Audiometric profiles and patterns of benefit. A data-driven analysis of subjective hearing difficulties and handicaps.

Raul Sanchez-Lopeza,*, Torsten Daua and William M. Whitmerb,c

a Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.

b Hearing Sciences—Scottish Section, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Glasgow, UK.

c Institute of Health and Wellbeing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK

* Corresponding author: Raul Sanchez-Lopez,

Hearing Systems Section, Department of Health Technology, Ørsteds Plads 352, R-111, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark.

Email: rsalo@dtu.dk
Audiometric profiles and patterns of benefit. Data-driven analysis of subjective hearing difficulties and handicaps.

Objective: Hearing rehabilitation attempts to compensate for auditory dysfunction, reduce hearing difficulties and minimize participation restrictions that can lead to social isolation. However, there is no systematic approach to assess the quality of the intervention at an individual level that might help to evaluate the need of further hearing rehabilitation in the hearing care clinic.

Design: A large-scale data-driven analysis on subjective behavioral data reflecting hearing disabilities and handicap was chosen to explore normative “patterns of benefit” as a result of rehabilitation in different audiometric listener groups. The method was based on five steps: 1) Dimensionality reduction; 2) Stratification in four audiometric groups; 3) Archetypal analysis to identify archetypal benefit patterns; 4) Clustering in benefit profiles; and 5) Item importance estimation.

Study sample: 572 hearing-aid users were interviewed and completed a questionnaire of hearing difficulties (speech, spatial and qualities hearing scale; SSQ) and hearing handicap (HHQ).

Results: The data-driven approach revealed four benefit profiles that were different for each audiometric group. The audiometric groups associated with low degree of high-frequency hearing loss (HL\textsubscript{HF}) showed a priority for rehabilitating hearing handicaps, whereas the groups with higher degree of HL\textsubscript{HF} showed a priority for improvements in speech understanding.

Conclusions: The patterns of benefit and the stratification approach might guide the selection of the clinical intervention strategy and improve the efficacy and quality of service in the hearing care clinic.

Abstract 227 words
Audiometric profiles and patterns of benefit

Keywords: Hearing loss, participation restrictions, activity limitations, data-driven analysis, auditory profile
Introduction

The consequences of hearing loss entail activity limitations and participation restrictions (Simeonsson, 2000). The hearing rehabilitation process aims to minimize both aspects and involves two main steps: diagnosis and remediation (Boothroyd, 2007; Goldstein & Stephens, 1981). After the diagnosis of a hearing loss, an intervention strategy that involves a hearing solution, such as a hearing aid (HA), is commonly proposed and selected by the clinician. The compensation strategy chosen in the HA fitting process is, to a large degree, based on the shape of the pure-tone audiogram. The intervention is verified and validated to ensure the quality of the device and the service (Jorgensen, 2016). However, the hearing rehabilitation often requires further interaction, such as follow-up visits to improve the HA adjustments based on patient complaints or personal preferences, as well as counseling, focused on communication programs and professional advice (Laplante-Lévesque et al., 2010). Overall, each of the steps of the intervention (diagnosis, adjustment and verification) is influenced by technical, personal and social factors (Vestergaard Knudsen et al., 2010).

The evaluation of the efficacy of the hearing rehabilitation process is typically assessed by questionnaires as outcome measures. The questionnaires can be designed to evaluate the individual benefit, the clinical practice or the inclusion of a new device or strategy (Cox et al., 2000; Cox, 2003). Some outcome measures include specific items related to benefit or satisfaction (SADL: R M Cox & Alexander, 1999; APHAP: Robyn M. Cox & Alexander, 1995; IOI-HA: Robyn M Cox, 2003; GHABP: Gatehouse, 1999), whereas others are focused on hearing disabilities and handicaps (de Ronde-Brons et al., 2019; Gatehouse & Noble, 2004; Hallberg, 1998; Newman et al., 1990). These questionnaires aim to capture the overall experience or some specific aspects of the hearing rehabilitation, such as the speech, spatial and qualities hearing scale (SSQ; Gatehouse &
Noble, 2004). The SSQ reflects HA listeners’ current difficulties with respect to speech perception, spatial sound perception and qualities of hearing, e.g. the ability to follow a conversation, to localize a sound source or to identify a sound. Although the assessment of hearing disabilities is crucial for a successful hearing rehabilitation, the overall benefit does not only depend on auditory disabilities but also handicaps experienced by the listener (Whitmer et al., 2016), such as the effects on social participation derived from the hearing loss.

