Are there causal relationships between ADHD and BMI? Evidence from multiple genetically informed designs

Liu, Chao-Yu MD., MSc.¹, Schoeler, Tabea PhD.¹, Davies, Neil M PhD.²,³, Peyre, Hugo MD., PhD.⁴,⁵, Lim, Kai-Xiang MSc.⁶, Barker, Edward D PhD.⁷ Llewellyn, Clare PhD.⁸ Dudbridge, Frank PhD.⁹ Pingault, Jean-Baptiste PhD. ¹,⁶*

¹Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom.
²Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
³K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Norway.
⁴Laboratoire de Sciences Cognitives et Psycholinguistique, PSL University, Paris, France.
⁵Child and Adolescent Psychiatry Department, Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Paris, France.
⁶Social, Genetic & Developmental Psychiatry Centre, King's College London, London, United Kingdom.
⁷Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom.
⁸Research Department of Behavioural Science and Health, University College London, London, United Kingdom.
⁹Department of Health Sciences, University of Leicester, Leicester, United Kingdom

* Address for correspondence: Dr. Jean-Baptiste Pingault
Division of Psychology and Language Sciences, University College London, 26 Bedford Way, London, WC1H 0AP, UK. j.pingault@ucl.ac.uk, +44(0)2076792000

Keywords: ADHD, BMI, causal inference, Mendelian randomization, polygenic score, twin modelling
Abstract

Background

Attention-deficit/hyperactivity disorder (ADHD) and Body Mass Index (BMI) are associated. However, it remains unclear whether this association reflects causal relationships in either direction, or confounding. Here, we implemented genetically informed methods to examine bidirectional causality and potential confounding.

Methods

Three genetically informed methods were employed: (1) cross-lagged twin-differences analyses to assess bidirectional effects of ADHD symptoms and BMI at ages 8, 12, 14 and 16 years in 2386 pairs of monozygotic twins from the Twins Early Development Study (TEDS), (2) within- and between-family ADHD and BMI polygenic score (PS) analyses in 3320 pairs of dizygotic TEDS twins and (3) two-sample bidirectional Mendelian randomization (MR) using summary statistics from Genome-Wide Association Studies (GWAS) on ADHD (N=55,374) and BMI (N=806,834).

Results

Mixed results were obtained across the three methods. Twin-difference analyses provided little support for cross-lagged associations between ADHD symptoms and BMI over time. PS analyses were consistent with bidirectional relationships between ADHD and BMI with plausible time-varying effects from childhood to adolescence. MR findings were also consistent with bidirectional causal effects between ADHD and BMI. Multivariable MR suggested the presence of substantial confounding in bidirectional relationships.
Conclusions

The three methods converged to highlight multiple sources of confounding in the association between ADHD and BMI. PS and MR analyses suggested plausible causal relationships in both directions. Possible explanations for mixed causal findings across methods are discussed.

Key messages

- Polygenic score and Mendelian randomization analyses were consistent with bidirectional causal effects between ADHD and BMI.
- Findings from different genetically informed methods suggested that multiple sources of confounding are at play, including genetic and shared environmental confounding, population stratification, assortative mating and dynastic effects.
- The ADHD polygenic score increasingly associated with BMI phenotype from childhood to adolescence, suggesting an increasing role of ADHD in the aetiology of BMI. Findings were reversed between the BMI polygenic score and ADHD.
- Addressing mixed evidence will require increased sample sizes to implement novel methods such as within-family MR.
Introduction

Two meta-analyses confirmed the association between Attention-Deficit Hyperactive Disorder (ADHD) and overweight/obesity with pooled odds ratios ranging from 1.22 to 1.27 (1, 2). Such positive associations between ADHD and obesity are more established in late adolescence and adulthood, while findings in children are frequently mixed (1-3). Prospective studies indicate that the relationships between ADHD and obesity may be bidirectional. Evidence showing that ADHD symptoms precede overweight and obesity (4, 5) and that overweight and obesity lead to manifestations of ADHD (6) (7) can all be found in the literature. Indeed, the behavioural characteristics of ADHD (e.g. lack of planning, poor impulse control) may increase the risk of overeating and abnormal eating behaviours, leading to weight gain and obesity (8). Conversely, obesity-related neurocognitive dysfunction (9), inflammation (10) and sleep disruption (11) may cause impairment in attention and inhibitory control.

