Indications that *Chymotrypsin-like Elastase 1* is Involved in Emphysema

Mohit Ojha¹, Rashika Joshi¹, Emily Goodman², Jana Lewis³,⁴, Qiang Fan¹, Richard Schumann⁵, Aleksey Porollo⁶,⁷, Matthew Batie⁸ and Brian Varisco¹,⁶∗

¹ Critical Care Medicine, Cincinnati Children’s Hospital Medical Center
² Biology, Miami University
³ Biology, University of Arkansas at Pine Bluff
⁴ School of Medicine, Drexel University
⁵ Antibody and Immunoassay Consultants
⁶ College of Medicine, University of Cincinnati
⁷ Center for Autoimmune Genomics, Cincinnati Children’s Hospital Medical Center
⁸ Clinical Engineering, Cincinnati Children’s Hospital Medical Center

∗To whom correspondence should be addressed; E-mail: brian.varisco@cchmc.org

ONE SENTENCE SUMMARY

We find that *Chymotrypsin-like Elastase 1* (*CELA1*) is responsible for progressive airspace destruction in multiple mouse emphysema models, show that human lung *CELA1* expression and binding to lung matrix are associated with known emphysema risk factors, and demonstrate that anti-CELA1 antibodies largely inhibit lung elastolytic activity in *CELA1* mRNA-high lung specimens.

All rights reserved. No reuse allowed without permission.
ABSTRACT

Emphysema is an important element of many progressive lung diseases, with chronic obstructive pulmonary disease (COPD) being the most common. With the exception of α 1-antitrypsin (AAT) replacement therapy there are no disease modifying therapies for progressive emphysema. We previously reported that alveolar type 2 (AT2)-cell synthesized CELA1 is neutralized by AAT and that CELA1 is necessary for emphysema in AAT-deficiency. Here, we use mouse models and human tissues to show that CELA1 is required for progressive emphysema. In mice, lung injury was induced with tracheal porcine pancreatic elastase. Cela1 began increasing at 21-days, and Cela1−/− mice were protected from continued airspace enlargement at 42 and 84 days (p<0.01). Aged Cela1−/− mice had less airspace simplification than aged WT mice (p<0.05).

In humans and mice, CELA1 mRNA and protein were present in subsets of conducting airway epithelial and AT2 cells. COPD lungs had 3-fold more CELA1 protein than control (p<0.05). Among COPD-associated proteases, only CELA1 was positively and significantly correlated with lung elastolytic activity (p<0.001). Rabbit polyclonal and mouse monoclonal anti-CELA1 antibodies inhibited elastolytic activity of CELA1 mRNA-high but not CELA1 mRNA-low human lungs. CELA1 mRNA levels increased exponentially with age, and smoking reduced that ratio of AAT-neutralized:native CELA1 (p<0.05). CELA1 binding to lung tissue increased 6-fold with biaxial strain (p<0.05). We propose that CELA1 predisposes to progressive emphysema via (1) increased expression with age, (2) reduced AAT neutralization with smoking, and (3) increased CELA1-binding to lung matrix with strain. Anti-CELA1 therapies may represent a novel disease modifying therapy to prevent emphysema progression.
INTRODUCTION

Lung function is maximal during the 3rd decade of life and slowly declines thereafter. A host of conditions can either reduce the maximal number of alveoli or increase the rate of alveolar loss leading to respiratory insufficiency. Since the 1990s, surfactant replacement therapy and advances in neonatal intensive care has permitted the survival of increasingly premature infants who often have bronchopulmonary dysplasia and reduced peak alveolar number—which many predict will lead to premature respiratory compromise as this population ages (1). Patients with α-1 antitrypsin (AAT) deficiency presumably have a normal peak number of alveoli but unopposed proteolytic activity accelerates alveolar loss and leads to emphysema in the 4th and 5th decades of life. A subset of smokers will develop COPD with emphysema being a major element of this disease, and a subset of these patients will experience rapidly progressive emphysema despite smoking cessation (2). In these and other clinical situations, the ability to halt or slow progressive airspace destruction could substantially improve respiratory quality of life.