One of the primary aims of outcome measures is to quantify the efficiency of hearing rehabilitation. However, no systematic method to evaluate the “quality” of the intervention exists nor a successful outcome measure at the individual listener’s level. Usually, the hearing care professional (HCP) addresses the individual complaints and gathers information about the patient’s experiences during the follow-up visits (Tecca, 2018). The definition of an optimal intervention is then evaluated subjectively by the two parties whereby no clear guidelines have yet been broadly established. The common goal of an “optimal” intervention would be to minimize the activity limitations and participation restrictions by applying the most suitable hearing technology and professional advice. Thus, the ability of the HCP to understand the patient’s needs and to implement a suitable intervention is crucial for successful rehabilitation (Boothroyd, 2007).

The characterization of the hearing deficits of a person in terms of his/her audibility loss does typically not capture the person’s performance in real-life situations. Therefore, information about supra-threshold auditory deficits, such as speech intelligibility in noise, might help to better understand the scale and scope of an individual’s sensory impairments. Recently, Sanchez-Lopez, Fereczkowski, Neher, Santurette, & Dau (2020) proposed a stratification of hearing-impaired individuals into four clinically relevant
Audiometric profiles and patterns of benefit

subgroups, referred to as “auditory profiles.” The auditory profiles were the result of a
data-driven analysis of a relatively large and heterogeneous group of individuals of
varying hearing ability who performed several supra-threshold auditory tasks. The
approach allowed the identification of four archetypal patterns of perceptual deficits
along two largely independent dimensions. The two dimensions were related to speech
intelligibility deficits and loudness perception deficits, respectively. Listeners presenting
similar deficits were classified as belonging to the same subgroup. Since each auditory
profile showed different degrees of deficits, listeners associated with a given profile are
likely to experience similar distinct hearing disabilities. Furthermore, the audiometric
thresholds associated with the different auditory profiles showed significant differences.
Therefore, an audiometry-based stratification of a given listener into an “audiometric”
profile might provide an initial classification of the perceptual deficits of the listener. This
approach can be useful when applying the stratification to studies without supra-threshold
measures retrospectively. However, this pre-classification in audiometric groups does not
guarantee that the listener is correctly classified and supra-threshold tests should confirm
the listener’s auditory profile (Sanchez-Lopez et al., 2020).

In the present study, subjective data from a questionnaire of hearing difficulties (SSQ)
and a questionnaire of hearing handicap (HHQ) were analyzed using a data-driven
approach and following the principles of the “knowledge discovery from databases”
(KDD; Frawley et al., 1992; Mellor et al., 2018). Here, data mining methods were applied
to identify patterns in subjective responses to provide new insights about the disabilities
and handicaps associated with different audiometric profiles. A data set of a clinical
population of hearing-aid users was analyzed in an attempt to uncover archetypal “benefit
profiles” reflected in the subjective data. The participants were divided into four
audiometric groups based on the average audiometric thresholds of the four auditory
profiles according to Sanchez-Lopez et al. (2020). The goal of the study was to identify
the priorities of hearing rehabilitation in terms of particular hearing difficulties and
handicaps that need to be improved. These patterns of benefit could be valuable for
implementing a personalized clinical rehabilitation strategy and to minimize the activity
limitations and participation restrictions of patients with hearing loss.

Method
The data analysis consisted of five steps, as shown in Figure 1. First, the data (described
in the next section) were transformed using factor analysis. Second, the participants were
stratified into four groups based on their degree of low- (HL_{LF}) and high-frequency
(HL_{HF}) hearing loss as an approximation of the audiometric profiles of Sanchez-Lopez et
al. (2020). Third, to identify extreme “benefit profiles,” the overall data, as well as the
data belonging to each of the four subgroups, were processed using an archetypal
analysis. Fourth, the participants were identified as belonging to a cluster of participants
showing a similar “benefit profile”, based on their similarity to the archetypal benefit
patterns. Finally, the identified benefit profiles were predicted using supervised learning
and the importance of individual questionnaire items was analyzed.