In addition to possible bidirectional causal relationships, it is also possible that the association between ADHD and obesity arises, totally or in part, from confounding. Previous investigations showed that the association between ADHD and overweight/obesity significantly reduced after adjusting for socioeconomic and lifestyle factors (12). Furthermore, it was found that family aggregation of overweight/obesity and ADHD was better explained by shared environmental factors than direct effects between the two phenotypes (13). In addition to environmental confounding, genetic confounding can also play a role. Estimates derived from Genome-Wide Association Studies (GWAS) for ADHD and BMI (14-16) show substantial positive genetic correlations (ranging from r = 0.21 to 0.26) between the two phenotypes. Similarly, polygenic score associations between ADHD and BMI further point towards common genetic underpinnings of their association (14) (17) (18). Of note is that such genetic correlations and polygenic associations can arise from uni-
or bidirectional causal effects (mediated pleiotropy) or shared genetic aetiology (unmediated pleiotropy) (19).

To better differentiate between causality and confounding, a range of genetically informed methods for causal inference can be implemented (20). Importantly, using several such approaches to address the same question remains necessary to triangulate evidence, as results from genetically informed methods can still be biased or confounded. Triangulating evidence from different methods can not only identify potential source of biases, but also strengthen causal inference if different methods point to the same conclusion (21). For example, a recent study used genetic variants for ADHD and BMI as instrumental variables for Mendelian randomization (MR) analyses and detected an effect from higher BMI to higher ADHD liability (22) but not in the other direction, findings that are at odds with previous observational reports (1). Because MR may produce inflated estimates due to unmeasured confounding such as dynastic effects (i.e. when associations between offspring genetic variants and offspring phenotypes also capture environmentally mediated parental genetic effects) and population stratification (23), it is important to validate these findings with methods controlling for aforementioned confounding, such as family-based genetically informed designs (e.g. within-family analysis) (20).

In this study, we implemented three different genetically informed methods to investigate the nature of the relationship between ADHD and BMI: 1) cross-lagged twin-differences analysis in MZ twins to examine the causal effects across childhood to adolescence while controlling for genetic and shared environmental confounding, 2) within- and between-family polygenic score analysis, which accounts for dynastic effects, population stratification and assortative mating and 3) Mendelian randomization and corollary sensitivity analyses to account for
unmediated pleiotropy. We aimed to investigate to what extent the association between ADHD and BMI is attributable to causal relationships and/or to confounding.
Methods
The description, strengths and assumptions of the three genetically informed methods, namely (1) the twin-differences analyses, (2) the polygenic score analyses and (3) bidirectional Mendelian randomization analyses are outlined in Table 1. The following sections detail the implementation of those methods in the current study.

I. Twin-differences analysis

Study Sample
Data were drawn from the Twins Early Development Study (TEDS), a cohort of twins born between 1994 and 1996 in England and Wales. Additional details on the TEDS sample can be found elsewhere (24). Four waves of data collection including data on BMI and ADHD symptoms were analysed (ages 8, 12, 14 and 16 years). In this analysis, the sample was restricted to twin pairs with complete information on zygosity (the best estimate derived from parent-rated phenotypic similarity) and ratings of ADHD and BMI across at least one of the four assessment waves. Our final study sample comprised of 6655 twin pairs (48% males), including 2386 monozygotic twin (MZ) pairs and 4269 dizygotic twin (DZ) pairs.

Ethical approval for the Twins Early Development Study (TEDS) was granted by King’s College London’s ethics committee for the Institute of Psychiatry, Psychology and Neuroscience. Written informed consent was obtained from parents before data collection.

Phenotypic measures for ADHD symptoms and BMI
ADHD symptom scores were derived from parents’ ratings on the Conners’ Parent Rating Scale-Revised (CPRS-R) at ages 8, 12, 14 and 16 years. The CPRS-R consists of 18 items tapping inattentive and hyperactive/impulsive symptoms of ADHD (25). All items were rated
on a 0-3 Likert scale, with 0 as ‘not at all’ and 3 as ‘very much true’. Standardised Cronbach alphas for the CPRS-R total scale ranged between 0.91 and 0.92 across the 4 waves of data collection. BMI of the twins was obtained using parent-reported data on height (meter) and weight (kilogram) at age 8, and child-reported data at ages 12, 14 and 16 years. BMI values were converted to age- and sex-adjusted standardised deviation scores (SDS) using the LMS method (26) based on the British 1990 growth reference (27).

Statistical analyses
All statistical analyses were conducted using R [version 3.5.2 (28)].

We used structural equation modelling [R package Lavaan (29)] to construct analysis with cross-lagged design (30) and derive the following estimates:

- Cross-lagged phenotypic correlations between earlier measures of ADHD symptoms (BMI SDS) and later measures of BMI SDS (ADHD symptoms), adjusted for observed confounds (sex, age, birth weight) on 6655 unrelated individuals (one twin selected at random from each twin pair) across childhood and adolescence.

