Laparoscopic vs open gastrectomy: An updated metaanalysis of randomised control trials for short term outcomes and updated metaanalysis for long term overall and disease free survival outcomes.

Dr. Bhavin Vasavada
Consultant Hepatobiliary and liver transplant surgeon,
Shalby hospitals,
Ahmedabad, India

Email: drbhavin.liversurgeon@gmail.com

Dr. Hardik Patel.
Consultant Hepatobiliary and liver transplant surgeon,
Shalby hospitals,
Ahmedabad, India

Keywords: Metaanalysis, Gastrectomies, gastric cancers

Abbreviations: RCT (randomized control trial), Weighted Mean Difference (WMD), Confidence Intervals (C.I), SD (Standard deviations)

Conflict of interests: none

Financial disclosure: none

Abstract:

Introduction:

Aim of this metaanalysis was to compare short term and long term survival outcomes of laparoscopic and open gastrectomy for gastric cancer.
Material and methods:

EMBASE, MEDLINE, PubMed and the Cochrane Database were searched for randomised control trials comparing outcomes in patients undergoing laparoscopic gastrectomies with those patients undergoing open gastrectomies. The primary outcome was 30 day morbidity and mortality and 5 year disease free and overall survivals. Secondary outcomes studied included length of stay, blood loss, d2 gastrectomies, lymphnode retrieval, operative time, distal gastrectomy, wound complications, intraabdominal complications and systemic complications (pulmonary included). Systemic review and Metaanalysis were done according to MOOSE and PRISMA guidelines.

Results:

Morbidity was significantly low in laparoscopic group (P=0.004). There was no significant difference between mortality between the two groups. (P=0.989). There was no difference in wound complications, intra-abdominal complications or other systemic complications in both the groups. Operative time was significantly higher in laparoscopic group. (P < 0.001) wmd 56.904. Hospital stay was significantly lesser in laparoscopic group. (P < 0.001) wmd −0.533 days. Blood loss was significantly lesser in laparoscopic group. (p <0.001). Laparoscopic group patients had less number of lymph node retrieval compared to laparoscopic group.(p <0.001). Laparoscopic group also contained significantly lesser advanced staged gastric cancer than open gastrectomies. There was no significant difference between 5 year over all between the two groups. There was no difference in 5 year disease free survival in both the
Conclusions:

Laparoscopic gastrectomies were associated with better short term outcomes with no difference in 5 year disease free and overall survival.

Introduction:

With advancement of technology and skills laparoscopic gastrectomy is increasingly being performed, however there is still some debate over short term outcome, oncologic safety of resections and long term survivals in comparison to standard open gastrectomies.[1]. Initially laparoscopic gastrectomy was reserved for early and distal laparoscopies but these days more and more surgeons are performing laparoscopic gastrectomies via open approach also.[2].

There are many studies which shows benefits of laparoscopic surgeries in short term outcome and many randomised control trials shows short term benefit of laparoscopic surgeries. [3-13].However there are very few studies and RCT regarding long term survivals between open and laparoscopic surgeries.

AIMS OF STUDY:

Aims of this metaanalysis to do metaanalysis of recent randomised control trials regarding short term outcomes and as not many randomised control trials were
available for long term outcomes so we decided to do metaanalysis of good quality cohort studies and randomised control trials to study long term survival outcomes.

In short term outcomes aim was to study morbidity and in hospital mortalities as well as hospital stay, blood loss, operative times as well as to study oncological parameters like D2 gastrectomies, number of lymphnode retrieval D2 gastrectomies, number, resection rates for advanced gastric cancers.

Material and methods:

EMBASE, MEDLINE, PubMed and the Cochrane Database were searched for randomised control trials comparing outcomes in patients undergoing laparoscopic gastrectomies with those patients undergoing open gastrectomies and studies comparing long term survival outcomes. Two independent authors extracted the data (B.V and H.P).

Systemic review and Metaanalysis was done according to MOOSE and PRISMA guidelines. [14,15]. Types of studies included in metaanalysis is described in table 1 and table 2.

Statistical analysis

The meta-analysis was conducted using Open meta-analysis software. Heterogeneity was measured using Q tests and I^2, and $p < 0.10$ was determined as significant (8). If there was no or low heterogeneity ($I^2 < 25\%$), then the fixed-effects model was used. Otherwise, the random-effects model was used. The Odds ratio (OR) was calculated for dichotomous data, and weighted mean differences (WMD) were used for
continuous variables. Both differences were presented with 95% CI. For continuous
variables, if data were presented with medians and ranges, then we calculated the
means and Standard deviations according to Hozo et al. (16). If the study presented
the median and inter-quartile range, the median was treated as the mean, and the
interquartile ranges were calculated using 1.35 SDs, as described in the Cochrane
handbook.