Description of the dataset
The data-driven analysis presented here is a retrospective study performed on the dataset
of Hearing Science Scottish Section (HSSS; formerly Institute of Hearing Research) of
the University of Nottingham. The data were collected between the years 2002 and 2011
and most of the patients were referred from the NHS Audiology of the Glasgow Royal
Infirmary. The total dataset consisted of 1220 participants. The HSSS dataset had
previously been analyzed by Akeroyd, Guy, Harrison, & Suller (2014) and Whitmer et
al. (2014) where a thorough description of the normative data was provided. The
variables of interest for the present study were the audiometric thresholds, the raw scores of the Speech, Spatial and Qualities hearing scale (SSQ) and the Hearing Handicap (HHQ) questionnaires (Gatehouse & Noble, 2004). Only hearing-aid users (unilateral and bilateral) were selected for the present analysis.

The subset of the HSSS dataset used here consisted of 880 observations (participants), and 62 variables. The speech-related items of SSQ (14 items), the spatial-related items (17 items), the qualities-related items (19 items) and the hearing handicap-related items (12 items). The SSQ questionnaire is scored on a 0-10 scale (in steps of 0.5 in this particular dataset), whereby a low score corresponds to high difficulty and a high score corresponds to low difficulty. If the item corresponds to a situation that the listener has not experienced, the response “not applicable” can be chosen. The HHQ was scored on a discrete 1-5 scale, with 5 representing the largest handicap. The items related to the specific restrictions on participation were based on the Hearing, Disabilities and Handicaps Scale (Hétu et al., 1994).

Data cleaning was performed by removing participants with more than 36 missing responses. The data were standardized prior to analysis. The HHQ data were multiplied by -1, such that a higher value corresponded to a lower handicap, consistent with the scale considered in the SSQ data. Since the data-analysis involved stratification of the participants in audiometry-based auditory profiles, the audiometric thresholds were also retrieved from the dataset but not used in the analysis. The audiometric thresholds were grouped into low-frequency (≤ 1 kHz) and high-frequency (> 1 kHz) averages and only the better ear was used for further analysis. Since Sanchez-Lopez et al. (2020) did not include participants with average low-frequency hearing thresholds above 65 dB hearing level (HL) in their data-driven profiling approach, here, the participants with a severe-to-
profound low-frequency hearing loss (HL_{LF}>65dB) were excluded. The final number of observations considered for the analysis was 572 participants.

Data-drive pattern identification

Data-driven analysis of subjective data

I. Dimensionality reduction

II. Stratification

III. Archetypal analysis

IV. Clustering

V. Importance estimation

Figure 1. Sketch of the data-driven method for the analysis of the subjective data. Top panel: The unsupervised learning exploratory stages included: I) Dimensionality reduction into four factors (F_1, F_2, F_3, F_4); II) Stratification, where the subjects were divided into audiometric groups (a, b, c, d); III) Archetypal analysis where the data were decomposed into a matrix with the “benefit patterns” [ABP0, ABP1, ABP2 and ABP3] and the weights of each pattern resembling each subject’s observation. Bottom panel: IV) Clustering, where the participants were clustered based on the similarity of their scores with the benefit profiles derived from stage II; and V) Importance estimation, where a random forest was trained with to classify the participants into the “benefit profiles” and the importance of the predictors were estimated.

I. Dimensionality reduction: Based on factor analysis (Cattell, 1988), the multi-dimensional dataset was reduced to four latent factors. The number of factors was selected by parallel analysis (Horn, 1965) with subsequent iterative resampling (K = 200). The factors were obtained using oblique Procrustes rotation as in
The factor scores corresponding to each of the subjects, and obtained by Bartlett’s method, were used for further analysis.

II. **Stratification:** The listeners were divided into four groups corresponding to the audiometry-based auditory profiles a, b, c and d. The binary rules used here are

a. Audiometric group-a: \(\text{HL}_{\text{LF}} < 50 \text{ dB HL} \), and \(\text{HL}_{\text{LF}} < 30 \text{ dB HL} \).

b. Audiometric group-b: \(\text{HL}_{\text{LF}} > 50 \text{ dB HL} \), and \(\text{HL}_{\text{LF}} < 30 \text{ dB HL} \).

c. Audiometric group-c: \(\text{HL}_{\text{LF}} > 50 \text{ dB HL} \), and \(\text{HL}_{\text{LF}} > 30 \text{ dB HL} \).

d. Audiometric group-d: \(\text{HL}_{\text{LF}} < 50 \text{ dB HL} \), and \(\text{HL}_{\text{LF}} > 30 \text{ dB HL} \).