- A cross-lagged twin-differences model on MZ twins (2386 pairs) to examine the relationships between differences in earlier measures of ADHD symptoms (BMI SDS) and later measures of BMI SDS (ADHD symptoms) across childhood and adolescence. Sex and age were adjusted by design and twin differences in birth weight were included as a covariate (details in Table 1).

To account for data non-normality, 95% confidence intervals (CI) were obtained using bootstrapping with 10,000 repetitions.

II. Polygenic Score analysis
Study Sample
A subsample of 3,320 dizygotic (DZ) twin pairs from the TEDS that had complete phenotype data and passed the genotyping quality control procedures were included in the polygenic score analysis (details in (31)). Observations of each twin and its co-twin were entered in the multilevel model to perform a family-based design analysis. Such approach estimates effects of the polygenic scores on the phenotypic traits unbiased by dynastic effects, population stratification and assortative mating (definitions and details in Table 1) (32).

Genotypic data and polygenic scores
The ADHD and BMI polygenic scores (PSs) for TEDS participants were generated in the software LDpred (33), using the TEDS genotype data and the summary statistics from genome-wide association studies (GWAS) on ADHD (N=55,374) (14) and BMI (N=806,834) (16). The PSs for each participant were computed based on a fraction of causal markers of 1 in LDpred (see (34) for details on PS generation). LDpred method accounts for linkage disequilibrium (LD) between SNPs and the PSs were also adjusted for sex, genotyping chips and plates, and the first ten principal components to account for population stratification. To facilitate interpretability, the PSs were z-standardised with a mean=0 and standard deviation=1.

Statistical analysis
Multilevel models using the package “lme4” (35) were implemented to test the associations between the ADHD/BMI PSs and the opposite phenotype. Because twins are nested within families, the model clustered standard errors by family to allow for within-family correlations.
For each multilevel model, we estimated the association between the ADHD PS and BMI phenotypes and the BMI PS and ADHD ratings with:

- The family mean PS (i.e. the averaged PS across the two twins): this estimates the between family association.
- The difference between the individual PS and the family mean PS: this estimates the within-family association.

We then computed the following differences in estimates from the multilevel models:

- Differences of the within-family and the between-family estimates (the within-family minus the between-family estimates): to examine estimate change due to the three aforementioned sources of bias.
- Differences of the within-family estimates between ages 16 and 8 years (estimate at age 16 minus estimate at age 8): to examine whether effects varied across development.

Differences were tested against the null using 95% bootstrap percentile intervals based on random sampling with replacement of DZ twin pairs (10,000 draws).

It has been shown that the between-family estimates can be confounded by dynastic effects related to parental education (34). We therefore included parental education (standardized average of maternal and paternal highest educational level collected at first contact) in our model to test if it changed the between-family estimates. As above, we tested the following differences:

- Differences of the within-family and the between-family estimates in the model, this time including parental education as a covariate.
- Differences of the between-family estimate before and after adjusting for parental education.
III. Bidirectional two-sample Mendelian Randomization (MR) analysis of ADHD and BMI

Study Samples
MR is a causal inference method that uses genetic variants associated with an exposure (e.g. SNPs associated with BMI) as instrumental variables to estimate the effect of this exposure on an outcome (Table 1 for details). We selected SNPs below the genome-wide significance of $p_{	ext{GWAS}} < 5 \times 10^{-8}$ for BMI ($N_{\text{SNPs}} = 546$) and SNPs below a GWA suggestive p-value threshold of $p_{	ext{GWAS}} < 5 \times 10^{-5}$ (Duggal 2008) for ADHD ($N_{\text{SNPs}} = 190$) with clumping to ensure independence between SNPs (clumping r^2 cut off = 0.001 and clumping window = 10,000kb) from recently published genome-wide association (GWA) summary data on BMI ($N=806,834$, (16)) and ADHD ($N=55,374$, (14)).

Statistical analysis
We used the TwoSampleMR package (36) to perform two-sample MR analysis. We considered ADHD and BMI as exposures in turn to evaluate bidirectional effects. Effect estimates from individual SNPs were combined using random-effects inverse-variance weighted (MR-IVW) regression as the primary analysis.
To interrogate possible violations of key MR assumptions and to deal with a potential weak instrument bias, we conducted a number of sensitivity analyses, including (see details in Table 1):

- MR-Egger analysis
- Weighted median analysis
- Weighted mode analysis
- Robust adjusted profile score (MR-RAPS) analysis
• Multivariable MR using the IVW estimator to estimate the direct effects of BMI and ADHD after controlling for confounding associated with educational attainment

To examine whether controlling for educational attainment influences some of the reciprocal effects between ADHD and BMI, we compared the IVW MR estimator and multivariable MR estimator using a test after adjusting for the covariance between the two estimates (37).

