A possible role of immunopathogenesis in COVID-19 progression

Moritz Anft¹, Krystallonia Paniskaki²*, Arturo Blazquez-Navarro¹²*, Adrian Doevelaar¹, Felix S. Seibert¹, Bodo Hoelzer¹, Sarah Skrzypczyk¹, Eva Kohut¹, Julia Kurek¹, Jan Zapka¹, Patrizia Wehler¹², Sviatlan Kaliszczyk¹, Sharon Bajda³, Constantin J. Thiemè³, Toralf Roch¹²³, Margarethe Justine Konik², Thorsten Brenner⁵, Clemens Tempfer⁵, Carsten Watzi⁶, Sebastian Dolf², Ulf Dittmer⁷, Timm H. Westhoff¹, Oliver Witzke², Ulrik Stervbo¹***, Nina Babel¹²**

¹Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
²Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Germany
³Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
⁴Department of Anesthesiology, University Hospital Essen, University Duisburg-Essen, Germany
⁵Department of Gynecology and Obstetrics, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
⁶Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany,
⁷Germany Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.

* equal contribution

Corresponding author:
Prof. Nina Babel
Center for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany and
Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany

email: nina.babel@elisabethgruppe.de; nina.babel@charite.de

Keywords: Covid-19, SARS-CoV-2, Immunity, S-protein-reactive T-cells
Abstract

Background: The efficacy of the humoral and cellular immunity determines the outcome of viral infections. An appropriate immune response mediates protection, whereas an overwhelming immune response has been associated with immune-mediated pathogenesis in viral infections. The current study explored the general and SARS-CoV-2 specific cellular and humoral immune status in patients with different COVID-19 severities.

Methods: In this prospective study, we included 53 patients with moderate, severe, and critical COVID-19 manifestations comparing their quantitative, phenotypic, and functional characteristics of circulating immune cells, SARS-CoV-2 antigen specific T-cells, and humoral immunity.

Results: Significantly diminished frequencies of CD8^+T-cells, CD4^+ and CD8^+T-cell subsets with activated differentiated memory/effector phenotype and migratory capacity were found in circulation in patients with severe and/or critical COVID-19 as compared to patients with moderate disease. Importantly, the improvement of the clinical courses from severe to moderate was accompanied by an improvement in the T-cell subset alterations. Furthermore, we surprisingly observed a detectable SARS-CoV-2-reactive T-cell response in all three groups after stimulation with SARS-CoV-2 S-protein overlapping peptide pool already at the first visit. Of note, patients with a critical COVID-19 demonstrated a stronger response of SARS-CoV-2-reactive T-cells producing Th1 associated inflammatory cytokines. Furthermore, clear correlation between antibody titers and SARS-CoV-2-reactive CD4^+ frequencies underscore the role of specific immunity in disease progression.

Conclusion: Our data demonstrate that depletion of activated memory phenotype circulating T-cells and a strong SARS-CoV-2-specific cellular and humoral immunity are associated with COVID-19 disease severity. This counter-intuitive finding may have important implications for diagnostic, therapeutic and prophylactic COVID-19 management.

Introduction

The pandemic outbreak of SARS-CoV-2 faced the human population with tremendous health, social, and economical challenges. SARS-CoV-2 can lead to acute respiratory distress syndrome (ARDS) and multi-organ failure\(^1\). The conventional assumption on the general immunity fitness can certainly not explain the different disease manifestation. Recent data demonstrate an association of cytokine storm including high level of interleukin (IL)-6 production with severe disease\(^1\) suggesting a pathological immune dysregulation. In contrast, markedly lower immune cell numbers and decreased activation levels were associated with critical COVID-19 manifestations\(^4-5\). Usually, a protective role of cellular immunity controlling viral infection can be assumed\(^6-8\). However, an overwhelming immune response after viral infections leading to cell damage and organ failure was also reported\(^9\). It is unclear whether the diminished or hyperreactive immunity is responsible for the asymptomatic or critical ARDS manifestation, respectively. Our study provides a detailed characterization of non-specific and SARS-CoV-2-specific cellular and humoral immunity in a prospective cohort of patients with different disease severity to understand their role for COVID-19 progression.
Methods

Study population and design
53 patients with moderate (n=21), severe (n=18) and critical (n=14) COVID-19 were recruited into the study. The severity of infection was assessed according to the guidelines of the Robert Koch Institute, Germany, Table S1. The study was approved by the ethical committee of the Ruhr-University Bochum (20-6886) and University Hospital Essen (20-9214-BO), and written informed consent was obtained from all participants. Demographic and clinical characteristics of patients are demonstrated in Tables 1 and S2.