Lung elastic fibers have a half-life of ~70 years (3) and are key to normal lung function. Elastic fiber destruction is a hallmark of emphysematous disease, and a host of matrix metalloproteinases (MMPs) and serine proteases have been implicated in different emphysematous disorders. (4) With the possible exception of AAT replacement therapy in AAT-deficient emphysema, targeted protease inhibition strategies in humans have failed. (5) Thus, with healthy skepticism, we tested the role of a novel serine protease, Chymotrypsin-like Elastase 1 (CELA1) in emphysema. Here we build upon our previous findings that CELA1 is developmentally regulated, reduces postnatal lung compliance and is required for emphysema in a murine model of AAT-deficiency (6) (7). We show that unlike other emphysema-related proteases, CELA1 plays no role in early lung injury, but rather, it is responsible for progressive airspace destruction after injury and in the normal alveolar loss associated with aging. We go on to show that
CELA1 mRNA levels correlate strongly with the proteolytic state of the human lung and that the elastolytic activity of CELA1-high lung can be reduced with anti-CELA1 antibodies. We further show that CELA1 can account for the age, smoking and preceding-injury risk factors of emphysema in that its mRNA levels increase with age, its neutralization by AAT is reduced with smoking, and its binding to lung matrix is increased with strain.

RESULTS

Late Increase in Cela1 After Lung Injury

We assessed Cela1 expression in the murine tracheal PPE model of emphysema. Increased Cela1 mRNA was noted in several specimens in the days after PPE, but it was significantly increased at 42 and 84 days post-PPE with median values 2.7 and 2-fold increased respectively (Figure 1A). Proximity ligation in situ hybridization (PLISH) for Cela1 mRNA demonstrated very few positive cells in PBS-treated lung (Figure 1B), rare clusters of expressing cells at 3 days post-PPE (Figure 1C), and substantially increased numbers of Cela1-expressing cells in a subset of conducting airways at 21, 42, and 84 days (Figure 1D, Figure S1). We previously showed that the ~70kDa Cela1 species in mouse lung was Cela1+AAT protein (7). At 1 and 3 days post-PPE Cela1+AAT protein was elevated, perhaps related to leak of serum proteins into airspaces. At 21 and 42 days, native Cela1 protein levels were increased ~3-fold (Figure 1E&F). Overall, these data show that Cela1 expression begins increasing between 3 and 6 weeks following lung injury with localization to some but not all of the conducting airways.

Cela1 Mediates Emphysema Progression in Mouse PPE Model

We assessed emphysema at 21, 42, and 84 days post-PPE in WT and Cela1−/− mice. Cela1−/− and WT mice had the same degree of airspace destruction up until 21 days, but Cela1−/− mice were protected from the progressive airspace destruction observed in WT mice at 42 and 84 days.
Figure 1: Cela1 Expression in Murine PPE Model of Emphysema. (A) Lung Cela1 mRNA was significantly increased at 42 and 84 days after tracheal PPE. *p<0.05, **p<0.01 by Kruskal-Wallis test. (B) Proximity ligation in situ hybridization (PLISH) for Cela1 mRNA demonstrated rare expressing cells in PBS-treated lung, (C) small clusters of expressing cells at 3 days post-PPE, and (D) larger numbers of expressing cells concentrated in a subset of conducting airways at 21 days post-PPE. (E) Western blot of lung homogenate showed an early increase in high molecular weight Cela1 (previously shown to be Cela1+AAT) and a later 3-fold increase in native Cela1. (F) only this later increase was statistically significant though n=2 per each PPE group. *p<0.05 by Welch’s t-test.