Inclusion criteria for studies:

- Randomised control trials for short term outcomes and cohort studies
 as well as randomised control trials for long term outcomes.
- Studies comparing laparoscopic and open gastrectomies.
- Full text articles.

Exclusion criteria for studies:

- Nonrandomised control trials for short term outcomes.
- Studies with single groups or studies in which groups were not
 comparable.
- Studies where full texts were not available
- Duplicate studies.

Assessment of Bias:

Characteristics of the studies are described in table 1. [3-13,19-26] Identified studies
were broadly grouped into 1 of 2 types, either randomized trials or cohort studies.

Cohort studies were assessed for bias using the Newcastle-Ottawa Scale [17].
Randomized trials were assessed based on the Cochrane Handbook. [18] (Table 3 and
table 4)
RESULTS:

Selection process of studies for short term and long-term outcomes for this meta-analysis is described in Figure 1.

For short term outcomes 11 RCTS consisting of 4614 patients were included in study. Total 2452 patients were there in laparoscopic gastrectomy group while 2162 patients were included in open gastrectomy group. Morbidity is defined as any deviation from normal perioperative course.

Post operative morbidity was significantly low in laparoscopic group. (P=0.004) odds ratio 0.701 (95% C.I.0.505, 0.974). There was no significant difference between mortality between the two groups. (P=0.989) odds ratio-1.069 (95% C.I.0.456, 2.505). [figure 2]

There was no difference in wound complications, intra-abdominal complications or other systemic complications in both the groups. (P=0.686,0.965,0.089 respectively). [figure 3]

Operative time in minutes was significantly higher in laparoscopic group. (P< 0.001) wmd 56.904 (95% c.I.35.325, 78.482). Hospital stay in days was significantly lesser in laparoscopic group. (P< 0.001) wmd −0.533 days (95% c.I. −1.550, 0.485). Blood loss in ml was significantly lesser in laparoscopic group.(p <0.001), wmd − 57.126 (95% C.I. − 88.475-- 25.778). [figure 4]

Laparoscopic group patients had undergone significantly less d2 gastrectomies and
less number of lymph nodes retrieved compared to laparoscopic group. [(p< 0.001),OR 0.652, (95% C.I. 0.321-1.323) and (p=0.015),wmd = -1.426, (95% C.I (-2.611- -0.241)]. Laparoscopic group also contained significantly lesser advanced staged gastric cancer (T2 and higher) than open gastrectomies. (p=0.001, OR 0.854 (95% C.I (0.461-1.552). [figure 5]

For long term survival outcomes 7 studies consisting of 5150 patients were included in study. Total 2300 patients were there in laparoscopic gastrectomy group while 3640 patients were included in open gastrectomy group.

There was no significant difference in the 5 year over all survival between the two groups. (P=0.788) odds ratio. 1.091 (95 % C.I. 0.969, 1.229). There was no difference in 5 year disease free survival in both the groups. (P=0.814, Odds ratio 1.079 (95% C.I. 0.955-1.220). [Figure 6]

DISCUSSION:

Laparoscopic surgeries have shown similar results to open surgery with improved perioperative outcomes in many malignant diseases. [26-30]. With time laparoscopic approaches have gained more popularity for gastric cancers. [31-32]

Aim of our study was to perform updated meta-analysis of recent randomized control trials for short term outcomes comparing laparoscopic vs open gastrectomies. For long term out comes there are not enough randomized control trials for long term survival outcomes. So we performed meta analysis of cohort studies for long term survivals.

90 days morbidity was significantly less in laparoscopic group however on subgroup analysis there was no difference in Local complications (leak, fistula , collection), wound complications (SSI) or systemic complications (pulmonary and others). Our findings do suggest that benefit of laparoscopic surgeries in short term morbidities..
There was no difference in 90 days mortality between the two groups. Operative time was significantly higher in laparoscopic group, however hospital stay and intraoperative blood loss was significantly less in laparoscopic group, suggesting that laparoscopic surgery is beneficial in short term outcomes.

There has always been doubt about oncologic safety and adequacy of laparoscopic surgeries. Our meta analysis also gave similar findings, There was significantly lesser number of d2 gastrectomies, total number of lymph node retrieval in laparoscopic group. Many recent studies showed oncologic benefit of d2 vs d1 gastrectomies. [33,34].

Our metaanalysis also showed that laparoscopic group also consisted or significant more number of early stage gastric cancers (T2 or earlier) compared to open gastrectomies.