Patients with moderate and severe COVID-19 were recruited after the first symptoms occurred and a positive SARS-CoV-2 PCR result (in median 4 days after the diagnostic test) were available. For patients with critical disease, the recruitment occurred at ICU, being diagnosed with COVID-19 in median 14 days before. To ensure the comparability of the data with respect to the longer duration of COVID-19 in ICU patients, blood samples of patients with moderate and severe cases were obtained in follow up within the next 8 days after the recruitment. For 10 out of 14 critical patients, only one time point was available (Fig. 1A).

Preparation of PBMCs and stimulation with SARS-CoV-2 overlapping peptide pools
SARS-CoV-2 PepTivator peptide pools (Miltenyi Biotec), containing overlapping peptides spanning parts of the surface glycoprotein (Fig. 1B), were used in the stimulation. The utilized overlapping peptide pool (OPP) consisted of 15mers with 11 amino acids overlap (Fig. 1C). Peripheral blood mononuclear cells (PBMCs) were prepared from whole blood by gradient centrifugation as previously described10. Isolated PBMCs were stimulated with 1 µg/mL OPP for 16h. Brefeldin A (1µg/ml, Sigma Aldrich) was added after 2h.

Flow cytometry
For the immune phenotyping, EDTA treated whole blood was stained as described in the Supplementary Appendix. Surface antigen of the T-cells stimulated with SARS-CoV-2 OPP were stained prior to fixation and staining of intracellular antigen, as described in Supplementary Appendix. All samples were immediately acquired on a CytoFlex flow cytometer (Beckman Coulter).

SARS-CoV-2 IgG Antibody titers
SARS-CoV-2 IgG titers were analyzed using a commercially available kit (EUROIMMUN, Lübeck, Germany) per manufacturer’s instructions.

Statistical analysis
Flow cytometry data were analyzed using FlowJo version 10.6.2 (BD Biosciences); gating strategies are presented in Fig. S5-S9. Statistical analysis was performed using R, version 3.6.211. P values below 0.05 were considered significant; only significant P values are reported. P values were not corrected for multiple testing, as this study was of exploratory nature12.

Results
53 hospitalized patients with moderate, severe and critical disease were enrolled in this prospective study. The detailed characteristics of study patients, study design and blood sampling are presented
in Table 1, S2 and Fig. 1A. There were no statistically significant differences in patient’s age between the analyzed groups. Most patients in the critical groups were males. To exclude a potential bias of obtained results caused by gender mismatch between the groups, we performed a bivariate regression analysis for all significant factors. We found no evidence of a confounding effect of gender for the described markers associated with COVID-19 severity (P>0.05, Table S3).

We monitored changes of disease severity during the short follow up period. 10 patients showed clinical improvement and moved from the severe to the moderate disease cohort in the follow up visit.

Decreased frequencies of lymphocytes with differentiated and activated cytotoxic phenotype in patients with severe or critical COVID-19

The absolute counts of circulating leukocytes including lymphocytes, granulocytes, and monocytes were for most patients below the reference level at the first and at the follow-up visit (Fig. S1 and S2). NK-cell numbers were significantly lower in patients with severe and critical disease (Fig. S1F), while eosinophil counts were increased in critically ill patients (Fig. S1G). We further characterized different subsets within T- and B-cell compartments. To exclude patient specific variations caused by lymphopenia, we focused the analysis on the relative values.

