Abstract
Objective To mine Twitter to quantitatively analyze COVID-19 symptoms self-reported by users, compare symptom distributions against clinical studies, and create a symptom lexicon for the research community.
Materials and methods We retrieved tweets using COVID-19-related keywords, and performed semi-automatic filtering to curate self-reports of positive-tested users. We extracted COVID-19-related symptoms mentioned by the users, mapped them to standard concept IDs (UMLS), and compared the distributions to those reported in early studies from clinical settings.
Results We identified 203 positive-tested users who reported 1002 symptoms using 668 unique expressions. The most frequently-reported symptoms were fever/pyrexia (66.1%), cough (57.9%), body ache/pain (42.7%), fatigue (42.1%), headache (37.4%), and dyspnea (36.3%) amongst users who reported at least 1 symptom. Mild symptoms, such as anosmia (28.7%) and ageusia (28.1%) were frequently reported on Twitter, but not in clinical studies.
Conclusion The spectrum of COVID-19 symptoms identified from Twitter may complement those identified in clinical settings.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
TBA
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The symptom lexicon will be made available via the link provided.