Consistent with reports of increased susceptibility of females to emphysema (8–10) female mice tended to have worsened emphysema, though this was not statistically significant (Figure 2). These data show that in this murine model of emphysema, Cela1 does not play an important role in early airspace injury, but Cela1 is necessary for the emphysema progression that occurs after 21 days.
Figure 2: Cela1 Mediates Late Airspace Destruction in PPE model. (A) Wild type (WT) mice administered tracheal PPE demonstrated airspace destruction which was progressive at (B) 42 and (C) 84 days post-PPE. (D) Cela1−/− mice had a level of emphysema similar to that of WT at 21 days, but at (E) 42 and (F) 84 days, progressive emphysema was absent. (G) Comparison Cela1−/−PBS-treated lung. (H) Mean linear intercept (MLI) quantification of emphysema in WT and Cela1−/− lungs post-PPE. PBS-treated lung MLIs omitted for clarity but were all ~50 µm and p<0.001 for each PBS-PPE comparison. Central bar represents mean and whiskers standard deviation. *p<0.05, **p<0.01 by ANOVA.
Cela1 in Murine Age-related Airspace Simplification

A hallmark of aging in humans and in mice is alveolar loss and progressive airspace simplification (11). Since Cela1 appeared to be involved in late lung remodeling, we evaluated the lungs of aged WT and Cela1−/− mice. The Cela1 protein levels of young adult (8-10 weeks) and aged mouse lung (70-75 weeks) were no different (Figure S2); however aged Cela1−/− lung had 45% more soluble tropoelastin (Figure 3A) and similarly increased insoluble elastin (Figure S2) with less destruction of elastin architecture (Figure 3B&C). Cela1−/− mice were largely protected from the age-related airspace simplification seen in WT mice (Figure 3D-F). As cellular senescence is known to be important in the pathogenesis of emphysema and other lung diseases, (12) we evaluated protein levels of p16/p19, p21, and p53. We found no significant differences in the whole lung levels of these factors (Figure S2). These data implicate CELA1 in the lung remodeling processes of aging.

CELA1 in Human Emphysema

We previously demonstrated the presence of CELA1 mRNA in human lung and that a high molecular weight species of CELA1 (~70 kDa) was a covalent complex of Cela1 and AAT. To further evaluate CELA1 in COPD, we first performed immunohistochemistry. Counting of CELA1-protein-positive cells in tile scan sections of COPD and control lung section showed 97 vs 5 CELA1-positive cells per mm² respectively (n=3&4 respectively, p=0.01 by Welch’s t-test). These cells were largely localized to conducting airways (Figure 4A&B). Western blot showed increased high and low molecular weight CELA1 species in COPD lung (Figure 4C). PLISH of non-lung organ donor lung and COPD lung demonstrated scattered regions of CELA1 mRNA in the lung periphery, but subsets of conducting airways with CELA1 mRNA in epithelial cells and CELA1 protein both in these cells and in the underlying matrix (Figure 4 D). Immunohistochemistry showed that peripheral CELA1-expressing cells were alveolar type 2
Figure 3: Cela1 in Age-Related Airspace Simplification in Mice. (A) The lungs of 70-75 week-old Cela1−/− mice had more soluble tropoelastin than WT lungs. (B) Aged WT mice had less lung elastin with less-dense septal tip bundles than (C) aged Cela1−/− lung. (D) Aged Cela1−/− mice did not demonstrate the same degree of simplification that WT mice. (E) Aged WT mice had loss of normal alveolar architecture that was preserved in (F) aged Cela1−/− mice. Central bars represent mean and whiskers standard deviation. *p<0.05, *** p<0.001 by Welch’s t-test (A) or ANOVA (D).