III. **Archetypal analysis:** Matrix factorization was applied to the results of the dimensionality reduction step. A given observation was represented as a convex combination of the archetypal patterns (Cutler & Breiman, 1994). The analysis retrieves two matrices – the ‘pattern matrix’, which contained archetypal patterns represented in the data and the ‘subject matrix’, consisted of the weights corresponding to each pattern that resemble each of the observations. The specific implementation of the method used here was similar to Mørup & Hansen (2012).

The identified patterns were ranked based on the degree of disability and handicap in each archetypal benefit pattern and labeled based on rehabilitation needs as in clinical triage as ABP0, ABP1, ABP2, and ABP3, being ABP0 the optimal benefit profile and BP3 the suboptimal.

IV. **Clustering:** The distance between observations and the four archetypal patterns was estimated using the weights contained in the subject matrix. The criteria used here was the nearest archetype (Ragozini et al., 2017). Each observation (subject) was then assigned to a cluster based on their weights. The “benefit profiles” were labeled as the archetypal benefit patterns (BP0, BP1, BP2, and BP3).

V. **Importance estimation:** Once the subjective data corresponding to each of the subjects were analyzed with unsupervised learning techniques, supervised learning was used for estimation the importance of the specific items of the dataset. A decision tree ensemble was trained with a subset of the data corresponding to the items of the SSQ12 and the HHQ and the identified clusters as the output. The ensemble was trained with 200 surrogated trees using curvilinear prediction. The importance was obtained by the permutation of out-of-bag features, which provides the minimum square error averaged for each tree over the standard deviation across the trees.
Results

Factor analysis

The results of the factor analysis are summarized in Table 1. The parallel analysis revealed four factors as the optimal number of factors. The factor analysis was repeated in each of the stratified groups to check their similarity before further analysis. The loadings in each group were similar to the ones from the analysis of the entire dataset. Overall, the four factors corresponded to the four subdomains: speech understanding (SU), spatial perception (SP), qualities of hearing (QH) and hearing handicap (HH).

These factors, taken together, explained a total of 50% of the variance.

<table>
<thead>
<tr>
<th>Group</th>
<th>F_{SU} (%)</th>
<th>F_{SP} (%)</th>
<th>F_{QH} (%)</th>
<th>F_{HH} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All dataset</td>
<td>14.4</td>
<td>15.0</td>
<td>12.4</td>
<td>13.4</td>
</tr>
<tr>
<td>Group-a</td>
<td>17.4</td>
<td>14.8</td>
<td>11.8</td>
<td>11.3</td>
</tr>
<tr>
<td>Group-b</td>
<td>17.6</td>
<td>15.2</td>
<td>10.4</td>
<td>14.4</td>
</tr>
<tr>
<td>Group-c</td>
<td>15.2</td>
<td>14.3</td>
<td>12.2</td>
<td>13.7</td>
</tr>
<tr>
<td>Group-d</td>
<td>14.1</td>
<td>15.8</td>
<td>12.2</td>
<td>13.2</td>
</tr>
</tbody>
</table>

F_{SU}: Speech understanding factor / F_{SP}: Spatial perception factor / F_{QH}: Qualities of hearing factor / F_{HH}: Hearing Handicap factor.

Table 1. Variance explained by the rotated factors. The factors are labeled as the subdomain that reflects the highest loadings similar to Akeroyd et al. (2014). The order of the factors in the table has been modified manually to match the labels instead of being sorted by the amount of variance explained.