Results

I. Twin-differences analysis

Sample baseline characteristics are shown in Supplementary Table 1. Figure 1 and Supplementary Table 2 present the autoregressive and cross-lagged phenotypic correlations between ADHD and BMI SDS from ages 8 to 16 years, adjusted for age, sex and birth weight in unrelated individuals. Evidence indicated that ADHD symptoms at ages 8 and 14 years were positively associated with subsequent BMI ($\beta=0.033$, 95% bootstrap CI=0.007,0.059 and $\beta=0.061$, 95% bootstrap CI=0.024,0.099 respectively) (Supplementary Table 2). However, little evidence showed that earlier BMI was associated with later ADHD. Results of the twin-differences analyses on MZ twins are shown in Figure 1 and Supplementary Table 3. MZ twin-differences analyses provided little support that differences in earlier measures of ADHD symptoms were associated with subsequent changes in BMI ($\beta=-0.009$, -0.074 and 0.005, all 95% bootstrap CI included 0) and vice versa ($\beta=-0.040$, -0.025 and 0.011, all 95% bootstrap CI included 0). Means and distribution of the differences in standardised ADHD ratings and BMI SDS in MZ twins at ages 8, 12, 14 and 16 are shown in Supplementary Figure 1.
II. Polygenic score analysis

Polygenic score for ADHD to BMI SDS
The associations between the ADHD PS and phenotypic BMI from the multilevel model are displayed in Figure 2 and Supplementary Table 4. Findings indicated positive between-family associations at ages 12, 14 and 16 years (e.g. at age 12 years, Beta=0.057, 95%CI=0.016,0.098, i.e. one SD unit increase in the ADHD PS was associated with 0.057 unit increase in BMI SDS). The within family estimates provided evidence that that a one SD increase in the individual ADHD PS from the family mean was associated with a 0.128 (95%CI 0.025 to 0.228) unit increase in BMI SDS at age 16. There was little evidence that the ADHD PS associated with BMI within families at earlier ages. There was little evidence that the between-family and the within-family estimates differed (Δ=−0.041 to 0.040, bootstrap 95% CIs all across 0) (Supplementary Table 4). Overall, the within-family associations increased from age 8 to age 16 years (Δ=0.088, 95% bootstrap CI 0.038,0.214).

After including parental education level as a covariate, the between-family associations were attenuated at ages 8, 12 and 14 years (Δ=−0.016 to -0.007, bootstrap 95% CIs do not include 0), while the within-family association remained unchanged. In sum, the effects of the ADHD PS on BMI increased from childhood to adolescence and were confounded by parental education (Figure 2 and Supplementary Table 4).

Polygenic score for BMI to ADHD symptoms
The associations between the BMI PS and ADHD symptoms are shown in Figure 2 and Supplementary Table 5. The BMI PS was positively associated with ADHD symptoms between-families across the four time points (Beta ranging 0.475 to 0.837), and there was evidence of within-family associations at ages 8 and 12 and 14 years (Beta ranging 0.470 to
Evidence showed that the within-family association was smaller than the between-family association at age 16 years ($\Delta = -0.626$, bootstrap 95% CI -1.029, -0.217) (Supplementary Table 5) but not at earlier ages. In contrast to the ADHD PS, the effects of the BMI PS on ADHD symptoms decreased from age 8 to age 16 years ($\Delta = -0.538$, 95% bootstrap CI -0.988, -0.094).

After including parental education level as a covariate, the between-family associations were attenuated at ages 8, 12 and 16 years ($\Delta = -0.434$, bootstrap 95% CIs do not cross 0) (Supplementary Table 5). In sum, the effects of the BMI PS on ADHD symptoms decreased from childhood to adolescence and were confounded by parental education.