(AT2) cells (Figure S3), as we previously demonstrated in AAT-deficient emphysema (7). The CELAI-mRNA levels of COPD specimens were greater than smokers, but some control lung specimens had elevated CELAI mRNA levels as well (Figure 4F). These protein and mRNA data show that CELAI is present in a subset of conducting airways in human lung just as in mice and that there is generally more CELAI in COPD lung than non-COPD lung. The clinical status of non-smoker organ donor lung makes comparison between control and COPD difficult.
Figure 4: CELAI in Human Lung. (A) CELAI mRNA-positive cells were rare in control adult lung. (B) Some conducting airways in COPD lung had a large number of CELAI-expressing epithelial cells with strongly positive cells in the surrounding tissue. Central bar represents mean and whiskers standard deviation. **p<0.01 by Welch’s t-test. (C) COPD lung had greater amounts of native CELAI protein and tended to have greater amounts of CELAI+AAT compared to control lung. (D) CELAI mRNA-positive cells were found in a subset of COPD and control conducting airways. A representative COPD airway is shown with CELAI mRNA labeled green and CELAI protein red. CELAI protein staining is light in mRNA-positive cells but more abundant in the underlying matrix. (F) There was substantial variability in the amount of CELAI mRNA present in control and COPD specimens, and both had greater median mRNA than non-COPD smoker lung. *p<0.05 by Kruskal-Wallis test.
CELA1 Inhibition Reduces Lung Elastolytic Activity

We used lung specimens from 7 COPD subjects, 9 smokers without COPD, and 14 non-lung organ donors to correlate lung elastolytic, gelatinase, and protease activity with mRNA levels of proteases and anti-proteases important in emphysema. *CELA1* was the only gene with mRNA levels significantly correlated with lung proteolytic activity (Figure 5 A). Using the median *CELA1* mRNA level as a cutoff, CELA1-low and high specimens had 14% and 20% inhibition of elastolytic activity respectively when incubated with rabbit serum with an additional 1% and 5% inhibition when incubated with post-CELA1 immunization rabbit serum (Figure 5 B). Correlating CELA1 expression with antibody-mediated inhibition, specimens with higher levels of CELA1 had greater inhibition of lung elastolytic activity (Figure 5 C). These data show that CELA1 is an important determinant in human lung elastolytic activity and suggest the potential benefit of anti-CELA1 therapies.

Anti-CELA1 Monoclonal Antibodies

Since rabbit polyclonal antibodies do not represent a viable therapy for human emphysema, we developed hybridomas from mice immunized against CELA1 (Figure 6 A) and tested these antibodies as we did rabbit polyclonal antibodies. Hybridoma screening yielded twenty positive clones which were tested for inhibition of the elastolytic activity of recombinant human CELA1 with validation of the most promising clones (Figure 6 B&C). Hybridomas of the four clones with the greatest inhibition of CELA1 elastolytic activity were expanded and the ability of antibodies purified from the supernatants of these hybridomas tested for ability to inhibit human lung elastolytic activity. All four inhibited between 60 and 100% of lung elastoltyic activity in non-smoker, smoker, and COPD lung homogenates (Figure 6 D). These data suggest that antibody inhibition of CELA1 can alter human lung elastolytic activity.
Figure 5: CELA1 and Human Lung Elastolytic Activity (A) 30 human lung specimens had quantification of protease and anti-protease mRNAs and quantification of lung elastolytic, gelatinase, and protease activity. Only MMP12 and CELA1 were correlated with lung enzymatic activity, and only CELA1 was statistically significant. (B) Incubation of human lung homogenates with pre and post-CELA1 peptide immunization rabbit serum demonstrated both that CELA1-high specimens had greater potential inhibition by serum anti-proteases and greater inhibition of elastolytic activity by anti-CELA1 antibody (p=0.2). (C) The increased inhibition of lung elastolytic activity was proportionate to the log10 CELA1 mRNA value. The shaded region is the standard error of the generalized linear model. MMP=matrix metaloproteinase, PTRN3=proteinase-3, ELANE=neutrophil elastase, TIMP=tissue inhibitor of metaloproteinase, SERPINA1=alpha-1 antitrypsin. *p<0.05, **p<0.01, ***p<0.001 by Pearson Correlation.

