Bringing accountability to the peak of the pandemic using linear response theory

Meher K. Prakash¹,²*

1. Theoretical Sciences Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064
2. VNIR Biotechnologies Pvt Ltd, Bangalore Bioinnovation Center, Helix Biotech Park, Electronic City Phase I, Bangalore 560100

*Corresponding author: meher@jncasr.ac.in

Abstract.
The peak of the daily new infections in COVID-19 remained qualitative in description and elusive in arrival. Because of the lack of clarity in what to expect from the peak, apart from the hope that one day the peak will be reached, there has been no metric to describe the success of the implemented strategies. We propose a way of predicting the number of infections that can be expected after a lockdown, assuming they come from the asymptomatic cases prior to the lockdown and using linear response theory. These predictions for several western countries faithfully follow the observed infections for several weeks after the lockdown, suggesting universalities in the recovery pattern of several countries. At the same time, the gap between the quantitative predictions of the recovery patterns for New York and Milan and the observations is striking. These gaps which arise even while emulating the recovery patterns of other western countries raise the possibility of an audit of the success of the implemented strategies, and the potential newer sources of infection.

Keywords: COVID-19 | Pandemic peak | Linear response | Lockdown |

Introduction.
The infections caused by the novel coronavirus (COVID-19) have exceeded 2 millions globally and continue to increase in numbers. The World Health Organization has declared COVID-19 as a pandemic, the first one in the 21st century [1]. The concepts from the standard Susceptible-Infected-Recovered (SIR) model and its variants suggest that after a significant fraction of the susceptible individuals are infected, the spread of the infection slows down, resulting in a “peak” in between. However, even as little as 0.2% of infected population as of mid-April has already crippled the health care systems and economies of most countries. Hence tolerating more infections is not a sustainable option.

There are still many lacunae in the understanding of how this novel coronavirus spreads and who are susceptible to the infection [2,3]. There are presently no known drugs or vaccines for the COVID-19 pandemic and hence most governments resorted to strict nonpharmaceutical interventions [4] such as social distancing, and even lockdowns. Several epidemiological models [5-7] have been used as a way to guide these policy decisions [8]. The core principle guiding these strategies is the “flattening of the curve” [9] so that the number of infections become manageable by the available health care resources.
Models guided by the past intuitions from of the effects of active containment strategies such as the ones used for SARS by South Korea or COVID-19 by China, and seasonal variations on the virulence have predicted the “peak” of daily infections [10]. Most governments have imposed restrictions to halt the spread of the virus, albeit of varying levels of intensity and have been eagerly waiting to cross the peak, to mark the success of the containment strategies.

However, despite the qualitative picture of how a peak should look like, most seem to be clueless about when the peak will arrive, and if the trends they see in the numbers of new infections post lockdown may be considered satisfactory by their own standards or by the standards of other countries which implemented similar policies. To complicate this, there are stochastic fluctuations in the daily new case numbers. While universalities in the growth curves of different countries have been pointed out by matching the time when the different countries register 100 cases [10], a similar comparison across the countries for the effectiveness of the lockdown has been missing. To address some of these concerns which have been limiting the concepts to qualitative narrations of the peak, we introduce a model to quantitatively predict the new infections after the lockdown.

Predicting the new daily infections after lockdown.

In an infectious disease the infection spreads when an infected person, whether symptomatic or asymptomatic, comes in contact with susceptible individuals. It is now known that the reported COVID-19 infections are accompanied by a large number of asymptomatic infections [11]. After the lockdown, the first sign of success is a departure from the exponential growth behavior which suggests that the number of daily new infections \(I(t) \) does not depend on the number of persons identified as infected, but possibly on those who are exposed and still asymptomatic \(A(t) \). We adopt the convention that \(t=0 \) denotes the day of the lockdown. We model the new cases recorded after the lockdown as arising from the asymptomatic individuals \(A(-1), A(-2), A(-3) \ldots \) with incubation times \(t+1, t+2, t+3, \ldots \) respectively. Thus the expression for the number of daily new infections \(I \) days after lockdown becomes

\[
I^*(t) = \sum_{\tau} A(-\tau) \mu(t+\tau; \lambda, k) \tag{1}
\]

