Abstract
Background Mathematical infectious disease models available in literature, mostly take in their design that the parameters of basic reproduction number R0 and interval serial SI as constant values during tracking the outbreak cases. In this report a new intelligent model called HH-COVID-19 is proposed, with simple design and adaptive parameters.
Methods The parameters R0 and SI are adapted by adding three new weighting factors α, β and γ and two free parameters σ1 and σ2 in function of time t, thus the HH-COVID-19 become time-variant model. The parameters R0, SI, α, β, γ, σ1 and σ2 are estimated optimally based on a recent algorithm of artificial intelligence (AI), inspired from nature called Harris Hawks Optimizer (HHO), using the data of the confirmed infected cases in Algeria country in the first t = 55 days.
Results Parameters estimated optimally: R0 = 1.341, SI = 5.991, α = 2.987, β = 1.566, γ = 4.998, σ1 = −0.133 and σ2 = 0.0324. R0 starts on 1.341 and ends to 2.677, and SI starts on 5.991 and ends to 6.692. The estimated results are identically to the actual infected incidence in Algeria, HH-COVID-19 proved its superiority in comparison study. HH-COVID-19 predicts that in 1 May, the infected cases exceed 50 000, during May, to reach quickly the herd immunity stage at beginning of July.
Conclusion HH-COVID-19 can be used for tracking any COVID-19 outbreak cases around the world, just should updating its new parameters to fitting the area to be studied, especially when the population is directly vulnerable to COVID-19 infection.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
no funding supported in this paper
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
no data availability