Data-driven analysis

Figure 2 shows the results of the data-driven analysis. The left panel corresponds to the patterns resulting from the archetypal analysis of the latent factors for each of the audiometric groups (a-d; lowercase to distinguish from the Sanchez-Lopez et al. (2020)
Audiometric profiles and patterns of benefit

The analysis of the overall data is indicated by the dotted lines. The left panel reflects the “archetypal patterns” (ABP) with respect to the latent factors. The middle panel represents the estimated importance of the individual items of the questionnaire. In the figure, only the three most important predictors in a given subdomain are shown for simplification. The right panel of Figure 2 combines the above findings and shows the resulting “patterns of benefit”. Each row shows the median scores and interquartile distances of the participants belonging to a given benefit profile (BP0-BP3) derived from the ABP (Figure 2 left panel). Each row represents a different audiometric group. The scores are shown for the most important items. These were derived from the unsupervised learning stage and are shown in the middle panel of Figure 2.

Archetypal benefit patterns

Figure 2 (left panel) shows the result of the archetypal analysis. The optimal profile (ABP0) showed a high score for all factors (green), which was similar for all of the audiometric groups, as well as for the entire data set (dotted lines). The near-optimal pattern (ABP1, yellow) was different for the different audiometric group. For group-a and group-d, the pattern showed high scores for the difficulties-related factors (F_{SU}, F_{SP}, F_{QH}) but a lower score for the handicap-related scores (F_{HH}). In contrast, for group-b and group-c, ABP1 showed lower scores reflecting the difficulties in speech understanding (F_{SU}). The four groups differed substantially in terms of the near-suboptimal pattern (ABP2, deep-red). For group-a, the lowest score corresponded to quality-related difficulties (F_{QH}), whereas for group-b, the lowest score reflected an increased handicap. For group-c and group-d, the lowest score corresponded to difficulties with spatial hearing, while the handicap-related scores were higher than in ABP1. The suboptimal
pattern (ABP3, red) showed the lowest scores for all factors in group-c and group-d. However, for group-a the scores reflecting speech understanding and spatial hearing factors were lower, while for group-b the scores reflecting qualities were lower but not for handicap-related scores. The archetypal benefit patterns corresponding to the analysis of the overall data (dotted lines) resembled, to a large extent, the patterns observed in group-d.

Figure 2. Data-driven analysis of subjective data stratified into audiometric groups. Each row corresponds to an audiometric group (a-d). Left panel: Archetypal benefit patterns (ABP) resulting from step III of the method. Each row corresponds to an audiometric group (a-d). Four patterns are ranked and labelled between optimal (ABP0; green) to normalized, item scores.
Audiometric profiles and patterns of benefit

suboptimal (ABP3; red). The analysis of the overall data is shown by the dotted lines.

Middle panel: Relative importance of the individual items estimated by the Out-of-the-bag permuted features delta error of a random forest. The three items with higher importance are shown for each subdomain (SU, SP, QH and HH). The grey bars show the results of using the same procedure on the entire dataset. Right panel: Normalized median scores and interquartile distances for each of the clusters (benefit profile) derived from the benefit patterns (BP0, BP1, BP2, and BP3) across the most important items of each subdomain. The SSQ and HHQ scores were normalized between 0 and 1, with ‘0’ corresponding to poor and ‘1’ to good performance.

Item importance estimation

The importance of the subdimensions in terms of difficulties and restrictions were estimated by the predictor importance of the individual items. The importance was considered here as indicative of priorities for hearing rehabilitation. Figure 2 (middle panel) shows the predictor importance for a subset of items corresponding to the three questions with the highest importance in each of the four domains (Table 2). The predictor importance is shown for each of the subgroups (in color) and the overall data (in grey).

The highest importance shown in the analysis of the overall data corresponded to the spatial hearing (SP) difficulties. In particular, the item related to lateral sound movement and the ones related to handicap-related (HC) were found to be important. In contrast, the questions related to speech understanding (SU), and hearing qualities (QH) questions were found to be less important.

Group-a showed higher importance than the overall group for SU in questions related to conversations with multiple talkers in quiet, SP difficulties in terms of distance, QH difficulties in the clarity of sounds and the three HH related questions. Group-b showed higher importance for SP difficulties related to speech-in-noise perception, QH difficulties related to listening effort and HH related to social participation. Group-c
showed similar importance for SP and HC as the overall data. However, the importance obtained for SP difficulties related to multi-talker scenarios, specifically the ability to get the start of the sentences during conversational turn-taking, was higher than overall, as was the importance of the HH question about affected self-confidence. Group-d showed higher importance for speech-in-noise in the SU domain and the naturalness of the voices in the QH domain compared to the analysis of the entire data, and the highest importance obtained for the handicap-related items.

