Machine learning to predict 5-year survival among pediatric Acute Myeloid Leukemia patients and development of OSPAM-C online survival prediction tool

Ashis Kumar Das¹, Shiba Mishra² and Saji Saraswathy Gopalan³

1 Development Research Group, The World Bank, Washington DC, USA
2 Credit Suisse Private Limited, Pune, India
3 Health, Nutrition and Population Global Practice, The World Bank, Washington DC, USA

# Corresponding author: Ashis Kumar Das, The World Bank, Washington DC, USA. E-mail: adas8@worldbank.org

Keywords: Acute myeloid leukemia; machine learning; survival; prediction
Abstract:

**Background:** Acute myeloid leukemia (AML) accounts for a fifth of childhood leukemia. Although survival rates for AML have greatly improved over the past few decades, they vary depending on demographic and AML type factors.

**Objectives:** To predict the five-year survival among pediatric AML patients using machine learning algorithms and deploy the best performing algorithm as an online survival prediction tool.

**Materials and methods:** Pediatric patients (0 to 14 years) with a microscopically confirmed AML were extracted from the Surveillance Epidemiology and End Results (SEER) database (2000-2016) and split into training and test datasets (80/20 ratio). Four machine learning algorithms (logistic regression, support vector machine, gradient boosting and K nearest neighbor) and a deep neural network algorithm were trained on features to predict five-year survival. Performances of the algorithms were compared and the best performing algorithm was deployed as an online prediction tool.

**Results:** A total of 2,140 patients met our inclusion criteria. The gradient boosting algorithm was the best performer in terms of discrimination and predictive ability. It was deployed as the online survival prediction tool named OSPAM-C (https://ashis-das.shinyapps.io/ospam/).

**Conclusions:** Our study provides a framework for the development and deployment of an online survival prediction tool for pediatric patients with AML. While external validation is needed, our survival prediction tool presents an opportunity to inform clinical decision-making for AML patients.
1. Introduction

Acute myeloid leukemia (AML) is a heterogenous hematological cancer with expansion of abnormally differentiated myeloid hematopoietic progenitor cells and it accounts for a fifth of childhood leukemia [1, 2]. The overall survival of children due to AML has improved in the recent decades due to advancements in therapy and it is currently around 70% [3–5]. However, survival rates vary depending on demographic and AML type factors [6–9]. Therefore, it is essential to understand the prognostic factors for AML outcomes for effective planning of treatment and rehabilitation modalities. While there have been few studies translating the prognostic factors to predictive models, they have focused on adult patients and none has used machine learning specifically for predicting pediatric patient survival [10, 11].

Machine learning consists of a group of artificial intelligence techniques, where the algorithms learn the patterns in the data without being extensively programmed. Learning from a set of data (training data), machine learning algorithms apply a predictive model to unseen data (test data) [12]. There has been a plethora of applications of machine learning in healthcare, such as predicting diseases, health events and drug response, survival prediction, clustering of patients based on risk classification, analyzing genetics data and medical imaging [13–17]. In addition, a few studies have utilized machine learning for predicting cancer survival from hospital records and registries [18–23].

Our study had two objectives, (1) predict the five-year survival among pediatric (0 to 14 years) AML patients using machine learning algorithms, and (2) deploy the best performing algorithm as a web application for future validation and clinical use.
2. Material and methods

2.1. Patients

Patients for this study were selected from the Surveillance Epidemiology and End Result (SEER) database [24]. The SEER database is a publicly available source of cancer statistics in the United States and it includes approximately 28% of the population [25]. The standard for case completeness for the SEER database is 98% and all patients were followed up for 10 years after routine treatment until death or loss to follow-up [26].

The database includes patient details from 1973 through 2016 and reports their demographic background, cancer characteristics, treatment modalities and survival. Several studies on AML have previously used this database.

Our inclusion criteria for this study were microscopically confirmed AML for patients aged 14 or younger. We excluded patients without microscopically confirmed AML, with unknown survival time and those with their years of diagnosis before 2000. As few of the regional registries had only started reporting from 2000, we restricted our whole sample to between 2000 and 2016 to ensure comparability across regional registries. A total of 76,382 AML patients were diagnosed with AML between 1975 and 2016 across all age groups. After excluding patients those did not meet our inclusion criteria, 2,140 pediatric AML patients were included in our study.