III. Bidirectional two-sample Mendelian Randomization (TSMR)

Effect of ADHD liability on BMI

After harmonisation to exclude palindromic and incompatible SNPs, 131 of the 190 SNPs selected for ADHD at p-value threshold of $p_t < 5 \times 10^{-5}$ were used as genetic instruments for ADHD. Table 2 and Figure 3 show the effect of the liability to ADHD on BMI estimated by different methods. The estimates suggest that a unit increase in odds of ADHD leads to 0.028 SD increase in BMI (IVW $\beta = 0.028$, 95% CI 0.015-0.040, $p < 0.001$). The sensitivity analysis using weighted median method and MR-RAPS were consistent with the IVW results. The weighted mode found little evidence of an effect, and was not consistent with the IVW, and the MR Egger estimate was imprecise (Table 2). MR-Egger intercept provided little evidence for horizontal pleiotropy (intercept = 0.002, 95% CI -0.002-0.005, $p = 0.330$). We also performed the analyses using SNPs below the genome-wide significance of $p_t < 5 \times 10^{-8}$ as instruments for ADHD. The results showed that one unit increase in odds ratio of ADHD leads to 0.064 SD unit increase in BMI (IVW $\beta = 0.064$, 95% CI 0.004-0.125, $p = 0.036$). The weighted median method was consistent with the IVW, but the weighted mode method and MR Egger provided little support for an effect (Supplementary Table 6).
The multivariable IVW estimates of the effect of liability to ADHD on BMI controlling for effects associated with education, was smaller than the univariable IVW estimate (multivariable MR $\beta = 0.019$, 95%CI 0.005-0.033, $p=0.010$), as found in the test of differences ($t(127)=2.362$, $p=0.020$).

Effect of BMI on the liability to ADHD
After harmonisation, 463 of the 530 SNPs selected from the BMI GWAS below the genome-wide significance of $p<5\times 10^{-8}$ were used as genetic instruments for BMI. As shown in Figure 4, the different MR estimators consistently provided evidence that higher BMI increases liability to ADHD. The estimate of MR-IVW (IVW OR=1.923, 95%CI 1.715-2.157, $p<0.001$) suggests that a one SD unit increase in BMI nearly doubles the odds of ADHD. MR-Egger intercept provided little evidence of horizontal pleiotropy (intercept=0.002, 95%CI -0.003-0.007, $p=0.362$) (Table 2).

The MVMR estimate also provided evidence that BMI had an effect that is independent of effects associated with education on liability to ADHD (multivariable MR-IVW OR=1.587, 95%CI 1.395-7.583, $p<0.001$), although the effect was smaller as found in the test of difference ($t(456)=5.636$, $p<0.001$).
Discussion

The current study used three different genetically informed methods (MZ twin-differences analyses, polygenic score analyses, Mendelian randomization) to test the nature of the relationship between ADHD and BMI. Triangulation of evidence from the three methods indicated multiple sources of confounding such as population stratification, assortative mating and dynastic effects underlying the relationship between ADHD and BMI. Findings suggest that some of the effect between ADHD and BMI may be confounded by effects associated with education. Possible explanations for mixed causal findings across methods are discussed.

The relationship between ADHD and BMI

Unidirectional or bidirectional?

In cross-lagged phenotypic analyses on unrelated individuals, we found that ADHD symptoms predicted higher BMI at later ages but not the reverse. However, the cross-lagged MZ twin differences analysis found little evidence of an effect of ADHD on later BMI or the reverse. In contrast, polygenic score analysis and MR were consistent with the presence of bidirectional relationships between ADHD and BMI. There was stronger evidence of the effect of BMI on ADHD in MR analyses and the findings were consistent across MR estimators. However, such a finding may be attributed to the more powerful genetic instruments available for BMI compared to ADHD. For example, when including additional genetic variants for ADHD (i.e. using a more liberal threshold when selecting SNPs as instrumental variables), we identified causal effects of ADHD on BMI that were undetected in a previous MR report (22). A more powerful GWAS for ADHD may, in the future, result in consistent findings for the effect of ADHD liability on BMI.
Causal or confounded?