Overall, the stratified approach for the analysis of priorities for hearing rehabilitation revealed different patterns of importance for the different audiometric groups of listeners.

<table>
<thead>
<tr>
<th>Subscale / Item</th>
<th>Question</th>
<th>Pragmatic subscale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speech 3</td>
<td>You are in a group of about five people, sitting around a table. It is an otherwise quiet place. You can see everyone else in the group. Can you follow the conversation?</td>
<td>Speech in quiet</td>
</tr>
<tr>
<td>Speech 11</td>
<td>You are in conversation with one person in a room where there are many other people talking. Can you follow what the person you are talking to is saying?</td>
<td>Speech in Speech context</td>
</tr>
<tr>
<td>Speech 12</td>
<td>You are with a group and the conversation switches from one person to another. Can you easily follow the conversation without missing the start of what each new speaker is saying?</td>
<td>Multiple speech-streams</td>
</tr>
<tr>
<td>Spatial 10</td>
<td>Can you tell from the sound which direction a bus or truck is moving, e.g. from your left to your right or right to left?</td>
<td>Distance and movement</td>
</tr>
<tr>
<td>Spatial 11</td>
<td>Can you tell from the sound of their voice or footsteps which direction a person is moving, e.g. from your left to your right or right to left?</td>
<td>Distance and movement</td>
</tr>
<tr>
<td>Spatial 13</td>
<td>Can you tell from the sound whether a bus or truck is coming towards you or going away?</td>
<td>Distance and movement</td>
</tr>
<tr>
<td>Qualities 9</td>
<td>Do everyday sounds that you can hear easily seem clear to you (not blurred)?</td>
<td>Sounds clarity and naturalness</td>
</tr>
</tbody>
</table>
Audiometric profiles and patterns of benefit

<table>
<thead>
<tr>
<th>Subscale / Item</th>
<th>Question</th>
<th>Pragmatic subscale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualities 11</td>
<td>Do everyday sounds that you hear seem to have an artificial or unnatural quality?</td>
<td>Sounds clarity and naturalness</td>
</tr>
<tr>
<td>Qualities 14</td>
<td>Do you have to concentrate very much when listening to someone or something?</td>
<td>Listening effort</td>
</tr>
<tr>
<td>Handicap 4</td>
<td>How often is your self-confidence affected by your hearing difficulty?</td>
<td>Emotional</td>
</tr>
<tr>
<td>Handicap 7</td>
<td>How often does your difficulty with your hearing affect the way you feel about yourself?</td>
<td>Emotional</td>
</tr>
<tr>
<td>Handicap 11</td>
<td>How often does your hearing difficulty restrict your social or personal life?</td>
<td>Social</td>
</tr>
</tbody>
</table>

263 Table 2. Items of the SSQ and HHQ questionnaires with the highest importance for all the stratified groups. Three questions were selected for each of the subscales based on the sum of the OOB predictor importance obtained in step V: priority estimation stage of the data-driven method. The pragmatic subscale for each question is taken from (Gatehouse & Akeroyd, 2006).

268 **Stratified patterns of benefit across the important items**

269 The right panel of Figure 2 shows the normalized mean results and interquartile distributions for each of the clusters derived from the benefit profiles (BP0, BP1, BP2, and BP3) across the important questions shown in Table 2 for each audiometric profile group. The optimal pattern (BP0) was similar in all subgroups with normalized scores between 0.5 and 0.8 for the speech-related items, and around 0.8 for most of the items in the other domains. The suboptimal pattern (BP3) corresponded to low scores close to 0.3 for SU, SP and HH, but slightly higher scores for QH. The suboptimal patterns (BP3) were similar for the participants in groups a, c and d. In contrast, the suboptimal pattern group-b corresponded to low scores close to 0 in the difficulty subdomains and to high scores in the handicap-related items. The other benefit patterns are described in comparison to BP0.
The near-optimal pattern (BP1) of group-a showed a decreased score in HH items, whereas the near-suboptimal (BP2) showed scores around 0.4 in all the items. The BP1 of group-b showed reduced scores in SU items (< 0.4) but not in the SP and QH items. The BP2 showed decreased scores in SP and HH items, whereas the SU and QH related difficulties were in line with the BP1. The BP1 of group-c showed decreased scores in SU and HH items. The BP2 pattern showed higher scores than BP1 for the HH questions but lower for the SP items, whereas QH and HH were in line with BP0. The BP1 of group-d showed reduced score in HH items. The BP2 indicated higher scores than in BP1 for the HH items but substantially lower scores for the SP related items, whereas SU and QH related items where similar to the BP0 scores.