Where \(\mu(t+\tau; \lambda, k) \) represents the incubation time between the exposure and becoming symptomatic [12]. We conveniently assume this incubation time for COVID-19 to be a Weibull distribution defined by the parameters \(\lambda \) and \(k \), as has been represented for many respiratory infections [13,14], although the conclusions will not change for other distributions. Eq. (1) which in physics is known as a linear response formalism [15], that has also been used for back-calculating the incubation time in the models for the spread of HIV [16]. We further assume that on a day \(\tau \) days prior to the lockdown, the number of asymptomatic infections is proportional to the number of new infections recorded on that day \(A(-\tau) = \alpha I(-\tau) \), which modifies Eq. (1) to predict the daily new infections as

\[
I^*(t) = \sum_{\tau} \alpha I(-\tau) \mu(t+\tau; \lambda, k) \tag{2}
\]
University in the peak.

We use the publicly available epidemiological data on the number of daily new COVID-19 infections in Spain, as shown in Figure 1. Interestingly, we tested Eq. (1) before the lockdown. We first converted the predictions Eq. [1] before the lockdown to Eq. (2) by substituting the predictions (1) into (2) and the predictions (2) into (1). To find the best regression between the predictions (1) and the predictions (2), we use the weighted least squares metric. We now use this metric to make predictions for different countries. As shown in Figure 1A, we find that the predictions for Germany, Switzerland, and Austria are shown in Figures 1B-1D. We can see that the predictions for these countries are similar, but the predictions for Italy are different. As shown in Figure 2, the predictions made for Milan and New York using the same metric are different. One sees in Figure 2, the predictions made for Milan and New York using the same metric are different. As shown in Figure 2, the predictions made for Milan and New York using the same metric are different. As shown in Figure 2, the predictions made for Milan and New York using the same metric are different. As shown in Figure 2, the predictions made for Milan and New York using the same metric are different. As shown in Figure 2, the predictions made for Milan and New York using the same metric are different.
be common, the differences can only be understood by a careful audit needs of the local realities.

Conclusions
In conclusion, we introduce a way of predicting the daily new infections after a lock-down. This framework allows one to transition from a very naïve desire of seeking a peak to actively tracking the progress on a daily basis, ranking themselves among the peers with comparable governments and cultural backgrounds and possibly identifying other sources of infection that were not even suspected earlier when there was no quantitative expectation from the “peak”.

Acknowledgements. We thank Prof. Shobhana Narasimhan for helpful comments.

Conflicts of interest: None declared

References

11. R. Li et al., Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2), *Science*, 2020, DOI: 10.1126/science.abb3221

Figures

Figure 1. Universality of the relaxation patterns: The number of recorded daily infections before (gray bars) and after (blue bars) lockdown are shown along with the predictions based on Eq. 2. The data from four different European countries **A. Spain (lockdown, 14 March 2020)**, **B. Germany (lockdown, 21 March 2020)**, **C. Switzerland (lockdown, 17 March 2020)**, and **D. Austria (lockdown, 16 March 2020)** all show the best results with an incubation described by a Weibull distribution with parameters $\lambda=16$, $k=2$. The “peak” arises as a consequence of the peak in the incubation distribution. As with any stochastic process, the numbers do fluctuate around the fluctuations. The fact that all countries relax with similar $\mu(t+\tau; \lambda, k)$ suggests a common Minimum European Incubation (MEI), as we refer to it for the relaxation. This “European standard” may be used as a benchmark for other countries with similar quality of quarantine measures. The data on the cases reported up to 15 April 2020 was obtained from the Johns Hopkins database.[17]
Figure 2. Judging the success of quarantine. We make predictions of daily new cases in two western cities A. New York and B. Milan, assuming the biology of the disease and the quality of quarantine to be similar. Using the MEI incubation time described by $\mu(t+\tau; \lambda=16, k=2)$, we see a very large gap between the predictions (red line) and the observations for both the cities. Predictions (yellow line) made with $\mu(t; \lambda=20, k=2)$ are also shown for a reference, which also are still not satisfactory. These gaps raise questions which are beyond the obsessive “did we reach a peak” question, such as why is the relaxation so different for these cities? Are there other sources of infection beyond the asymptomatics converting into symptomatics.