On long term survival analysis only few randomized control study available including recently published KLASS 01 study [19]. So in our meta analysis involving randomized control trials as well as cohort studies it showed no difference between open and laparoscopic groups in 5 year disease free and overall survival. However more Randomized control trials are needed based on our results regarding oncologic adequacy of laparoscopic gastrectomies.

In conclusion Laparoscopic gastrectomies were associated with better short term outcomes with no difference in 5 year disease free and overall survival, but more data are needed regarding long term outcomes particularly with regard to effect of oncological adequacy on long term survivals.

References:

LAPAROSCOPIC VERSUS OPEN GASTRECTOMY FOR EARLY GASTRIC CANCER: ANALYSIS FROM A SINGLE LATIN AMERICAN CENTRE. Arq Bras Cir Dig. 2019 Jan 7;32(1):e1413.

Table 1 characteristics of studies for short term outcomes

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of study</th>
<th>Number of patients laparoscopic gastrectomy</th>
<th>Number of patients in open group</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLASS02</td>
<td>RCT</td>
<td>513</td>
<td>498</td>
</tr>
<tr>
<td>Cristiano 2005</td>
<td>RCT</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>HU 2016</td>
<td>RCT</td>
<td>519</td>
<td>520</td>
</tr>
<tr>
<td>LEE 2004</td>
<td>RCT</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>HIYASHI 2005</td>
<td>RCT</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>KITANO 2002</td>
<td>RCT</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>KIM 2016</td>
<td>RCT</td>
<td>686</td>
<td>698</td>
</tr>
<tr>
<td>Cia 2011</td>
<td>RCT</td>
<td>49</td>
<td>47</td>
</tr>
<tr>
<td>Takiguchi 2013</td>
<td>RCT</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Cui 2015</td>
<td>RCT</td>
<td>128</td>
<td>142</td>
</tr>
<tr>
<td>katai2017</td>
<td>RCT</td>
<td>455</td>
<td>157</td>
</tr>
</tbody>
</table>
Table 2: Characteristics of studies for short term outcomes

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of study</th>
<th>Number of patients laparoscopic gastrectomy</th>
<th>Number of patients in open group</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLASS 01</td>
<td>RCT</td>
<td>673</td>
<td>686</td>
</tr>
<tr>
<td>LI 2008</td>
<td>COHORT</td>
<td>308</td>
<td>900</td>
</tr>
<tr>
<td>XU 2019</td>
<td>COHORT</td>
<td>430</td>
<td>768</td>
</tr>
<tr>
<td>LEE 2019</td>
<td>COHORT</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>KINOSHITA 2018</td>
<td>COHORT</td>
<td>305</td>
<td>305</td>
</tr>
<tr>
<td>Wu 2016</td>
<td>COHORT</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>Li 2018</td>
<td>COHORT</td>
<td>459</td>
<td>856</td>
</tr>
</tbody>
</table>
Table 3: Risk of bias summary of RCT. + denotes low risk of bias, – denotes high risk of bias.

<table>
<thead>
<tr>
<th>STUDY</th>
<th>Random Sequence generation</th>
<th>Allocation Concealment</th>
<th>Performance Bias</th>
<th>Detection Bias</th>
<th>Attrition Bias</th>
<th>Reporting Bias</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLASS 02</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cristiano 2005</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HU 2016</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LEE 2004</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HIYAS HI 2005</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>KITANO 2002</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>KIM 2016</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>CIA 2011</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Takiguchi 2013</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cui 2015</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Katai 2017</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>KLASS S 01</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>
Table 4 Assessment of bias in cohort studies. + Denotes low risk of bias, – denotes high risk of bias.

<table>
<thead>
<tr>
<th>STUDY</th>
<th>Representative of exposed cohort</th>
<th>Selection of non exposed cohort</th>
<th>Ascertainment of Exposure</th>
<th>Demonstration that outcome was not present at start of study</th>
<th>Comparability of cohorts</th>
<th>Assessment of outcomes</th>
<th>Adequate time for followup</th>
<th>Complete Follow up of cohort</th>
<th>Total score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LI 2008</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>7</td>
</tr>
<tr>
<td>NOREO2019</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>7</td>
</tr>
<tr>
<td>XU 2019</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>7</td>
</tr>
<tr>
<td>LEE 2019</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>7</td>
</tr>
<tr>
<td>KINOSHI TA2018</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>7</td>
</tr>
<tr>
<td>wu2016</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>7</td>
</tr>
<tr>
<td>li2018</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>7</td>
</tr>
</tbody>
</table>
Search strategy according to PRISMA guidelines for short term outcomes

Total 390 studies identified

257 studies after duplicated removed

57 studies included LAPROSCOPIC GASTRECTOMY

44 studies full text obtained

12 studies was randomised controlled trials

11 studies included in final analysis with short term outcomes

Search strategy according to PRISMA guidelines for long term outcomes

Total 390 studies identified

257 studies after duplicated removed

57 studies included LAPROSCOPIC GASTRECTOMY

44 studies full text obtained

13 studies mentioned long term survival outcomes

8 studies included in final analysis after duplicates removed

Figure 1 search strategy for short term and long term outcomes
Morbidity between laproscopic and open gastrectomy.

