns of disinfection by-products (DBPs) which are harmful to ecosystems and human health. More than 600 kinds of DBPs have been observed, such as trihalomethanes (THMs), haloacetic acids (HAAs), halogen acetonitriles (HANs), halonitromethanes (HNMs) and haloacetamides (HAcAms). For effective centralized disinfection, World Health Organization (WHO) has suggested free chlorine ≥ 0.5 mg/L after at least 30 minutes of contact time at pH<8.0. Additionally, China has launched a guideline for emergency treatment of medical sewage containing SARS-CoV-2 on 1st February 2020, requiring free chlorine of ≥ 6.5 mg/L and contact time of ≥1.5 hour in disinfection units. Unfortunately, the performance of chlorine-based disinfectants on SARS-CoV-2 in real medical wastewater treatment system is not clear yet.

In this work, we studied the presence of SARS-CoV-2 viral RNA in septic tanks of
Wuchang Fangcang Hospital (Wuhan, China) to evaluate the disinfection performance and optimize disinfection strategies to prevent SARS-CoV-2 from spreading through drainage pipelines. Further analysis of DBPs evaluated the potential ecological risks in the effluents.

2. Materials and methods

2.1 Wuchang Fangcang Hospital and disinfection strategy

Wuchang Fangcang Hospital was open from 5th February to 10th March 2020, receiving 1124 COVID-19 patients (Figure 1). It had eight separate toilets and all sewage from toilets and showers were combined and disinfected in 4 preliminary disinfection tanks. They were then pumped into three septic tanks outside the hospital, followed a final disinfection (800 g/m³ of sodium hypochlorite before March 5th). After 24-hour, the effluent was pumped and discharged into pipe network and wastewater treatment plants. After 5th March, the dosage of sodium hypochlorite was increased to 6700 g/m³ to secure successful deactivation of SARS-CoV-2.

Figure 1. Schematic disinfection process of septic tanks of Wuchang Fangcang Hospital.
2.2 Sampling and chemical analysis

Influent and effluent samples were collected from septic tanks of Wuchang Fangcang Hospital on 26th February, 1st March and 10th March, 2020. Around 2.0 L of water was directly collected in a plexiglass sampler and transferred into a sterile plastic bag for biological analysis and a brown glass bottle for DBPs analysis. A stratified plexiglass sampler was used to obtain samples from different layers of septic tanks, designated as top-layer (0-50 cm) and bottom-layer (50-100 cm) water.

Free chlorine was measured on site using PCII58700-00 (HACH, USA). DBPs measurements were carried out on a GCMS-QP2020 (Shimadzu, Japan) equipped with Atomx purge and trap autosampler (Teledyne Tekmar, USA). The autosampler operating conditions were as follows: purge for 11 min at 30 °C with high-purity nitrogen gas at a flow rate of 40 mL/min, dry purge for 1.0 min at 20 °C with the flow rate of 40 mL/min, pre-desorption at 180 °C and desorption for 2.0 min at 190 °C, and bake for 6.0 min at 200 °C.

2.3 RNA extraction and PCR

Water samples were firstly centrifuged at 3,000 rpm to remove suspended solids. The supernatant was subsequently supplemented with NaCl (0.3 mol/L) and PEG-6000 (10%), settled overnight, and centrifuged at 10,000 g for 30 minutes. Viral RNA in pellets was extracted using the EZ1 virus Mini kit (Qiagen, Germany) according to the manufacturer’s instructions. RNA of SARS-CoV-2 was detected using AgPath-ID™ One-Step RT-PCR Kit (Life Technologies, USA) on a LightCycler 480 Real-time PCR platform (Roche, USA) in duplicates. Two target genes, open reading frame lab (CCDC-ORF1) and nucleocapsid protein (CCDC-N), were simultaneously amplified, following the detailed procedure described in Project of COVID-19 Prevention and Control (Fifth Edition, China CDC). Cycle threshold (Ct) value of ≤37, ≥40 and 37-40 is defined as positive, negative and suspected, respectively.