The relative frequency of lymphocytes among leukocytes was significantly lower in critical versus moderate cases (Fig. S1H). We also observed a lower level of CD8⁺, higher CD4⁺ level and consequently a higher CD4⁺/CD8⁺ ratio in patients with severe and critical COVID-19 symptoms versus moderate (Fig. S1I-K).

Next, we performed a comparison of various T- and B-cell subsets between the different disease severities at the first visit (Fig. 2) and in follow-up (Fig. S3). Comparing the groups with different disease severity, we found lower frequencies of central memory cells among CD4⁺ and CD8⁺ T-cells in patients with critical COVID-19 (Fig. 2A,B). Lower frequencies of terminally differentiated TEMRA CD8⁺ T-cells were found in patients with severe and critical compared to moderate COVID-19 (Fig. 2C,D). We also found significantly lower frequencies of T-cells showing an activated phenotype with the lowest level of HLA-DR-expressing CD4⁺ (Fig. 2E) and CD8⁺ T-cells (Fig. 2F) in patients with critical disease, followed by severe and moderate cases. Similar gradual decrease associated with COVID-19 severity was observed for CD57⁺CD4⁺ or CD57⁺CD8⁺ T-cells (Fig. 2G,H). Interestingly, we found dramatically lower frequencies of CD11a-expressing CD4⁺ and CD8⁺ T-cells and a significant reduction of CD28⁺CD4⁺ T-cells in critical compared to severe and moderate COVID-19 (Fig. 2I-L). In the B-cell compartment, we found a strong gradual reduction in the frequencies of transitional and marginal zone CD19⁺ cells in the patients with severe or critical symptoms (Fig. 2M,N), but not in class switched CD19⁺IgD⁻ plasmablasts (data not shown).

Taken together, these findings demonstrate a loss of activated and differentiated T-cells in patients with severe and critical COVID-19. These differences remained stable also in follow up visit (Fig. S3). Importantly, in 10 patients severe COVID-19 improved to moderate in follow up. In these patients, we found an increase in the frequencies of significantly diminished T-cell subsets including HLA-DR⁺CD4⁺, HLA-DR⁺CD8⁺, CD11a⁺CD8⁺ at the first visit to levels comparable to the levels of patients with moderate COVID-19 (Fig. 3).
Increased magnitude and functionality of SARS-CoV-2-reactive T-cells in patients with critical COVID-19

Given the observed loss of activated/differentiated T-cells in circulation of patients with critical symptoms, we wondered how this might influence the SARS-CoV-2 S-protein-specific T-cell immunity (Fig. S5).

Among the patients with moderate symptoms, we found remarkably, albeit insignificantly, fewer patients with detectable SARS-CoV-2-reactive CD4⁺CD154⁺ T-cells compared to severe or critical cases (44.4% vs. 75.0% and 80.0%, respectively). The number of patients with detectable S-protein-reactive CD4⁺ T-cells increased in all groups to 76.9% (moderate) and 100% (severe) after the follow-up visit (Table S4).

Interestingly, during the whole observation period, only a low percentage of patients with a moderate disease had detectable CD8⁺CD137⁺ T-cells (First visit: 44.4%, Follow-up: 38.5%), whereas the percentage of patients with a severe COVID-19 and detectable CD8⁺CD137⁺ T-cells increased from 50.0% at the first to 75% at the follow-up visit. In critically ill patients, the frequency was comparable to the level of the follow-up visit in severe diseases (80%).

Assessing the number of patients with detectable antigen-specific T-cells expressing granzyme B or the cytokines TNF-α, IFNγ or IL-2, we identified more patients with detectable cytokine producing antigen-specific T-cells in the group with severe or critical COVID-19 compared to the group with a moderate course (Table S4).