Discussion

Interpretation of the patterns of benefit

The data-driven analysis revealed four patterns of benefit, labeled as BP0, BP1, BP2, BP3. BP0, or “optimal”, is a pattern shown by patients who do not require additional intervention and may only need periodic follow-up visits (e.g. once per year). The HCP should ensure that this optimal result does not change by evaluating the intervention periodically. BP1, or “near-optimal”, corresponds to an intervention that requires minor improvements. BP1 corresponds to patients who require some adjustments or instructions in regular follow-up visits to improve the treatment. The HCP should be aware of the limitations and allocate time to perform these improvements successfully. BP2, or “near-suboptimal”, corresponds to an intervention that requires major improvements. Patients who show this pattern might reflect problems that require substantial additional intervention through structured sessions that are focused on different difficulties and handicaps. BP3, or “suboptimal”, is a pattern associated with patients with low benefit.
This suggests that the initial intervention (i.e. the type of device or initial diagnosis) should be reconsidered. In this case, the HCP should evaluate the possibilities of changing the device (e.g. from a hearing-aid to a bone-anchored hearing device in cases of a conductive hearing loss) or evaluate the need for a multi-disciplinary approach (in cases of central auditory disorders or other comorbidities).

Specific priorities for hearing rehabilitation in different audiometric groups

Hearing rehabilitation can involve a broad variety of interventions. The intervention is often prioritized in terms of sensory management, perceptual training and counselling in a “holistic approach” (Boothroyd, 2007). In contrast, a pre-assessment with the SSQ12 and HHQ based on the present findings, as well as tempering expectations (Whitmer et al., 2016), can effectively guide further rehabilitation. The intervention can then be focused on overcoming specific hearing difficulties or handicaps in a systematic approach with the help of the present stratification. Table 3 shows the priorities for hearing rehabilitation for each of the four audiometric groups. The priorities are set by the differences between the patterns of benefits and the important items (Figure 2, right and middle panels). For example, when a patient classified as audiometric group-c receives a new hearing device, priority I should be to test the patient’s ability to follow a conversation (deviation between BP1 and BP0), priority II to evaluate how the hearing difficulties affect his/her self-confidence, and priority III to assess spatial hearing abilities (deviation between BP2 and BP1). If the result of the evaluation is not optimal, an intervention focused on overcoming the specific hearing difficulties or handicaps should then be planned by the HCP.
Audiometric profiles and patterns of benefit

<table>
<thead>
<tr>
<th>Priority I</th>
<th>Priority II</th>
<th>Priority III</th>
<th>Proposed intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Speech (Speech-in-quiet)</td>
<td>Spatial (Distance)</td>
<td>Counseling and adjustment of HA advanced features</td>
</tr>
<tr>
<td>b</td>
<td>Speech (Speech-in-speech)</td>
<td>Spatial (Movement)</td>
<td>HA advanced features, perceptual training and counseling</td>
</tr>
<tr>
<td>c</td>
<td>Speech (Multi-streams)</td>
<td>Handicap (social)</td>
<td>HA advanced features, counseling and perceptual training</td>
</tr>
<tr>
<td>d</td>
<td>Handicap (emotional)</td>
<td>Spatial (Distance and movement)</td>
<td>Hearing-aid style and counseling</td>
</tr>
</tbody>
</table>

Table 3. Priorities of hearing rehabilitation inferred from the data-driven approach on subjective data of hearing difficulties and handicaps.