Genomics of human CELA1

If CELA1 were important in emphysema, we wondered why it had not been previously identified in large COPD genomics studies (13–15). One hundred and fifteen CELA1 variants were identified in Broad Institute (16), dbGap (17), and ClinVar (18) databases, but only five have allele frequencies of >1%, and none of these were predicted loss of function mutations by SIFT
Figure 6: Mouse Monoclonal Antibody Inhibition of CELA1 Elastolytic Activity. (A) Four mice were immunized with inactivated CELA1. The ELISA titers of all four mice were strong. (B) Splenocytes from these four mice were used to create hybridomas. The twenty strongest positive clones by ELISA were tested for ability to inhibit human CELA1 elastolytic activity. Eight clones (red) were selected for validation. (C) Additional supernatants from these eight clones were tested with identification of four clones (red) that were expanded. (D) Supernatants from these four clones inhibited the majority of lung elastolytic activity in non-smoker (n=2), smoker (n=4) and COPD (n=6) lung homogenates.

and PolyPhen-2 (19, 20). The most common predicted loss-of-function mutation (51735071, AG->A) has an allele frequency of 0.03% with one Caucasian and one Latino homozygote reported. This conservation of CELA1 function is consistent with the invariant conservation of CELAI in the placental mammal lineage (7). Thus, as CELA1 loss-of-function mutations are rare, they would be unlikely to have been identified as protective in population-level genomics studies.
Human Lung CELA1 Increases with Age

Given data that Cela1 was important in age-related mouse lung remodeling, we assessed CELA1 mRNA and protein levels in aged human lung. Although levels were variable, CELA1 mRNA levels increased exponentially with age and were not associated with sex or smoking status (Figure 7 A). Despite mRNA findings, naive CELA1 protein levels were no different in young and aged lung (Figure 7 B&C), but AAT-bound CELA1 tended to be less in aged lung. Since this difference appeared to be driven by smoking, we compared 7 aged non-smoker lungs to 7 aged smoker lungs. Smoking reduced CELA1+AAT levels in these aged lung specimens (Figure 7 D, Figure S5). Immunofluorecence of aged human lung showed regionalization of CELA1 protein with many of these CELA1-positive cells being club cells (Figure 7 E). This data indicates that CELA1 expression increases with age and that AAT neutralization of CELA1 is reduced by smoking. Both age and smoking are risk factors for COPD and emphysema.

Binding of CELA1 to Human Lung Tissue is Enhanced by Stretch

We previously reported a stretch-inducible elastase activity in freshly sectioned mouse lungs (21), that Cela1 protein bound to these areas of activity (22), and that Cela1-deficient lung lacked stretch-inducible lung elastase, activity (7). Archived lungs from non-lung organ donors and patients with COPD were analyzed for stretch-inducible lung elastase activity using a fluorescent elastin in situ zymography substrate and for quantification of recombinant CELA1 and bovine serum albumin using a 3D-printed biaxial stretching device (Figure S6). Elastase activity, albumin binding (control) and CELA1 binding signals were normalized to tissue autofluorescence and measured as change in normalized signal divided by bidirectional strain or the time equivalent for unstretched sections (i.e. slope of a plot of signal vs strain for each section, Figure S6). We identified no evidence of stretch-inducible lung elastase activity or increased biding of albumin to lung tissue with stretch, but there was a significant increase in the bind-
Figure 7: CELA1 in Aged Human Lung. (A) Lung CELA1 mRNA levels increased exponentially with age in human lung specimens without clear association with sex or smoking status. Shaded region represents the standard error of the logarithmic model. (B) Western blot for CELA1 in young adult vs aged lung specimens. (C) Quantification of the low (native) and high (CELA1+AAT) molecular weight form of CELA1 shows little change in the amount of native CELA1 protein in aged lung and an overall reduction in the amount of CELA1+AAT in this aged lung. (D) Quantification of low and high molecular weight CELA1 in aged lung specimens. (E) Immunofluorescence image of aged human lung in a region with a high number of CELA1-expressing cells with co-staining for the club cell marker SCGB1A1 showing co-expressing and non-co-expressing cells. Central bar represents mean and whiskers standard deviation. * p<0.05 by Welch’s t-test.
ing of CELA1 to lung tissue with stretch (Figure 8). CELA1 binding to human lung tissue is enhanced with stretch although this binding is less in COPD than healthy lung perhaps owing to fibrotic changes and/or altered stretch mechanics in end-stage COPD lung. This data in combination with our previous report that hydroxyproline cross links inhibit CELA1-mediated elastolytis (7) suggest that stretching enhances the accessibility of lung elastin fibers to CELA1.