Furthermore, we compared the magnitude of T-cell responses between the groups. We found a higher frequency (Fig. 4A) and absolute counts (Fig. S4A) of S-protein reactive CD4⁺CD154⁺ and IL-2 producing CD4⁺CD154⁺ in critical compared to moderate COVID-19. The magnitude of TNF-α, IFNγ, and granzyme B producing CD4⁺CD154⁺ T-cells was slightly but not significantly higher in the severe and critical versus moderate group (Fig. 4A). The magnitude of S-protein-reactive CD8⁺CD137⁺ T-cells was generally very low, although we found higher frequencies in critical COVID-19. We also detected a significantly higher frequency (Fig. 4B) and number (Fig. S4B) of IL-2 producing CD8⁺CD137⁺ T-cells, whereas TNF-α, IFN-γ and granzyme B producing CD8⁺CD137⁺ T-cell was very low and comparable between the groups (Fig. 4B and Fig. S4B). Notably, we did not find statistical differences between three groups with respect to the differentiation phenotype of the detected S-protein-reactive CD4⁺CD154⁺ and CD8⁺CD137⁺ T-cells with a majority of cells showing memory/effecter phenotype already at the first measurement (data not shown).

Of interest, we found a clear correlation between humoral and cellular immunity. The frequency (Fig. 4C and number (Fig. S4C) of spike protein-reactive CD4⁺CD154⁺, but not CD8⁺CD137⁺ T-cells (Fig. 4C and Fig. S4C), correlated with antibody titers independent of the COVID-19 severity.

Discussion

Here, we present a comprehensive immune profiling of a cohort of 53 patients with different COVID-19 severity. Our data reveal an intriguing association between the quantitative composition and functionality of several immune cell subsets and the clinical manifestation of COVID-19 that might reflect pathogenic immune reactivity.
The impaired immune regulation and increased inflammation have been recently reported for patients with SARS-CoV-2-related severe respiratory failure (SRF)\(^5\)\(^{-13}\). Patients with SRF showed an IL-6-driven hyperinflammation and a T-, B- and NK-cell lymphopenia\(^5\). In agreement with these data, we show significantly lower numbers of circulating T-, NK- and B-cell subsets in patients with severe and critical as compared to moderate COVID-19. Moreover, critically ill patients had the lowest frequencies of T-cell subsets with advanced differentiation, activation and functional properties, while severe cases had more but still significantly lower numbers of these cells compared to moderate cases. The affected immune cell subsets are described to be involved in immune activation and cytotoxic response towards foreign antigens\(^14\)\(^{-16}\). The reason for the acute decrease of different circulating immune cell populations is not clear so far. However, the improvement in the clinical course from severe to moderate in our study patients accompanied by the increase of affected T-cells might point out an inflammation-triggered lymphocyte migration\(^17\)\(^,\)\(^18\) rather than apoptosis. Thus, previous data demonstrate that in vivo pre-activated TEMRA can migrate unspecifically to any inflammatory site providing cytotoxic effects\(^19\). In this respect, the data on the dramatic depletion of CD11a-expressing CD4\(^+\) and CD8\(^+\) T-cells in patients with critical disease are relevant. CD11a is a key T-cell integrin, essential for T-cell activation and migration\(^20\). In addition, CD57\(^+\) T-cells are known as terminally differentiated, functionally competent memory/effector T lymphocytes, with high migratory capacities\(^15\)\(^,\)\(^16\). Supporting the assumption of T-cell migration, the very recent review\(^21\) reports on SARS-CoV-2-induced activation of IL-6 amplifiers. Leading to IL-6 and other cytokine release, it recruits activated T-cells and macrophages in the lesion\(^21\). In line with this and other papers\(^5\), we observed significantly higher level of IL-6 in patients with severe and critical diseases (data not shown).