The results from our three genetically informed methods were consistent in highlighting multiple sources of confounding affecting the relationships between ADHD and BMI. First, the fact that there was little evidence of an effect in MZ twin-differences analyses suggests that shared genetic and environmental confounds may account for the relationship between ADHD and BMI. This finding corroborates previous studies using family-based approaches, showing that a substantial proportion of the association between ADHD and obesity is explained by shared genetic and environmental influences (38) (13). However, twin differences analyses can be biased by non-shared confounding such as measurement errors, which then leads to attenuations of within-twin pair associations and lower statistical power (39). Although we did not detect associations between twin differences scores in BMI and twin differences scores in ADHD, we noted that substantial auto-regressive pathways were found for both traits (e.g. twin differences in ADHD at age 8 and 12). As such, twin differences scores showed some reliability and stability over time, suggesting that any undetected true associations between twin differences scores in ADHD and BMI are likely small. As such, replication of our twin-differences findings in a larger twin sample is needed to verify whether small bidirectional causal effects between ADHD and BMI can be excluded. Furthermore, cross-lagged models rely on given time lags (i.e. intervals between data collection points) to examine causal relationships. It is possible that the effects of ADHD on BMI occur within a different time frame (e.g. immediate effects or very long-term effects), which went undetected in our designs. Of note is that the genetic instruments used in polygenic scores and MR reflect long-term exposures (e.g. long-term increased liability to BMI and ADHD), which may be one important source of divergence between findings from these two methods and findings from time-sensitive cross-lagged analyses.
Second, the within-family polygenic score analysis, which controls for sources of confounding shared between siblings (e.g. population stratification, dynastic effects and assortative mating) revealed that the associations between ADHD and BMI PS and the opposite phenotype were to some extent biased by the aforementioned factors. Furthermore, noticeable attenuation of the between-family estimates after controlling for parental education suggests that dynastic effects related to parental education may constitute an important source of confounding. This is in line with previous studies showing substantial confounding due to family and parental factors in polygenic score prediction of educational attainment (40, 41) and cognitive abilities (34). Our study demonstrates that such confounding is not specific to cognitive traits but may also extend to other traits and outcomes, namely ADHD and BMI.

Third, multivariable MR analyses further implicated confounding in the relationship between ADHD and BMI. We found that the effects between ADHD and BMI were substantially attenuated after including educational attainment in the multivariable MR analysis, suggesting that some of the effects between the two phenotypes may be confounded by effects associated with educational attainment. These findings correspond to current knowledge that population stratification, assortative mating and dynastic effects can result in biased MR estimates (23). Further work implementing a within-family MR design that accounts for such confounding may provide less biased estimates of the causal effects of BMI on ADHD.

The developmental feature of bidirectional relationships between ADHD and BMI

As part of twin-differences analyses and polygenic score analyses, we tested whether effects between ADHD and BMI changed from childhood to adolescence. Notably, the BMI PS had
a stronger effect on ADHD symptoms in childhood compared with adolescence, suggesting that the genetic liability to higher BMI has stronger influence on ADHD manifestations during the childhood years. Interestingly, a recent study has identified that higher BMI and obesity may be associated with the development of prefrontal cortex and executive function in children (42).

In the other direction, we found that the association between the ADHD PS and BMI increased from childhood to adolescence, suggesting that ADHD may more likely result in higher BMI in adolescence compared to childhood. One plausible explanation to the increasing effects of ADHD with age is that individuals with ADHD symptoms may present more impulsive eating and difficulty planning regular meals or maintaining a healthy lifestyle (43). Consequently, these behaviours may lead to weight gain in adolescence and beyond, when parental monitoring is less pronounced, and individuals are more autonomous in their food consumption patterns.

Limitations
In addition to the aforementioned methodological limitations associated with each design and limitations related to power, the following limitations should be considered. As we used BMI as the studied variable for our analyses, the interpretation may not be applicable when using obesity as the target. Similarly, ADHD symptoms were dimensionally assessed in our study sample, so the findings may not be readily transmitted to clinical samples. Finally, as we used ADHD liability as the exposure variable in MR analysis to study the effect of ADHD on BMI, this may potentially lead to violation of MR assumptions if there is a continuous effect of ADHD on BMI and prevents us from estimating the actual effect (44).
Conclusion

The three genetically informed methods implemented in this study converged to demonstrate that the relationships between ADHD and BMI are confounded by shared genetic and environmental factors. Polygenic score and MR analyses suggest plausible reciprocal relationships while findings from cross-lagged analyses were inconsistent. Polygenic score analyses further suggested that reciprocal relationships may be age specific. Future research using larger samples and additional designs may be required to provide a definitive answer. A developmentally sensitive approach aiming to describe the timing of the causal effects may be required to elucidate apparently diverging findings. Such a developmentally sensitive approach will also provide invaluable information in terms of prevention and early intervention programmes.
Acknowledgements
The authors gratefully acknowledge the ongoing contribution of the participants in the Twins Early Development Study and their families.