DISCUSSION

This study is the first to report a role for CELA1 in lung matrix remodeling in non-AAT-deficient emphysema. Based on our findings in mouse and human lung, we propose a 3-step mechanism by which CELA1 mediates progressive airspace destruction. First, CELA1 must be expressed. The increased expression of CELA1 with age could be an important factor in both age-related airspace simplification and the increasing risk of developing COPD with aging. Second, there must be reduced neutralization of CELA1 by AAT. The reduction in AAT-bound CELA1 in aged smoker lung suggest that this might be an important mechanism for emphysema development among smokers. Third, disruption of normal lung architecture increases regional strain, enhances binding of CELA1 to lung elastin and causes additional tissue destruction. This three-step mechanism is consistent with the known COPD risk factors of age, smoking, and preceding lung injury and also explains why individuals with emphysema can experience disease progression despite smoking cessation.

We are unaware of any other protease or anti-protease with expression levels that change with age. AAT levels are relatively stable throughout life (23), and to the best of our knowledge, age-related changes in other emphysema-associated proteases have not been studied. We did not investigate what regulates CELA1 expression in lung epithelial cells.

AAT neutralizes a host of serine proteases (24). We previously showed that Cela1 defi-
Figure 8: Stretch-Inducible Binding of CELA1 to Healthy Human Lung Tissue. (A) Sectioned, frozen human lung tissue was mounted on a biaxial stretching device and imaged in the presence of elastin in situ zymography substrate and fluorophore-labeled CELA1 and albumin. Unstretched tissue showed little signal in any of the three channels and was imaged repetitively at the same time interval as stretched lung sections. (B) Stretched lung showed increased binding of CELA1 with stretch but little albumin binding or elastase activity. (C) Control lung had increased binding of CELA1 to lung tissue with stretch. D) Albumin did not increase binding to the lung tissue in response to stretch. (E) Stretch did not induce lung elastase activity. Dashed lines indicates the signal of lung incubated without substrate. *p<0.05 by ANOVA.
cient mice were protected from emphysema in an anti-sense oligonucleotide model of AAT deficiency (7), and our associative data in humans suggests that reduced AAT levels in smokers could be a risk factor for increased CELA1 proteolytic activity. While multiple studies have shown that mutations in AAT strongly predispose to emphysema even in the absence of AAT deficiency (25), no such correlative data exists for CELA1. Given the rarity of CELA1 loss of function alleles (the most common has an allele frequency 0.03% and thus homozygous loss of function frequency would be predicted to be 0.09 per 1,000,000), it is not surprising the CELA1 should not have been identified in COPD GWAS studies. It is unclear why CELA1 should be so highly conserved since Cela1−/− mice are viable, fertile, and born at expected Mendelian ratios (7).

The binding of CELA1 to lung matrix with strain is consistent with previous reports that pancreatic elastase binds lung elastin fibers as a vector of strain (26). Elastin degradomic data demonstrated that elastin cross-linking domains retarded CELA1-mediated elastolytis (7) suggesting that mechanical perturbation of elastin fibers permits CELA1 access to previously hidden sites. The levels of strain used in our study likely exceed that in human lung physiology, but the time course of the experiment was also necessarily shorter than the years over which emphysema progresses in humans. Such dynamic studies of ex vivo human lung are a novel approach to understanding human lung physiology.

Our CELA1 inhibition experiment demonstrates the potential to develop anti-CELA1 therapies to reduce the proteolytic activity of emphysematous lung. Specimens with higher levels of CELA1 mRNA had a greater reduction in lung elastolytic activity when incubated with control rabbit serum. This likely represented greater neutralization of CELA1 by AAT in the rabbit serum. However, these same specimens had additional lung elastase inhibition after incubation with serum from rabbits immunized with CELA1 peptide while CELA1 mRNA-low specimens did not have additional inhibition. Furthermore, specimens with the highest CELA1 mRNA lev-
els had proportionately more inhibition when incubated with post-immunization serum. Using mouse monoclonal antibodies, we identified four hybridoma clones producing antibodies that inhibit the majority of human lung elastolytic activity. While further development and refinement is needed, anti-CELA1 therapies have the potential to slow or halt progressive emphysema in established disease.