Operative mortality between laproscopic and open gastrectomy.

Figure 2. Comparison between morbidity and mortality between laproscopic and open gastrectomy.
Metaanalysis of intraabdominal complications.

<table>
<thead>
<tr>
<th>Studies</th>
<th>Estimate (95% C.I.)</th>
<th>Ev/Trt</th>
<th>Ev/Ctrl</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLASS 02 2019</td>
<td>0.760 (0.411, 1.405)</td>
<td>13/113</td>
<td>24/698</td>
</tr>
<tr>
<td>Cristiano 2005</td>
<td>0.738 (0.177, 3.077)</td>
<td>4/30</td>
<td>5/29</td>
</tr>
<tr>
<td>hu 2016</td>
<td>1.300 (0.610, 2.717)</td>
<td>47/119</td>
<td>37/520</td>
</tr>
<tr>
<td>hayashi 2005</td>
<td>0.431 (0.009, 0.854)</td>
<td>0/24</td>
<td>1/24</td>
</tr>
<tr>
<td>Kitano 2002</td>
<td>0.172 (0.009, 3.705)</td>
<td>0/24</td>
<td>2/24</td>
</tr>
<tr>
<td>KIM 2016</td>
<td>0.964 (0.011, 1.426)</td>
<td>19/404</td>
<td>25/498</td>
</tr>
<tr>
<td>cia 2011</td>
<td>0.207 (0.042, 1.104)</td>
<td>2/49</td>
<td>6/47</td>
</tr>
<tr>
<td>Takiguchi 2013</td>
<td>1.000 (0.010, 10.040)</td>
<td>0/20</td>
<td>5/20</td>
</tr>
<tr>
<td>cui 2015</td>
<td>0.434 (0.133, 1.322)</td>
<td>3/128</td>
<td>4/142</td>
</tr>
<tr>
<td>katai 2017</td>
<td>0.298 (0.124, 0.717)</td>
<td>1/455</td>
<td>11/157</td>
</tr>
<tr>
<td>Overall (I^2=38.93 %, P=0.089)</td>
<td>0.772 (0.530, 1.125)</td>
<td>158/2452</td>
<td>342/2162</td>
</tr>
</tbody>
</table>

Metaanalysis of systemic complications

<table>
<thead>
<tr>
<th>Studies</th>
<th>Estimate (95% C.I.)</th>
<th>Ev/Trt</th>
<th>Ev/Ctrl</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLASS 02 2019</td>
<td>0.760 (0.411, 1.405)</td>
<td>13/113</td>
<td>24/698</td>
</tr>
<tr>
<td>Cristiano 2005</td>
<td>0.738 (0.177, 3.077)</td>
<td>4/30</td>
<td>5/29</td>
</tr>
<tr>
<td>hu 2016</td>
<td>1.300 (0.610, 2.717)</td>
<td>47/119</td>
<td>37/520</td>
</tr>
<tr>
<td>hayashi 2005</td>
<td>0.431 (0.009, 0.854)</td>
<td>0/24</td>
<td>1/24</td>
</tr>
<tr>
<td>Kitano 2002</td>
<td>0.172 (0.009, 3.705)</td>
<td>0/24</td>
<td>2/24</td>
</tr>
<tr>
<td>KIM 2016</td>
<td>0.964 (0.011, 1.426)</td>
<td>19/404</td>
<td>25/498</td>
</tr>
<tr>
<td>cia 2011</td>
<td>0.207 (0.042, 1.104)</td>
<td>2/49</td>
<td>6/47</td>
</tr>
<tr>
<td>Takiguchi 2013</td>
<td>1.000 (0.010, 10.040)</td>
<td>0/20</td>
<td>5/20</td>
</tr>
<tr>
<td>cui 2015</td>
<td>0.434 (0.133, 1.322)</td>
<td>3/128</td>
<td>4/142</td>
</tr>
<tr>
<td>katai 2017</td>
<td>0.298 (0.124, 0.717)</td>
<td>1/455</td>
<td>11/157</td>
</tr>
<tr>
<td>Overall (I^2=33.79 %, P=0.128)</td>
<td>0.666 (0.447, 1.054)</td>
<td>99/2452</td>
<td>116/2162</td>
</tr>
</tbody>
</table>

Wound complications.