2.2. Outcome variable

Our outcome variable was survival of five years or more among AML patients. In the SEER database, survival is a continuous variable with units in months. So, we created a binary variable where any patient with a survival of 60 months or more was coded “yes”, or otherwise “no”.
2.3 Predictors

We considered individual patient level demographic and disease variables as predictors. Demographic predictors were sex, age (years at diagnosis), race, and year of diagnosis. There were six races – “Hispanic”, “non-Hispanic American Indian/Alaska native”, “non-Hispanic Asian or Pacific Islander”, “non-Hispanic black”, “non-Hispanic white” and “non-Hispanic unknown”.

Disease variables we considered to include were AML sub-type and grade. In the SEER databases, there were 17 AML subtypes classified according to the 3rd edition of the International Classification of Disease Oncology (ICD-O-3) and WHO 2008 definitions [27]. The AML subtypes were the following: 9840/3 – acute erythroid leukemia; 9861/3 – AML, NOS; 9865/3 – AML with t (6;9) (p23; q34), DEK-NUP214; 9866/3 – acute promyelocytic leukemia (AML with t (15;17) (q22; q12)) PML/RARA; 9867/3 – acute myelomonocytic leukemia; 9869/3 – AML. inv (3) (q21; q26.2) or t (3;3) (q21; q26.2), RPN1-EVI1; 9871/3 – AML with minimal differentiation; 9873/3 – AML without maturation; 9874/3 – AML with maturation; 9891/3 – acute monoblastic and monocytic leukemia; 9895/3 – AML with myelodysplasia-related changes; 9896/3 – AML, t (8;21)(q22;q22) RUNX1-RUNX1T1; 9897/3 – AML with t (9;11) (p22;q23), MLLT3-MLL; 9910/3 – acute megakaryoblastic leukemia; 9911/3 – AML (megakaryoblastic) with t (1;22)(p13;q13), RBM15-MKL1; and 9920/3 – therapy related myeloid neoplasm. A vast majority of patients (93 percent) had unknown AML grade. Thus, we excluded this variable from our analysis.
2.4 Statistical Methods

2.4.1 Descriptive Analysis

We performed descriptive analyses for the predictors and present the sample characteristics by sub-groups under each predictor as proportions. The correlation was tested among all predictors with Pearson’s correlation coefficient.

2.4.2 Predictive Analysis

We employed machine learning to predict the determinants of five-year survival to AML. We applied four commonly used supervised machine learning algorithms in cancer research (logistic regression, support vector machine, K neighbor classification, and gradient boosting) along with a deep learning model (deep neural network) to understand which algorithm provides higher accuracy of prediction.

2.4.2.1 Logistic Regression (LR)

Logistic regression is used for classification problems, i.e. binary or categorical output. The algorithm fits the best model to describe the relationship between the output and input (predictor) variables [28].

2.4.2.2 Support Vector Machine (SVM)

The data is classified into two classes in support vector machine (SVM) based on the output variable over a hyperplane [23]. The algorithm tries to maximize the distance between the hyperplane and the two closest data points from each class.
2.4.2.3 K Nearest Neighbors (KNN)

The class of a new observation is decided by the majority class among its neighbors in KNN algorithm [29]. For our model, we selected 20 nearest neighbors.

2.4.2.4 Gradient Boosting

Gradient boosting an algorithm that uses a combination of shallow and successive decision trees [30]. A decision trees consist of recursively partitioning of the predictors. Each decision tree learns successively and improves on the previous. Eventually, predictions are based on a weighted combination of these trees.

2.4.2.5 Deep Neural Network (DNN)

A neural network is a mathematical model that simulates the activity of the human brain [16]. Information passes from inputs (predictors) to output (outcome variable) nodes through several hidden layers in the DNN. While the information flows from input to output layers, the algorithm tries to learn patterns in the data [28]. In our model, we used a DNN with one input layer, six hidden layers, and one output layer. Furthermore, we used the rectified linear unit (ReLU) activation function to express the relationship between the input and output nodes. Dropouts (randomly dropping nodes along with the network connections with other nodes) were used to deal with over-fitting of the DNN.