We point out several limitations of this study. First, the mouse PPE model of emphysema may not accurately capture many of the processes that lead to airspace destruction in human disease. However, our findings that CELA1 plays a role in late, but not early, remodeling processes may mean that the method of injury is less important than the presence of airspace destruction. Second, since we collected left lung lobes prior to lung inflation, isobaric inflation could have contributed to larger intercept and diameter values than may have been obtained if closed chest, isovolumetric inflation had been used. This approach also precluded measurement of whole lung volumes. Third, we did not evaluate immunological or vascular changes in PPE-treated mice. In repetitive, low-dose PPE exposures, both pulmonary hypertension and an increase in M1 macrophages have been noted, though the mechanisms and consequences of these findings are unclear (27). Lastly, our control human lung was largely from organ donors whose lungs were unsuitable for transplantation. Thus, our human control specimens likely had some element of acute lung injury.

METHODS

See Online Supplement for Additional Methods.

Animal Use

Animal use was approved by the CCHMC Institutional Animal Use and Care Committee (2017-0064). Using the methods of Dunnill (28), mean linear intercepts in lungs of 8-12 week-old
Cela1−/− (7) and WT mice on the C57BL/6 background in the tracheal porcine pancreatic elastase (PPE) model (29) and untreated mice aged 70-75 weeks were determined. anti-CELA1 polyclonal antibody was generated using a single female New Zealand rabbit using the same peptide and methods as reported for guinea pig (6).

Human Lung Tissue

Human tissue utilized under a waiver from the CCHMC IRB (2016-9641). COPD and aged human lung specimens were obtained from the NHLBI Lung Tissue Consortium and control and COPD specimens from the National Jewish Health Human Lung Tissue Consortium.

Enzymatic Assays

Human lung protease, gelatinase, and elastase activity was quantified using commercial fluorometric assays.

Proximity Ligation in situ Hybridization (PLISH) and Immunofluorescence

Using oligos in Table S1 and previously published methods (30), CELA1 mRNA was visualized with immunofluorescent costaining using antibodies outlined in the supplement.

PCR

Taqman and Sybr Green PCR was used for mouse and human lung PCR using primers in Tables S2 & S3.

Ex vivo Human Lung Stretch

Using a previously described lung stretching technique and device (7,21), the stretch-dependent binding of recombinant CELA1, albumin, and elastolytic activity of frozen human lung sections was determined.
LIST OF SUPPLEMENTARY MATERIALS

1-Supplementary Methods
 2-Supplemental Figures
 3-Code for bioinformatic analysis

ACKNOWLEDGEMENTS

Funding: A1 Foundation Research Award 498262 (Varisco), NHBLI R01141229 (Varisco), NHLBI K08HL131261 (Varisco).

Reagents and Tissues: We would like to acknowledge Dr. William Janssen and the National Jewish Health Human Lung Tissue Consortium in Denver, Colorado for providing control lung tissue specimens. This study utilized biological specimens and data provided by the Lung Tissue Research Consortium (LTRC) supported by the National Heart, Lung, and Blood Institute.

AUTHOR CONTRIBUTIONS

MO made substantial conceptions to the design of the work, acquisition and interpretation of data.

RJ made substantial contributions to the design of the work, acquisition and interpretation of data.

EG made substantial contributions to the acquisition and interpretation of data.

JL made substantial contributions to the acquisition and interpretation of data.

QF made substantial contributions to the acquisition and interpretation of data.

AP made substantial contributions to the interpretation of data and drafting of manuscript.

MB made substantial contributions to creation of devices and software.
BV made substantial contributions to the conception and design of the work, interpretation of data, and drafting of the manuscript.

References

17. M. Mailman, *et al.*