2.4 Data analysis

One-way ANOVA was used to compare the difference between samples and p-value less than 0.05 refers to significant difference.
3. Results and discussions

For all influents of septic tanks received from Wuchang Fangcang Hospital, there was no positive result for SARS-CoV-2 viral RNA. On 26th February and 1st March, the effluents were all positive for SARS-CoV-2 (100% for CDCC-N and 57.1% for CDCC-ORF1, Table 1). Ct values ranged from 30.15 to 34.93 (CDCC-ORF1) and 30.69 to 35.67 (CCDC-N), respectively. Although there was no significant difference between these two sampling days, Ct values of top-layer waters (ND-31.82 for CDCC-ORF1 and 31.76-35.67 for CCDC-N) were significantly lower than those of bottom-layer waters (30.15-34.93 for CDCC-ORF1 and 30.69-32.62 for CCDC-N, p=0.019), indicating more SARS-CoV-2 in top-layer waters.

Table 1. Ct values of SARS-CoV-2 and free chlorine in the effluents of septic tanks of Wuchang Fangcang Hospital.

<table>
<thead>
<tr>
<th>Dates</th>
<th>Samples</th>
<th>Positive</th>
<th>Ct</th>
<th>Free chlorine (mg/L)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCDC-ORF1</td>
<td>CDCC-N</td>
</tr>
<tr>
<td>26th February</td>
<td>Influent</td>
<td>0% (0/1)</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Effluent</td>
<td>100% (1/1)</td>
<td>32.52</td>
<td>31.03</td>
</tr>
<tr>
<td>1st March</td>
<td>Influent</td>
<td>0% (0/1)</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Effluent</td>
<td>100% (6/6)</td>
<td>Negative-30.15</td>
<td>30.69-35.67</td>
</tr>
<tr>
<td>10th March</td>
<td>Influent</td>
<td>0% (0/2)</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Effluent</td>
<td>0% (0/2)</td>
<td>Negative</td>
<td>Negative</td>
</tr>
</tbody>
</table>

ND: not detectable. *: free chlorine in septic tank 12-hour after sodium hypochlorite addition.

On 26th February and 1st March, free chlorine in the effluents was above 6.5 mg/L after 1.5 hours contact with 800 g/m³ of sodium hypochlorite, meeting well with the guideline for emergency treatment of medical sewage containing SARS-CoV-2 suggested by China CDC. Twelve hours after sodium hypochlorite addition, free chlorine declined to nondetectable (total chlorine 4.0-8.8 mg/L) and results for SARS-CoV-2 viral RNA were positive (Table 1). It hinted an unexpected presence of SARS-CoV-2 viral RNA after disinfection and a dosage of 800 g/m³ of sodium hypochlorite could not completely remove SARS-CoV-2 viral RNA in the effluents.

To improve disinfection performance and secure a complete deactivation of SARS-CoV-2, the dosage of sodium hypochlorite was increased to 6700 g/m³ since 6th March and free chlorine in the effluents on 10th March ranged from 21.0 to 25.0 mg/L at 12-hour after sodium hypochlorite addition. Eventually, both influents and
effluents of septic tanks were negative for SARS-CoV-2 viral RNA. However, trichloromethane, tribromomethane, bromodichloromethane and dibromochloromethane was 182-482, 0.6-3.1, 1.3-8.9 and ND-1.2 μg/L in the effluents, respectively.