Figure 3. There was no significant difference between intraabdominal, systemic and wound complications between laparoscopic and open gastrectomy.
Comparision of bloodloss between laproscopic and open gastrectomy.

Comparision of hospital stay between laproscopic and open gastrectomy.

Comparision of operative time between laproscopic and open gastrectomy.

Figure 4 comparison of blood loss, hospital stay and operative time between laproscopic and open gastrectomy.
Comparision of completion of D2 gastrectomy between laproscopic and open gastrectomy.

Comparision of number of lymphnode retri ved between laproscopic and open gastrectomy.

Comparision of T2 and higher staging between laproscopic and open gastrectomy.

Figure 5 comparison of completion of d2 gastrectomy, number of lymphnode retri ved and T2 and high staging between laproscopic and open gastrectomy

Studies	Estimate (95% C.I.)	Ev/Trt	Ev/Ctrl
KLASS 02 2019 | 2.069 (0.377, 11.346) | 513/513 | 494/496 |
Cristiano 2005 | 1.050 (0.147, 3.141) | 23/32 | 20/29 |
Hu 2016 | 0.698 (0.145, 3.010) | 527/528 | 512/520 |
Iee 2004 | 1.043 (0.122, 14.711) | 24/24 | 23/25 |
Hayashi 2005 | 1.000 (0.019, 53.446) | 14/14 | 14/14 |
Kim 2002 | 1.000 (0.019, 53.446) | 14/14 | 14/14 |
KIM 2016 | 0.702 (0.172, 3.481) | 304/306 | 468/496 |
cia 2011 | 1.042 (0.122, 3.010) | 49/50 | 47/47 |
Takiguchi 2013 | 1.000 (0.019, 53.446) | 1/10 | 1/10 |
cui 2015 | 0.902 (0.019, 45.776) | 128/129 | 142/140 |
katai 2017 | 0.200 (0.134, 0.286) | 131/605 | 105/157 |

Overall (P^2=77.7% , P<0.001) | 0.452 (0.122, 1.322) | 1794/2452 | 1827/2363 |

Studies	Estimate (95% C.I.)	Ev/Trt	Ev/Ctrl
KLASS 02 RCT 2019 | −1.100 (−3.221, 1.021) | | |
Cristiano 2005 | −3.400 (−11.818, 5.018) | | |
Hu 2016 | −0.800 (−2.796, 1.195) | | |
Iee 2004 | −0.800 (−2.796, 1.195) | | |
Hayashi 2005 | 1.000 (0.019, 53.446) | | |
KIM 2016 | −3.200 (−4.833, −1.567) | | |
cia 2011 | −4.700 (−7.330, −2.070) | | |
Takiguchi 2013 | −3.200 (−4.833, −1.567) | | |
cui 2015 | 0.110 (−0.917, 1.137) | | |
katai 2017 | 0.000 (−2.418, 2.418) | | |

Overall (P^2=54.45% , P=0.015) | −1.426 (−2.611, 0.241) | | |

Studies	Estimate (95% C.I.)	Ev/Trt	Ev/Ctrl
KLASS 02 2019 | 1.030 (0.020, 52.014) | 513/513 | 494/496 |
Cristiano 2005 | 0.857 (0.250, 2.945) | 23/32 | 20/29 |
Hu 2016 | 0.998 (0.030, 0.394) | 527/528 | 512/520 |
Iee 2004 | 2.150 (0.102, 5.444) | 3/24 | 1/25 |
Hayashi 2005 | 3.143 (0.302, 32.654) | | |
KIM 2016 | 1.000 (0.019, 53.446) | | |
cia 2011 | 1.042 (0.019, 45.776) | | |
Takiguchi 2013 | 1.000 (0.019, 53.446) | | |
cui 2015 | 0.266 (0.167, 0.424) | | |
katai 2017 | 0.100 (−4.990, 5.190) | | |

Overall (P^2=65.86% , P=0.001) | 0.902 (0.019, 45.776) | 128/129 | 142/140 |

Figure 5 comparison of completion of d2 gastrectomy, number of lymphnode retri ved and T2 and high staging between laproscopic and open gastrectomy
5 year disease free survival between laparoscopic and open gastrectomy.

5 year overall survival between laparoscopic and open gastrectomy.

Figure 6 There was no significant difference between 5 year disease free and overall survival between laparoscopic and open gastrectomy.