We demonstrate an increased magnitude and functionality of SARS-CoV2 S-protein-reactive CD4\(^+\) and CD8\(^+\) T-cells in patients with critical and severe cases. The frequencies of SARS-CoV-2-reactive T-cells in critical COVID-19 are comparable or higher than the frequencies of other virus- or vaccine-reactive T-cells analyzed in our previous studies\(^7\)\(^,\)\(^8\)\(^,\)\(^10\)\(^,\)\(^22\)\(^,\)\(^23\). The magnitude of the S-protein-reactive T-cell response is also comparable with the first data on S-protein-reactive T-cells in patients with SARS-CoV-2-associated SRF\(^13\). The reason for the higher number of SARS-CoV-2-reactive T-cells in critical cases is unknown and might be explained by a disturbed migration of the antigen-specific cells to the infected tissue. However, it is also possible that the composition of the peripheral immune cells mirrors the situation in the inflamed tissue, where the large number of antigen-specific effector T-cells leads to injury as we hypothesize before for unspecific cellular immunity. Independent of the reason for the higher magnitude of SARS-CoV2-reactive immunity, our data provide important implications for the clinical patient management. Patients with severe and critical course mount a strong antiviral response. Although the antiviral protective capacity of SARS-CoV-2-reactive T-cells has to be evaluated, COVID-19 disease progression is obviously associated with a higher magnitude of inflammatory cytokine-producing cells. Therefore, immune modulatory approaches could be helpful in patients with severe/critical cases, which is confirmed by a recent study describing a positive outcome of anti-IL6-antibody therapy in SRF patients\(^5\).

In conclusion, we demonstrate data on SARS-CoV-2-specific and non-specific cellular and humoral immunity in patients with different disease severity and provide first evidences for possible immune pathogenesis of COVID-19. Although further analysis of the patient cohort in follow-up is required, our data have important implications for the management of severe/critical COVID-19 and for the planning further clinical trials.
References

Tables

Table 1. Patient characteristics

<table>
<thead>
<tr>
<th></th>
<th>Disease Severity</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moderate</td>
<td>Severe</td>
<td>Critical</td>
<td></td>
</tr>
<tr>
<td>Number patients</td>
<td>21 (39.62%)</td>
<td>18 (33.96%)</td>
<td>14 (26.42%)</td>
<td></td>
</tr>
<tr>
<td>Age (NS)</td>
<td>64.6 (range: 41-89)</td>
<td>73.9 (range: 56-92)</td>
<td>64.9 (range: 26-86)</td>
<td></td>
</tr>
<tr>
<td>Gender (Male/Female)</td>
<td>10/11 (47.62/52.38)</td>
<td>10/8 (55.6%/44.4%)</td>
<td>13/1 (92.9%/7.1%) **</td>
<td></td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic renal Disease</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Obstructive Lung Disease</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Age is compared across patient categories by one-way ANOVA. Gender is compared for each patient category by χ^2. NS indicate not significant, ** indicate P value < 0.01
Figure legends