Audiometric groups and auditory profiles

The analysis of the subjective self-reported scores of hearing difficulties and handicaps identified patterns of benefit and priorities for hearing rehabilitation. The participants were divided into audiometric groups based on the auditory profiles from Sanchez-Lopez et al. (2020). The auditory profiles were the result of a data-driven analysis of multidimensional data that involved measures of audibility, loudness perception, speech perception, binaural processing abilities and spectro-temporal resolution. The audiometric groups used in the present study to stratify the participants (a, b, c and d) cannot be considered equivalent to the auditory profiles (A, B, C and D) derived in Sanchez-Lopez et al. (2020). However, there are similarities and discrepancies between the objective hearing deficits observed in the auditory profiles and the subjective difficulties and handicaps associated with the audiometric groups and their benefit profiles. In Sanchez-Lopez et al. (2020), auditory profile A listeners showed, on average, a low degree of perceptual deficits and a close-to-normal speech intelligibility, whereas
the results for audiometric group-a listeners of the present study indicated a high importance of speech communication in quiet, spatial perception difficulties and a high priority of rehabilitating hearing handicaps. Profile B listeners showed reduced speech-in-noise perception performance, which is consistent with the priorities of rehabilitation showed by group-b listeners (i.e. difficulties in speech understanding followed by spatial perception and hearing handicaps). Profile C listeners showed a high degree of perceptual deficits, consistent with the results of the audiometric group-c listeners that indicated a priority for rehabilitating difficulties in speech-in-noise perception and social participation. Finally, Profile D listeners showed near-normal suprathreshold perception, except for their abnormal loudness perception. However, the results of the audiometric group-d listeners showed a priority for rehabilitating hearing handicaps followed by spatial hearing difficulties.

Insights for hearing-aid evaluation and validation

Different shorter versions of the SSQ have been proposed (Demeester et al., 2012; Jensen, NS, Akeroyd, MA, Noble, W, Naylor, 2009; Moulin et al., 2019; Noble et al., 2013; von Gablenz et al., 2018). However, in the present study, the subset of questions shown in Table 2 was not intended to create a new short version of the questionnaire, but to better understand the differences among the audiometric groups. The SSQ12 (Noble et al., 2013) is a twelve-item questionnaire that was the result of an item selection process between three parties and based on different criteria, involving the scores reported in a factor analysis (Akeroyd et al., 2014) and including all ten pragmatic subscales (Gatehouse & Akeroyd, 2006). Noble et al. (2013) concluded that SSQ12 should be accompanied by the HHQ to provide a complete evaluation of the level of hearing disability and handicap. In the present study, the patterns of benefit revealed that
disabilities and handicaps were in many cases independent, and a minor degree of
difficulties do not always imply minor participation restrictions. However, different
patterns of difficulties and handicaps were observed in different audiometric groups,
suggesting that the results of outcome measures used for assessing a clinical practice
might be divided into meaningful groups to minimize the confounds of the sensory
hearing deficits.

Conclusion
The data-driven approach for inferring patterns of benefit and priorities for hearing
rehabilitation revealed different benefit profiles for the four audiometric groups of
listeners considered in the present study. The observed patterns of benefit and priorities
for hearing rehabilitation together with the four clinical subpopulations showing
significant differences in perceptual deficits presented in Sanchez-Lopez et al. (2020)
could help to guide the hearing rehabilitation based on perceptual deficits beyond the
audiogram. The patterns of benefit and the use of stratification might improve the clinical
intervention of the hearing loss and the efficiency and quality of service in the hearing
care clinic.

Acknowledgments
The authors thank A. Ahrens, O. Cañete for their comments in an earlier version of the
manuscript. The authors acknowledge the valuable feedback from the members of the
Hearing Sciences Scottish Section during the realization of the present study.

Declaration of Interest
This work was supported by Innovation Fund Denmark Grand Solutions 5164-00011B
(Better hEAring Rehabilitation project) Oticon, GN Hearing, WSAudiology and other
partners (Aalborg University, University of Southern Denmark, the Technical University of Denmark, Force, Aalborg, Odense and Copenhagen University Hospitals). The funding and collaboration of all partners are sincerely acknowledged. The authors declare that there is no conflict of interest. WW was supported by the Medical Research Council [grant number MR/S003576/1]; and the Chief Scientist Office of the Scottish Government

References

Audiometric profiles and patterns of benefit

Audiometric profiles and patterns of benefit

https://doi.org/10.3109/14992027.2013.781278