2.4.2.6 Evaluation of the performance of the algorithms

The data was split into training (80 percent) and validation segments (20 percent) for all algorithms. First, the algorithms were trained on the training segment and then were validated on the validation segment for determining predictions. The data was 10-fold cross-validated with
the data split into 80% training and 20% validation observations randomly ten times for all algorithms except the deep neural network. The average of the cross-validations was taken as the final result. The models were evaluated with accuracy (correct prediction of survived patients as survived and non-survived patients as non-survived), precision (ratio of correctly predicted survived patients to the total predicted survived patients), recall (ratio of correctly predicted survived patients to the all patients), F1 score (weighted average of precision and recall), and area under the receiver operating characteristics curve (AUC) [31]. A receiver operator characteristic (ROC) curve presents a plot of the true positive rate (y-axis) against the false positive rate (x-axis) for each individual algorithm. AUC is score that measures the area under the ROC curve and it ranges from 0.50 to 1.0 where 0.50 indicates the lowest discriminating score and 1.0 indicates the highest discriminating score. In addition, relative contributions of the predictors were estimated with a relative decrease in the Gini index using the gradient boosting algorithm [30]. The statistical analyses were performed using Python programming language Version 3.7 (Python Software Foundation, Wilmington, DE, USA) and the deep neural network was implemented on the TensorFlow platform [32]. The web application was built using the Shiny package for R and deployed with Shiny server (R Foundation for Statistical Computing, Vienna, Austria).

3. Results

3.1 Patient profile

The demographic profile of the patients is presented in Table 1. The mean age of the patients was 6.1 years with a standard deviation of 5. Slightly above half were males (53.3%). Among various races, non-Hispanic whites were the majority (42.3%) followed by Hispanics (31.4%) and non-Hispanic blacks (13.8%). The mean annual proportion of patients was 5.9%, while it ranged from
4.9% in 2003 to 6.5% in 2010. More than two-thirds of the patients (68.2%) in our sample had a survival of five or more years.

Table 1. Patient profile

<table>
<thead>
<tr>
<th>Variable</th>
<th>Number (Mean)</th>
<th>Proportion (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>6.1</td>
<td>5.0</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1,000</td>
<td>46.7</td>
</tr>
<tr>
<td>Male</td>
<td>1,140</td>
<td>53.3</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>672</td>
<td>31.4</td>
</tr>
<tr>
<td>Non-Hispanic American Indian/Alaska native</td>
<td>26</td>
<td>1.2</td>
</tr>
<tr>
<td>Non-Hispanic Asian or Pacific Islander</td>
<td>224</td>
<td>10.5</td>
</tr>
<tr>
<td>Non-Hispanic black</td>
<td>296</td>
<td>13.8</td>
</tr>
<tr>
<td>Non-Hispanic unknown</td>
<td>9</td>
<td>0.4</td>
</tr>
<tr>
<td>Non-Hispanic white</td>
<td>913</td>
<td>42.7</td>
</tr>
<tr>
<td>Diagnosis year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>105</td>
<td>4.9</td>
</tr>
<tr>
<td>2001</td>
<td>119</td>
<td>5.6</td>
</tr>
<tr>
<td>2002</td>
<td>125</td>
<td>5.8</td>
</tr>
<tr>
<td>2003</td>
<td>109</td>
<td>5.1</td>
</tr>
<tr>
<td>2004</td>
<td>131</td>
<td>6.1</td>
</tr>
<tr>
<td>2005</td>
<td>124</td>
<td>5.8</td>
</tr>
<tr>
<td>2006</td>
<td>125</td>
<td>5.8</td>
</tr>
<tr>
<td>2007</td>
<td>109</td>
<td>5.1</td>
</tr>
<tr>
<td>2008</td>
<td>124</td>
<td>5.8</td>
</tr>
<tr>
<td>2009</td>
<td>133</td>
<td>6.2</td>
</tr>
<tr>
<td>2010</td>
<td>138</td>
<td>6.5</td>
</tr>
<tr>
<td>2011</td>
<td>135</td>
<td>6.3</td>
</tr>
<tr>
<td>2012</td>
<td>136</td>
<td>6.4</td>
</tr>
<tr>
<td>2013</td>
<td>128</td>
<td>6.0</td>
</tr>
<tr>
<td>2014</td>
<td>132</td>
<td>6.2</td>
</tr>
<tr>
<td>2015</td>
<td>132</td>
<td>6.2</td>
</tr>
<tr>
<td>2016</td>
<td>135</td>
<td>6.3</td>
</tr>
</tbody>
</table>
Using the gradient boosting algorithm, we estimated the relative importance of the predictors (figure 1). Year of diagnosis was the most important input feature followed by age, AML subtype, race and sex.