A

Fig. 1: Study protocol and SARS-CoV-2 S-protein overlapping peptide pool. (A) 53 patients admitted to Marienhospital Herne – Universitätsklinikum der Ruhr-Universität Bochum, Herne, North Rhine-Westphalia, Germany and Universitätsklinikum Essen, North Rhine-Westphalia, Germany were enrolled into the study if diagnosed with COVID-19. Patients with moderate and severe COVID-19 were recruited after the first symptoms occurred and a positive SARS-CoV-2 PCR result (in median 4 days after the diagnostic test) were available. For patients with critical disease, the recruitment into the study occurred at ICU, being diagnosed with COVID-19 in median 14 days before. To ensure the comparability of the data with respect to the longer duration of COVID-19 in ICU patients, blood samples of patients with moderate and severe cases were obtained in follow up within the next 8 days after the recruitment. For 10 out of 14 critical patients, only one time point was available. The profiling included evaluation of SARS-CoV-2 S-protein specific IgG serum antibodies, as well as phenotyping of all major immune cell populations by flow cytometry, and characterization of B- and T-cell subsets. T-cells reactive to the SARS-CoV-2 S-protein were also analyzed by application of overlapping peptide pools. (B) The utilized peptide pool contained 15mer, 11 AA overlapping peptides spanning the S-protein regions 304-338, 421-475, 492-519, 683-707, 741-770, 785-802, and 885-1273 of the S-protein. (C) Principle of 15mer 11 AA overlapping peptides from SARS-CoV-2 S-protein region 304-340.
Fig. 2: Decrease of lymphocyte frequencies with differentiated and activated cytotoxic phenotype in patients with severe or critical COVID-19. Peripheral blood from patients with moderate, severe or critical COVID-19 manifestations was subjected to evaluation for differentiation and activation state of T- and B-cell subsets at the first visit using multiparametric flow cytometry. The subsets of the CD3+ T-cells and the CD19+ B lymphocyte were identified according to the gating strategy in Fig. S7-S9. (A-B) Frequency of central memory, defined as CCR7+CD45RA−, among CD4+ (A) and CD8+ (B) CD3+ T-cells. (C-D) Frequency of terminally differentiated effector T-cells (TEMRA), defined as CCR7−CD45RA+, among CD4+ (C) and CD8+ (D) CD3+ T-cells. (E-F) The frequency of HLA-DR expressing cells among CD4+ (E) and CD8+ (F) CD3+ T-cells. (G-H) The frequency of CD57 positive cells among CD4+ (G) and CD8+ (H) CD3+ T-cells. (I-J) The frequency of CD11a expressing cells among CD4+ (I) and CD8+ (J) CD3+ T-cells. (K-L) The frequency of CD28 expressing cells among CD4+ (K) and CD8+ (L) CD3+ T-cells. (M) The frequency of transitional B-cells defined as CD27−CD38hiCD24hi, among all CD19+ IgM+IgD+ B-cells, and (N) the frequency of marginal zone (MZ) B-cells, defined as IgD+CD27+, among all CD19+ B-cells.
Fig. 3: Increase of frequencies of differentiated and activated cytotoxic lymphocyte associated with improving of COVID-19 symptoms from severe to moderate COVID-19. The dynamics of differentiation and activation state of T-cell subsets was evaluated in patients with an improvement of disease manifestations from severe to moderate. The subsets of the CD3+ T-cells were identified according to the gating strategy in Fig. S7 and S8. The difference of cell frequency after improvement to the frequency before the improvement in symptoms was taken. Terminally differentiated effector T-cells (TEMRA) are defined as CCR7−CD45RA+. Expression of HLA-DR was evaluated for CD4+ and CD8+ T-cells, CD57+ was evaluated for CD4+ T-cells, and CD11a+ for CD8+ T-cells. Changes were evaluated by the one-sample Wilcoxon Signed-Rank test with the null hypothesis of zero increase.
Fig. 4: Increased magnitude of cytokine producing S-protein-reactive T-cells in patients with critical COVID-19. The presence and functional status of SARS-CoV-2 specific T-cells was evaluated using PBMCs, isolated from the peripheral blood of patients with moderate, severe, or critical COVID-19 manifestations. Defrosted PBMCs rested for 24 hours before treatment with overlapping peptide pools covering the SARS-CoV-2 S-protein. The cells were stimulated for a total of 16 hours and in the presence of Brefeldin A for the last 1 hours. SARS-CoV-2 reactive CD4^+ T-cells and CD8^+ T-cells were evaluated using multi-parametric flow cytometry, using the expression of CD154 and CD137 to identify the activated CD4^+ and CD8^+ T-cell, respectively. The complete gating strategy is presented in Fig. S5. For critical COVID-19 patients, only a single time point was available. To ensure the comparability of the data with respect to the longer disease duration in critical COVID-19 patients, the comparison of the data in critically ill patients was performed also with the follow-up visit data in moderate and severe cases. (A) Frequency of CD4^+CD154^+ among CD4^+ T-cells (first row) to the initial visit (left column) and follow-up visit (right column), and frequency of cells expressing granzyme B (GrB), INF-γ, IL-2, and TNF-α among CD4^+CD154^+ (row two to four). (B) Frequency of CD8^+CD137^+
among CD8\(^+\) T-cells (first row) to the initial visit (left column) and follow-up visit (right column), and frequency of cells expressing granzyme B (GrB), INF-γ, IL-2, and TNF-α among CD8\(^+\)CD137\(^+\) (row two to four). (C) Correlation between the frequencies of S-protein-reactive CD4\(^+\) T-cells (left) and S-protein-reactive CoV-2 specific CD8\(^+\) T-cells (right) against relative titers of SARS-CoV-2 S-protein specific IgG antibodies, measured by ELISA and evaluated as ratio to an internal control.