Declaration of Conflicting Interests
The authors declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The Twins Early Development Study is supported by grant MR/M021475/1 (and previously G0901245) from the UK Medical Research Council. J.-B.P. JBP is a fellow of MQ: Transforming Mental Health (MQ16IP16) and is supported by the Medical Research Foundation 2018 Emerging Leaders 1st Prize in Adolescent Mental Health. C.-Y.L. is supported by an Overseas Research Scholarship from University College London.
References

Table 1. Description of the three inference methods employed to study the relationship between ADHD and BMI

<table>
<thead>
<tr>
<th>Approach</th>
<th>General description</th>
<th>Rationale and aims for application in current study</th>
<th>Main assumptions</th>
</tr>
</thead>
</table>
| 1. Twin-differences | Twin-differences analysis capitalize on the twins’ characteristics to control for potential confounding due to | Twin-differences analyses in MZ twins
• MZ twins provide a stringent control for genetic and shared environmental confounding.
• The longitudinal design assesses whether differences in one trait associate with subsequent differences in the other trait.
• Twin-differences analyses can inform if the effects are due to non-shared environment or shared aetiology. | MZ twins share 100% of their genetic material (although small divergences from this general rule can be observed).
The MZ twin-differences analyses assume that there is no unobserved non-shared environmental confounding. Plausible observed confounders (here birth weight) can be adjusted for. |
| design | potential confounding due to genetic and shared environmental effects. If one twin differs from its co-twin in one trait (e.g. BMI) also differs in the outcome of interest (e.g. ADHD), then it suggests effects are independent from genetic and shared environment influences. | | |
| 2. Polygenic score (PS) | A PS for a specific trait per individual is derived by computing the sum of the trait-associated alleles weighted by their relative effect sizes as reported in the genome-wide association summary statistics. | Between- and within-family PS association in DZ twins
• A PS indexes an individual’s genetic liability to a particular trait, thus can be used as a proxy of that trait in cross-trait analyses.
• PS associations provide an initial indication of a possible causal relationship.
• Implementing within-family polygenic score association as performed in the present study addresses assumptions that are | The main assumption for the use of PS in the context of causal inference is the absence of pleiotropy. However, this assumption is most unlikely to hold.
The within-family design controls for external confounding such as dynastic effects\(^1\), population stratification\(^2\) and assortative mating\(^3\), which can bias the results. |
| analysis | | | |
3. **Bidirectional Mendelian randomization analysis (MR)**

<table>
<thead>
<tr>
<th>Bi-directional two-sample MR was implemented in this study to</th>
<th>Bi-directional two-sample MR was implemented in this study to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate reciprocal relationships between ADHD and BMI</td>
<td>Evaluate reciprocal relationships between ADHD and BMI</td>
</tr>
</tbody>
</table>

IVW-based method
- The IVW regression estimates the causal effect by computing the slope of the weighted regression of instrument-outcome associations on instrument-exposure associations, with the intercept constrained to zero.

MR-Egger regression
- The intercept estimate can be interpreted as the average directional pleiotropic effects across the IVs.

Weighted-median method
- Provides a valid causal estimate if the IVs that represent 50% of the weight in the estimate are valid.

Weighted-mode method
- Three core instrumental assumptions regarding the IV should be met for all the MR analyses:
 - Relevance assumption: the genetic variants are associated with the exposure
 - Independence assumption: association between the genetic variants and the outcome is not confounded by unmeasured factors
 - Exclusion restriction: genetic variants only affect the outcome through their effect on the exposure. Unmediated pleiotropy (also called horizontal pleiotropy[^4]) violates this assumption.

IVW-estimator only accounts for balanced pleiotropy[^5], i.e. when average pleiotropic effect equals to zero, simply creating additional heterogeneity without modifying the point estimate. Conversely, **MR-Egger**
• Assumes that the most common causal effect estimate represents the true causal effect. It is robust to directional pleiotropy and is unbiased when the majority of the IVs are invalid.

Robust adjusted profile score (MR-RAPS)

- Attributing different weights to the IVs according to their associative strengths minimises the weak instrument bias. It enables two-sample MR analysis to include more weak IVs, which was not feasible with other methods for MR, and increases efficiency of MR studies.