![Relative Importance of Predictors](image)

**Figure 1.** Relative importance of different predictors

3.2 *Performance of the algorithms*

The performance metrics of the algorithms (logistic regression, support vector machine, K nearest neighbor, gradient boosting and deep neural network) are shown in table 2. The accuracy of SVM was the highest (0.763) followed by gradient boosting (0.757), logistic regression (0.756), KNN (0.713) and the DNN with the lowest accuracy (0.685). F1-score (harmonic mean of precision and recall) was the highest for the DNN (0.768) followed by KNN (0.734), gradient boosting (0.728), logistic regression (0.718) and SVM (0.703).
Table 2. Performance metrics of the algorithms

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Logistic regression</th>
<th>Support vector machine</th>
<th>K nearest neighbor</th>
<th>Gradient boosting</th>
<th>Deep neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy (uncertainty)</td>
<td>0.756 (0.131)</td>
<td>0.763 (0.142)</td>
<td>0.713 (0.075)</td>
<td>0.757 (0.115)</td>
<td>0.710</td>
</tr>
<tr>
<td>Precision</td>
<td>0.782</td>
<td>0.738</td>
<td>0.718</td>
<td>0.762</td>
<td>0.788</td>
</tr>
<tr>
<td>Recall</td>
<td>0.834</td>
<td>0.792</td>
<td>0.882</td>
<td>0.845</td>
<td>0.749</td>
</tr>
<tr>
<td>F1-score</td>
<td>0.718</td>
<td>0.703</td>
<td>0.734</td>
<td>0.728</td>
<td>0.768</td>
</tr>
<tr>
<td>AUC</td>
<td>0.745</td>
<td>0.751</td>
<td>0.720</td>
<td>0.779</td>
<td>0.756</td>
</tr>
</tbody>
</table>

As also shown in figure 2, area under receiver operating characteristic curve (AUC) ranged from 0.720 to 0.779 with the highest score for the gradient boosting algorithm. Considering all the performance metrics, gradient boosting was the best performer.

![Figure 2](image_url)

**Figure 2.** ROC and AUC of machine learning algorithms (A) and deep neural network (B)

### 3.3 Online survival prediction tool – OSPAM-C

The best performing model, gradient boosting was deployed as the online survival prediction tool named as “Online Survival Prediction tool for Acute Myeloid Leukemia in children” - “OSPAM-C” ([https://ashis-das.shinyapps.io/ospam/](https://ashis-das.shinyapps.io/ospam/)). As shown in figure 3, the user interface has
four boxes to select input features as drop-down menus. The features are age (fourteen options – 0 through 14 years), sex (two options – male and female), race (six options – Hispanic, non-Hispanic American Indian/Alaska native, non-Hispanic Asian or Pacific Islander, non-Hispanic Black, non-Hispanic white and unknown) and AML sub-type (seventeen options according to the 3rd edition of the ICD-O-3 and WHO 2008 definitions). A user has to select one option each from the feature boxes and click the submit button to estimate the five-year survival probability in percentages. A static box showing the average five-year survival prediction for children is also given as a reference. For instance, the tool gives a five-year survival prediction of 66.5% for a 12-year old female Hispanic patient suffering from AML with maturation (9874/3).