Our results suggested that disinfection in Wuchang Fangcang Hospital was satisfactory to deactivate SARS-CoV-2 in aqueous phase after 1.5-hour contact, owing to the absence of SARS-CoV-2 viral RNA. Addition of 800 g/m³ of sodium hypochlorite according to the guideline for emergency treatment of medical sewage containing SARS-CoV-2 suggested by China CDC achieved free chlorine > 6.5 mg/L for 1.5 hours, but SARS-CoV-2 viral RNA was present in the effluents at 12-hour after sodium hypochlorite addition when free chlorine declined to nondetectable. SARS-CoV-2 in patients' faeces might explain the surprising presence of SARS-CoV-2 viral RNA in the effluents, that viruses embedded in faeces particles could escape from disinfection and slowly release into aqueous phase. Suspended particles as small as 7 mm can protect viruses from UV exposure and dwindle their vulnerability to direct sunlight inactivation, and 0.3-mm sized particles can shield viruses from disinfection for their prolonged survival. As faeces are rich in organic compounds and form numerous suspended solids containing SARS-CoV-2, they are of high risk as the source releasing viruses in septic tanks. It is also evidenced by the lower Ct values of SARS-CoV-2 in upper-layer waters, explained by more faeces residuals and suspended solids in the bottom of septic tanks absorbing SARS-CoV-2 from aquatic water. Thus, septic tanks might behave as a long-term source to release SARS-CoV-2 viral RNA into waters when disinfection is not completed and challenges public health through potentially spreading viruses in drainage pipelines.

The surprising presence of SARS-CoV-2 viral RNA after disinfection with sodium hypochlorite suggested that free chlorine > 0.5 mg/L after 1.5-hour contact time is not efficient for completely removing SARS-CoV-2 viral RNA, and 800 g/m³ dosage of sodium hypochlorite might be not enough to secure a complete disinfection of medical wastewaters, particularly for those from Fancang, temporary or non-centralized hospitals. From the negative results of SARS-CoV-2 viral RNA (Table 1), the complete deactivation of SARS-CoV-2 was achieved when the dosage of sodium hypochlorite was 6700 g/m³. Nevertheless, it is an over-dosage and resulted in a significantly higher level of DPB residues in the effluents than other reports.

[The text continues with further details on the results and implications.]
They show high ecological risks and challenge the surrounding environment receiving disinfected medical wastewater. Additionally, applying high level of chlorine-based and other disinfectants have lasted for three months in Wuhan since the outbreak of COVID-19, and further studies are suggested to carefully evaluate its ecological risks.

Owing to the operational limitations during the COVID-19 outbreak in Wuhan and restricted sample transport to other laboratories, this study did not demonstrate viral viability after disinfection by viral culture. Additionally, disinfection operations in septic tanks of Wuchang Fangcang Hospital were strictly controlled by government officials that we could not collect more samples or explore the optimal dosage of sodium hypochlorite for complete removal of SARS-CoV-2 viral RNA with minimal DBPs. This work attempts to give initial information about the potential risks of viral spread and DBPs residues during disinfection processes for medical wastewater containing SARS-CoV-2, and further studies are required to confirm these preliminary results.

4. Conclusion

Our study for the first time reported an unexpected presence of SARS-CoV-2 viral RNA in septic tanks after disinfection with 800 g/m3 of sodium hypochlorite and current disinfection guideline by WHO and China CDC might not secure a complete removal of SARS-CoV-2 in medical wastewater. SARS-CoV-2 might be embedded in patient’s faeces, protected by organic matters from disinfection, and slowly release when free chlorine declines. Septic tanks in non-centralized disinfection system of Fancang hospitals or isolation points potentially behave as a secondary source spreading SARS-CoV-2 in drainage pipelines for prolonged time. Disinfection strategy is of great urgency to improve and the ecological risks of DBPs need to be carefully considered.

5. Author contributions

Concept and design: DZ, XH, YL, JQ.

Acquisition, analysis, or interpretation of data: DZ, HL, JL, WL, CY, TZ, YJ, XZ, GL.

Drafting of the manuscript: DZ, YH, SD.

Statistical analysis: DZ.
References

24. Luo, Y.; Feng, L.; Liu, Y.; Zhang, L., Disinfection by-products formation and
acute toxicity variation of hospital wastewater under different disinfection processes.