Multivariable MR analysis

- Provides effect estimates of multiple exposures on one outcome, thereby explicitly controlling for suspected sources of pleiotropy. Here, we implement multivariable MR by modelling genetic variants associated with educational attainment to test whether genetic nurture effects associated with educational attainment may explain away some of the reciprocal effects between ADHD and BMI.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR-Egger</td>
<td>Provides an estimate of directional pleiotropy and can yield a correct estimate even if all instruments are invalid. But MR-Egger has low power.</td>
</tr>
<tr>
<td>The weighted-median method</td>
<td>The weighted-median method can provide accurate causal estimates when > 50% of the instrument are valid and is more powerful than MR-Egger.</td>
</tr>
<tr>
<td>The weighted-mode method</td>
<td>The weighted-mode method provides a valid causal estimate if the largest subset of IVs with the same ratio of effect is formed by valid instruments.</td>
</tr>
<tr>
<td>MR-RAPS</td>
<td>MR-RAPS can be employed to correct for the weak instrument bias and is also robust to balanced pleiotropy.</td>
</tr>
<tr>
<td>Multivariable MR analysis</td>
<td>Multivariable MR analysis provides accurate causal effects if sources of pleiotropy are effectively captured and explicitly modelled.</td>
</tr>
</tbody>
</table>
Note: ¹ Dynastic effect, non-transmitted alleles from parents influence offspring phenotype via the correlation between the environment parents create for their children and the non-transmitted gene; ² Population stratification, the presence of a systematic difference in allele frequencies between subgroups in a population. It mainly results from non-random mating due to geographic separation and low rates of migration; ³ Assortative mating, Individuals with similar phenotype mate with one another more frequently than that would be expected at random. For example, married couples often share similar level of education or socioeconomic background; ⁴ Horizontal pleiotropy, when one genetic variant has independent effect on multiple traits; ⁵ Balanced pleiotropy, on average the pleiotropic effects on the outcome equal to zero (hence balanced) and is independent of the pleiotropic effects on the exposure. When the average pleiotropic effect is positive or negative, the horizontal pleiotropy is “directional” and unbalanced.
Table 2. Mendelian randomization: effects between ADHD and BMI

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Method</th>
<th>nSNP</th>
<th>Univariable MR</th>
<th>Multivariable MR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADHD</td>
<td>IVW</td>
<td>0.028</td>
<td>0.015</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>MR RAPS</td>
<td>0.020</td>
<td>0.010</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>Weighted median</td>
<td>0.013</td>
<td>0.004</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>Weighted mode</td>
<td>0.002</td>
<td>-0.024</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>MR Egger</td>
<td>0.008</td>
<td>-0.034</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td>MR Egger intercept</td>
<td>0.002</td>
<td>-0.002</td>
<td>0.005</td>
</tr>
</tbody>
</table>

	IVW	1.923	1.715	2.157	<0.001
	MR RAPS	1.910	1.699	2.147	<0.001
	Weighted median	1.973	1.710	2.276	<0.001
	Weighted mode	2.353	1.570	3.527	<0.001
	MR Egger	1.679	1.228	2.297	0.001
	MR Egger intercept	0.002	-0.003	0.007	0.362

* is odds ratio (OR)
Figure 1. Cross-lagged phenotypic associations between ADHD and BMI SDS

Note: Standardized estimates (i.e. correlations) adjusted for age, sex and birth weight are shown in black (above the lines); estimates for twin-differences analyses in MZ twins are in blue (below the lines); estimates with 95% bootstrap percentile intervals not including 0 are displayed in italic bold. Details of 95% bootstrap percentile intervals can be found in Supplementary Table 2 and Supplementary Table 3.
Figure 2. Between- and Within-family polygenic score prediction

ADHD PS predict BMI SDS

<table>
<thead>
<tr>
<th>Age</th>
<th>B</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.57</td>
<td>0.628</td>
</tr>
<tr>
<td>12</td>
<td>0.616</td>
<td>0.47</td>
</tr>
<tr>
<td>14</td>
<td>0.25</td>
<td>0.499</td>
</tr>
<tr>
<td>16</td>
<td>0.486</td>
<td>0.052</td>
</tr>
</tbody>
</table>

ADHD PS predict BMI SDS (Parent Edu)

<table>
<thead>
<tr>
<th>Age</th>
<th>B</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.57</td>
<td>0.628</td>
</tr>
<tr>
<td>12</td>
<td>0.616</td>
<td>0.47</td>
</tr>
<tr>
<td>14</td>
<td>0.25</td>
<td>0.499</td>
</tr>
<tr>
<td>16</td>
<td>0.486</td>
<td>0.052</td>
</tr>
</tbody>
</table>

Beta
Note: PS, standardised polygenic score; B/Beta, unstandardized beta estimate. Interpretation of the between-family PS effects of ADHD on BMI at age 8 years is one unit increase in the standardised ADHD PS is associated with 0.033 kg/m2 increase in BMI. Interpretation of the within-family PS effects of ADHD on BMI at age 8 years is 1 unit increase in the difference between individual ADHD PS from the family average PS is associated with 0.067 kg/m2 increase in BMI.
Figure 3. Mendelian randomization: effects of ADHD on BMI
Figure 4. Mendelian randomization: effects of BMI on ADHD

![Graph showing Mendelian randomization effects of BMI on ADHD.](image-url)