![Welcome to the Online Survival Prediction tool for Acute Myeloid Leukemia in Children (OSPAM-C)](image)

**Figure 3.** OSPAM-C online survival prediction tool for pediatric AML patients

**Discussion**

In this study, we utilized machine learning algorithms to predict five-year survival among pediatric AML patients. Among all our algorithms, gradient boosting performed the best and was deployed as an online survival prediction tool for pediatric AML named AMLSURVped.

Acute myeloid leukemia is one of the most common malignancies among children. While the overall survival has improved for children in recent times, it still has one of the worst survival probabilities among the leading pediatric cancers. AML is also a heterogenous condition with
several biological, clinical and genetic factors influencing treatment response and prognosis [33]. While few have explored the predictors of AML survival among children applying conventional analytic methods on SEER database, none have applied machine learning yet [7, 34, 35].

There are a few predictive web applications to estimate survival for other cancers from SEER database such as chondrosarcoma, spinal chordoma, and glioblastoma [21, 36, 37]. However, we believe this is the first web-based survival prediction model for pediatric AML patients. Using SEER database, Thio et al. and Karhade et al. applied machine learning algorithms respectively to 1,554 chondrosarcoma and 265 spinal chordoma patients to predict five-year survival [21, 36]. They utilized decision tree, support vector machine, Bayes point machine and neural networks. Among their algorithms in both studies, Bayes point machine was the best performer that was deployed for the web application. Similarly, Senders et al applied 15 machine learning and statistical algorithms – accelerated failure time (AFT), bagged decision trees, boosted decision trees, boosted decision trees survival, Cox proportional hazards regression (CPHR), extreme boosted decision trees, k-nearest neighbors, generalized linear models, lasso and elastic-net regularized generalized linear models, multilayer perceptron, naïve Bayes, random forests, random forest survival, recursive partitioning, and support vector machines [37]. The AFT algorithm was deployed as the online prediction tool. The C-statistics (AUC) were 0.868, 0.8 and 0.7 respectively for chondrosarcoma, spinal chordoma, and glioblastoma predictions with their best performing models, whereas it was 0.779 in our best performing model.

Our study has several potential limitations. First, as we used SEER data, there were certain missing clinical features such as treatment type, stage and extent of disease. Moreover, due to unavailability of meaningful responses, we had to drop the grade of AML. Second, the database does not collect information on key socio-demographic features such as geographic location,
household education and economic status. Third, there was no information in the database on molecular biology, genomics, proteomics, or metabolomics factors. All these additional clinical and socio-demographic factors are known to influence survival in AML patients. Inclusion of these additional features may improve the accuracy and reliability of the model.

Our survival prediction tool is the first of its kind for pediatric AML. Although we used data from the largest cancer database in the US, the tool is yet to be validated. Therefore, we advise caution for clinicians and patients who intend to use this tool as a predictive guide for ascertaining survival for pediatric AML patients. Clinical experts must balance the predictions from this tool against their clinical experience, genomics and other relevant clinical information. We hope this tool will further be validated and possibly reoptimized using heterogenous data from various cohorts in multiple practice settings. While external validation is needed, our survival prediction tool presents an opportunity to inform clinical decision-making for AML patients.

Authors' contributions

Conceived and designed this study: Ashis Kumar Das, Shiba Mishra, Saji Saraswathy Gopalan

Analyzed and explained the data: Ashis Kumar Das, Shiba Mishra, Saji Saraswathy Gopalan

All authors contributed to the writing and approved the final manuscript.

Acknowledgements

We are grateful to the contributors of the Surveillance, Epidemiology, and End Results Program as well as to the National Cancer Institute for making this data publicly available.
Declaration of Competing Interest

The authors declare that there is no conflict of interest. The views expressed in the paper are that of the authors and do not reflect that of their affiliations.

Summary table

What was already known on the topic

- Machine learning can predict key outcomes from a large set of data with higher accuracy.
- There are few published studies comparing machine learning algorithms for survival among pediatric acute myeloid leukemia (AML) patients.

What this study added to our knowledge

- To the best of our knowledge, this is the first study that compared performances of several machine learning algorithms to predict survival among pediatric AML patients.
- The best performing algorithm was deployed as a free online prediction tool known as OSPAM-C.
References


26. Zippin C, Lum D, Hankey BF. Completeness of hospital cancer case reporting from the


